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ABSTRACT

Low Reynolds number flow is three-dimensional and intricate due to multiple vortical
phenomena. This research contributes by investigating the impact of laminar Separation
Bubble (LSB) on noise generated by passive control techniques. It also enhances the
understanding of the efficiency of various trailing edge designs such as serrations, comb,
comb-serrated, and porous configurations, across different flow conditions and Reynolds
numbers, while also addressing the limitations of existing geometrical models for trailing
edges. The study intends to examine the performance of different configurations,
emphasizing their effect on flow structure and acoustic responses. The methodology of
this study encompasses a combination of techniques that includes conducting 2D
simulations using the SST model, performing 3D simulations using large eddy simulation,
employing FW-H acoustic modeling, and utilizing an experimental PIV setup. These
methods collectively provide a comprehensive and robust platform for in-depth
exploration of the research objectives. The analysis of the NACAOQ015 airfoil's flow
characteristics revealed the presence of laminar separation bubbles (LSBs) at low
Reynolds numbers and angles of attack. Two types of flow patterns, with and without
reattachment, were identified. On the suction side, Increasing the Angle of attack leads to
a noticeable upstream shift of these points, while they move downstream along the
pressure side. In 3D simulations, pressure distribution was symmetrical, with the
maximum at the leading edge. No separation was observed except at the trailing edge tip.
At higher angles of attack, the baseline airfoil experienced flow disturbances, laminar
separation bubbles, and vortex shedding. The serrated, combed, and comb-serrated designs
exhibited more stable flow patterns and fewer separation bubbles than the baseline,
potentially reducing tonal noise. Conversely, the poro-serrated design led to distorted flow
and an upstream-moving separation bubble, suggesting a possible increase in tonal noise.
Moreover, results showed irregular broadband noise (300 - 600 Hz) with increased noise
and shifting peak frequency as the Angle of attack rose. The serrated trailing edge design
notably reduced noise levels by roughly 21 dB, especially for low frequencies. Comb-
serration increased high-frequency noise by about 9 dB for angles of attack at 0, -1, and -
2 degrees reduced approximately 9 dB for angles of attack at 1 degree and 2 degrees. On
the other hand, the directivity pattern showed that the maximum noise level is observed to
predominantly radiate at an azimuth angle of around 90 degrees for all the cases, ranging
from 90 to 270 degrees, indicating that the majority of the source's acoustic energy is being
emitted on the suction and pressure sides of the wing. In conclusion, the findings
demonstrate that serrated and comb-serrated designs are beneficial in reducing noise
levels, and that the Angle of attack can significantly impact both the noise level and
directivity pattern.
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CHAPTER ONE

INTRODUCTION

1.1. OVERVIEW

The introduction chapter of this thesis includes a complete review of the study
background, problem statement, research philosophy, scope, limitations, and objectives.
This chapter commences with an overview of the introduction to the topic under
consideration, followed by a concise description of the research problem and the
reasoning for the suggested solution based on the philosophical approach of the study.
The scope of the research is clearly defined, with a special focus on addressing the
problem statement. The research objectives are then provided in a systematic and
ordered way, offering a roadmap for the completion of the study. Finally, the chapter
concludes with the outline of the thesis, offering a comprehensive summary of the

organization and content of the research.

1.2. BACKGROUND OF THE STUDY

Noise pollution is a continuous issue that substantially influences the environment and
the well-being of humans. Loud and undesired noises can induce disruption and stress
and might be regarded as a severe environmental stressor. Research has found that
airfoils operating within low to moderate Reynolds numbers (R, = 10* — 10°) are
known to emit a unique sort of noise known as whistle-like tonal noise. This form of
noise adds to the total environmental noise and is viewed as discomforting by people
exposed to it (Wagner et al., 2007). Tonal noise may be experienced in several of
circumstances, such as on blunt models and airfoil-like designs, buildings, fans, wind
turbines, unmanned aerial vehicles (UAVs), and more. Given the widespread
prevalence and effect of tone noise, it is vital to know the underlying mechanisms and
situations that create it. This information may be utilized to design effective methods
for limiting its impact and decreasing the related environmental and health hazards.

Furthermore, understanding the behaviour of tonal noise can lead to the development of



new technology and ways to decrease noise pollution, increase human quality of life,

and safeguard the environment.

Schumacher et al. (2014) first described the generation of discrete tonal noise
from airfoil surfaces operating at relatively moderate Reynolds numbers (Schumacher
et al. 2014). The tonal noise is a composition of broadband noise focused on a single
frequency, and discrete tonal noise. The occurrence of tonal noise is influenced by the
thickness of the Trailig-edge (TE) and the Boundary Layer (BL) displacement
thickness, as evidenced by Ramirez and Wolf (Ramirez & Wolf, 2016). The noise
generation can also be affected by various geometric factors, such as thickness, chord,
profile, and Angle of attack. Other factors such as spanwise curvature and surface
roughness also play a role but are subject to strict engineering constraints. Paterson et
al. (1973) reported the presence of discrete and numerous tones in a ladder-like
structural pattern, which is dependent on the frequency and free-stream velocity. Tonal
noise with high intensity is often regarded as more disturbing than broadband noise.
Arbey & Bataille (1983) ascribed the broadband contribution to the diffraction of
pressure waves near the TE. The discrete frequencies are made of a primary frequency
tone with the maximum intensity, and its respective secondary frequency tones are

uniformly spaced, as indicated in Figure 1.1.

75+ Primary Tone, frn,max

w7 7O ~~ |

é - secondary Tone, fn | Secandary Tone, fn

) - /

= i

2% \ f

O 5[ Broadband | 1

[ ' N L]

= 5ol Hump, fs Ay, | ] I,-"-ﬁ,.

2 {1y \n

L7y alr | |

i LN Lt

-!u‘ _I'.-'.I_

800 SD0 1000 1100 1200 1300 1400 1500
Frequency (Hz)
Figure 1.1 An example of noise spectra of an airfoil discrete tonal noise

(Arcondoulis et al., 2005)



The aviation industry has made tremendous progress in lowering the noise
created by aircraft airfoils and helicopter blades via acoustically adapted materials and
design improvements. Efforts to regulate fluid flow have led to the suggestion of
strategies such as Laminar Flow Control (LFC), Natural Laminar Flow (NLF), and
Hybrid Laminar Flow Control (HLFC) (Joslin, 1998). However, the practical
implementation of NLF is hindered by its association with substantial pressure drag.
Milestones have been made in the knowledge of flow physics, acoustic wave scattering,
and noise propagation, leading to the introduction of various trailing-edge noise-
reducing technologies (Joslin, 1998). These techniques are categorized into passive and
active control approaches, with the former aiming to improve scattering conditions by
altering physical and geometrical features of the TE and the latter acting on changing
the flow structure through unsteady pressure fluctuations upstream of the trailing edge.
Recently, numerous passive control approaches have been proposed and investigated,
including using serrations, porous materials, finlets, surface treatments, shape
optimization, morphing, and flexible materials. These strategies seek to increase

aerodynamic performance while minimizing noise produced at the TE (Tze et al., 2016).

The study of silent flight in birds, notably the owl, has been a topic of continuous
research in of aerodynamics. Figure 1.2 highlights the distinctive feather characteristics
of the owl, which play a significant role in decreasing noise and contributing to the owl's
reputation as the quietest flying bird. This has prompted contemporary research attempts
to study the processes behind the owl's ability to fly so softly and to apply these results
to numerous sectors, such as aviation. The attention to the owl's feather characteristics
underlines the value of learning from nature and transferring these lessons into human
technology. By acquiring a greater knowledge of the owl's quiet flight, researchers want
to create more effective and efficient noise reduction solutions for many applications.
This study primarily focuses on applying poro-serrated, serrated, combed, and comb-
serrated trailing-edge designs to optimize the flow structure and minimize noise

generation at the TE, as shown in Figure 3.4 — 3.12.



C

Leading-edge

Trailing-edge b

fringe

Secondary (5)
remiges

Primary (P)
remiges

Spanwise

s position (%)

100
90 -
B0

Primary

feather

Feather fringe
70
60
50
40
30

Pennula

Barb shaft

Hook ——=
radiates

S5mm

Figure 1.2 The Unique Feather Features of the Owl, Key to Its Silent Flight
(Jaworski & Peake, 2020).

1.3. STATEMENT OF THE PROBLEM

Aircraft noise has become a critical concern since the 1970s as the number of airports
and commercial aircraft has increased. The adverse effects of aeroplane noise on human
health have necessitated stricter regulations in the aviation sector. Although great
progress has been achieved in decreasing jet engine noise, experts have advocated for
more investigations into reducing noise from other aircraft elements. Various
experimental, computational, and theoretical studies have focused on minimizing
trailing-edge noise, with serrations being regarded as one of the most successful
methods based on bio-inspired research. However, the efficiency of serrations, comb,
and porous trailing edge is still not well understood. It is reliant on flow topology, and
most experiments have been undertaken at low Reynolds numbers (R, ~ 10%).

Furthermore, the collective impact of the serrated and comb design models has not been



thoroughly examined. Upon closer examination of owl feathers, it is evident that their
shapes exhibit inconsistency. Consequently, it is imperative to delve comprehensively
into this aspect to grasp its contribution to effective noise reduction. This is precisely

why the comb-serrated model is being employed as one of the models in this study.

Additionally, there is a need to broaden the current understanding of the discrete
tonal behaviour of NACAOQ015 airfoil, as relatively little experimental and numerical
analysis has been undertaken at moderate Reynolds numbers and various angles of
attack, which have more practical applications. Additionally, the NACA 0015 airfoil is
preferred due to its utilization as a symmetric airfoil with increased thickness in
compared to the more frequently employed NACA 0012 airfoil. Investigating the effect
of this difference in thickness becomes essential in comprehending the distinctive tonal
behavior exhibited by the NACA 0015 airfoil. The airfoil tonal emission is tied to the
amplification of naturally existing instabilities inside the laminar boundary layer (LBL);
however, these instabilities alone do not always contribute to tonal noise. Instead, the
extent and location of the LSB also have an impact on the emitted tonal noise. Despite
the viability of this finding, the fundamental physical reasons causing airfoil tonal noise
still need to be fully understood.

The present research strives to thoroughly understand the tonal noise process
and related physical phenomena by conducting wind tunnel tests and CFD simulations,
evaluating the flow structure and tonal noise over an airfoil impacted by whistle tonal
noise. Additionally, the study will evaluate the influence of passive flow control systems
on airfoil noise emission and flow structure. Given the limited research on controlling
airfoil tonal noise without negatively affecting flow structure, the study seeks to find
effective methods to improve the noise performance and enhance the flow
characteristics at relatively moderate Reynolds number (1.7x10°) and varying angles of
attack (-2 < a <2 deg). The selection of Reynolds numbers and angles of attack for
investigation is based on the observation that discrete tonal noise becomes more
noticeable at lower Reynolds numbers and angles of attack, following previous research
findings.



1.4. RESEARCH PHILOSOPHY

The scientific concept driving the analysis of airfoil tonal noise and its reduction is
based on the knowledge of the link between the physics of flow and the generation of
tonal noise. This research will tackle this problem by conducting flow visualization
using wind tunnel experiments and CFD simulations to examine the flow structure and
tonal noise mechanism over an airfoil under the effect of whistle tonal noise. It has been
noted that the induced tonal radiation is dependent primarily on the Reynolds number
and Angle of attack. Therefore, this research will examine the airfoil tonal emission at
moderate Reynolds numbers and varied angles of attack that have more practical uses.
In addition, the influence of flow control techniques on airfoil noise emission and flow
structure needs to be explored. Therefore, this research will also attempt to conduct
passive flow control over the NACAOQ015 airfoil to enhance its noise performance and
flow characteristics. Overall, this study is motivated by the notion that a better
understanding of the underlying physics of flow and tonal noise will lead to developing

effective and efficient noise-reducing strategies for many practical applications.

1.5. RESEARCH OBJECTIVES

The main objectives of this research are:

1-  Todetermine the influence of Reynolds number and angles of attack on the flow
field structure over NACAQ015 airfoil.

2-  To investigate the noise emitted over NACAOQ015 airfoil at different angles of
attack and a moderate Reynolds number.

3-  To determine the effect of flow control techniques on the aerodynamic and flow
field characteristics.

4-  To evaluate effective noise-reducing methods for airfoil tonal noise based on

passive techniques.

1.6. RESEARCH SCOPE

The study focuses on examining the link between the physics of flow and the generation

of tonal noise over a NACAOQO015 airfoil as relatively little experimental and numerical



