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ABSTRACT

The congestion at the lower frequency bands is pushing the demands for the usage and
operation in the higher bands. The bands above 10 GHz are now required to satisfy the
tremendously increasing needs in satellite communication (SatCom) systems. The
biggest problem in deploying frequencies above 10 GHz in tropical-equatorial regions
is that such areas will experience acute degradation of signal quality due to heavy
rainfall throughout the year. A reliable estimation of rain attenuation is required.
Dependable fade margins are required in mitigating the harsh signal losses. It is found
that data validation for rain attenuation estimation using the frequency scaling technique
is not available in any previous studies conducted in tropical regions. It has been
suggested that instead of using the conventional method of predicting rain attenuation
using the point rainfall rate information, an applicable non-meteorological technique
should also be established. A frequency scaling technique can be the alternatives mean
to predict rain attenuation when rainfall data is not available. The objectives of the
research entail rain-induced attenuation studies for SatCom in tropical regions. They
comprise identifying the best fade margin for rain attenuation at various links,
formulating a new frequency scaling model with improved accuracy, and validating the
proposed model. The methodologies involved in the study encompass the processing of
the beacon signals into first-order statistics of rain attenuation. This, later, leads to the
generation of monthly and annual rain attenuation Cumulative Distribution Functions
(CDFs). The worst month analysis for rain intensity and rain attenuation was also
carried out. The signal loss is expected to be appalling in the worst month because of
the high occurrence of rain events. The required fade margin was determined from an
exceedance at a specific point from the annual CDF. In brief, the frequency scaling
model was derived based on the correlation between the attenuation ratio of a higher
and lower frequency against the attenuation at a lower frequency. The newly developed
formulation was utilized to generate new CDFs of attenuation at different frequencies.
The proposed model offers a lower RMSE value and percentage error of 2.8 and 11.3%
respectively. In contrast, the generic method suggested by the ITU-R only managed to
perform prediction with RMSE value and percentage errors of 28.3 and 28%
accordingly. The new model was validated using data set from alternative years and
alternate locations. In conclusion, the results from the research demonstrate a model
that can be used in the tropical-equatorial region in a way denoting the achievement of
fulfilling the stated objectives. The satellite signal performance can be improved by
applying developed mitigation techniques with an economically viable cost where
dependable fade margins can be attained. The newly developed frequency scaling
technique can offer the right margin to achieve the required quality of service (QoS) for
future SatCom in supporting near-future 5G communication. Consistent connectivity
for high-speed broadband communication demand in delivering digital and internet
applications during heavy precipitation can be attained.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

The Covid-19 global pandemic has caused serious problems for the world's leading
satellite industries. They faced several challenges in delivering reliable link availability
of satellite-Earth signals. Since the start of the pandemic, broadband connectivity
provided by satellite operators had drastically increased from 15% to 70% in network
usage. Satellites can instantly connect isolated communities and offer connectivity to
unreachable and remote areas. However, the main challenge experienced by satellite
industries is providing consistent internet connection in places that experience frequent
heavy precipitation where severe impairment of satellite signal reception occurs.
Precipitation like rain prominently degrades the quality of satellite signals. When
signals travel from satellites to the Earth’s receivers, they pass over unpredictable rain
along their propagation paths. The signal power may weaken before reaching its
destination, especially when longer slant paths and lower elevation angles are involved
(Igwe et al., 2019; Nazrul et al., 2013). These factors affect link availability, leading to
negatively impacting consumer satisfaction which further damages and causes a tumble

in the reputation of satellite providers.

The International Telecommunication Union’s (ITU) Radio Regulations (RR)
defined satellite links as radio links transmitting between Earth stations to satellite
receivers and vice versa. An “uplink” refers to an Earth-to-satellite propagation, and a
“downlink” implies transmission from the satellite to a receiving Earth station. Radio
frequencies that have wavelengths (1) ranging between 1 mm to 10 mm in satellite-
Earth links are referred to as millimetre-wave frequencies. Communication satellites
facilitate human connection regardless of location (Badron et al., 2015). Satellite
communication (SatCom) is then considered the best option for addressing user

demands for areas not economically reachable by terrestrial links, such as for



developing countries with vast lands or in the middle of the ocean. Numerous
requirements in the telecommunication and broadcasting industries have prompted an
increase in demand for high-speed broadband communication, especially for
multimedia services. These have subsequently led to the growing demands for greater
bandwidth (Yussuff et al., 2019). Although the rollout of fibre in South Africa
significantly enhanced the speed of home broadband in the year 2014, satellite
infrastructures continue to fulfil a crucial role in providing communication access to
rural, remote and inland areas throughout the continent and across the globe as well.
The fast growth in telecommunications, increasing bandwidth demands, congestion in
lower frequency bands, and miniaturisation of communication equipment have forced
designers to employ higher frequency bands such as the Ku (12 to 18 GHz), Ka (26.5
to 40 GHz) and V (40 to 75 GHz) (Kamruzzaman & Islam, 2014). Unfortunately, higher
operating frequency bands are very susceptible and vulnerable to tropospheric
conditions that impair and reduce signal quality (Sujimol et al., 2015).

The proposed satellite television broadcast for home reception is called Direct
Broadcast Satellite (DBS) or Direct-to-Home (DTH). It enables the easy access to live
television channels from other countries. Various multimedia applications are offered
by satellite communication which all require extremely high data rate transmissions,
including videoconferencing, broadcasts, data broadcasts that include High Definition
(HD) television broadcasts, bandwidth on demand, intranet works and telemedicine.
Such applications lead to spectrum congestion in lower frequency bands. Shifting to
higher frequency bands is one option for achieving better services in satellite
communication applications since these bands support high data-rate broadcasts and
internet applications. SatCom systems are now moving towards the use of Ka-bands
(20/30 GHz). In future, the shift to higher frequency bands, such as the Q/V (40/50
GHz), will undoubtedly occur to accommodate larger bandwidth requirements. High
radio frequency offers several advantages such as larger spectrum availability, smaller

equipment size requirements and less interference for SatCom (Samat & Singh, 2020).

High Throughput Satellites (HTS) are communication satellites with higher
throughput than traditional Fixed Satellite Services (FSS) which give advantages in
frequency reuse and multiple spot beams. High throughput is important because of its

high-speed information delivery (bits/sec). It can be influenced by frequency reuse and



channel efficiency. The first commercial HTS in Asia is the IPSTAR (Thaicom-4)
operating in the Ku-band and is now developing to operate in the Ka-band (ITU-R
P.618-13, 2017). The main purpose of these satellites is fast internet connectivity. The
commercial HTS, IPSTAR, was launched by Thaicom in 2005. This satellite was
designed for FSS, which is a two-way communication over an Internet Protocol (IP)
platform with a maximum capacity throughput of 45 Gbps, a user download speed of
up to 5 Mbps and an upload speed of 4 Mbps.

Today, the IPSTAR is licensed to operate in 14 countries in the Asia Pacific
areas, which directly allows service providers and operators to deliver real-time
broadband internet access via satellite. In May 2011, Thaicom began selling some parts
of its satellite capacity to Malaysia. Malaysia’s satellite operator, MEASAT, signed a
contract for a specific capacity on the IPSTAR. MEASAT Satellite Systems Sdn. Bhd.
purchased access to seven IPSTAR spot beams under a decade contract for delivering a
total of 3.3 Gbps, representing 7% of the satellite’s total capacity. The bandwidth was
known and marketed in Malaysia as MEASAT-5 (Christensen, 2012).

The idea of deploying a new satellite system in the Ka-band frequency started
to evolve and gain attention in countries with tropical environments. The areas between
the Earth's latitudes of 23°27’ North and 23°27’ South are identified as tropical regions,
as shown in Figure 1.1. The propagation impairments are quite critical in locations with
tropical weather. This is due to the occurrence of frequent heavy rain which severely
affects high-frequency radio wave signals. The rain can cause severe signal fading as
well as interference (Yeo et al., 2009a). The dominant factor for signal impairment of
satellite links at higher frequencies is rain, and this depends on the rain rate, the raindrop
size and raindrop density (Kamruzzaman & Islam, 2014; Islam et al., 2018). Raindrops
absorb and scatter radio waves with shorter wavelengths, hence resulting in signal
attenuation as well as reducing system availability and reliability (Mom et al., 2021).
The attenuation due to rain on any path depends on several parameters, such as the
specific attenuation in dB/km, frequency, polarization, temperature, path length and
latitude. As it is known rain attenuation causes a reduction of the received signal level,
therefore, upon designing dependable Ka-band satellite communication systems, rain
attenuation must be considered as an important propagation element to ensure signal

quality. The conventional quality of service (QoS) criterion in Malaysia for broadcasts



15 99.99% availability (MCMC, 2022). The QoS requirement recommended by the ITU-
R Telecommunication Standardisation is 99.9% link availability for communication
services (ITU-T G.1028, 2016).
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Figure 1.1 Map of Tropical Regions (IEEI, 2014)

Rain attenuation is typically assumed as a product of specific attenuation
(dB/km) and the effective propagation path length (km). The effective path length is the
product of the path reduction factor and the physical path length of a microwave link
(Islam et al., 2012). Rain is the most destructive source of signal propagation on these
bands. The consequence of rain attenuation on band signal quality, especially in tropical
countries such as Malaysia, requires comprehensive research. The appropriate fade
margins must be identified to ensure successful implementation in all provinces

throughout Malaysia.



Several methods can be used for identifying and estimating rain attenuation. The
frequency scaling technique is one suggested approach (Ulaganathen et al., 2013).
Frequency scaling of attenuation is the prediction of rain attenuation at the desired
frequency derived from attenuation values at another frequency (Laster & Stutzman,
1995; Ramana, 2015; Ulaganathen et al., 2013). The method can be used to obtain an
estimation of the attenuation statistics at the desired frequency from attenuation values
measured at a lower frequency. This is very much applicable where and when reliable
long-term rain attenuation statistics are available. Numerous scaling models have been
developed either from theory, from empirical data of various propagation experiments
or from both (Islam et al., 1999).

Generally, statistical models (such as ITU-R) are suitable for establishing fade
margins to mitigate the impairment of transmitted signals. However, it has been
highlighted by various research that the proposed margin cannot cater to large
attenuations and acute impairments in tropical regions (Ismail et al., 2013; Sujimol et
al., 2015; Yaccop et al., 2016). The design and deployment of satellite systems in
tropical regions for higher frequencies require an accurate and precise prediction of
impairment statistics. The statistics must have the smallest error margin to employ
several adaptive techniques at the receiver system. This applies to Malaysia, a country
with a tropical climate with persistent heavy rainfall every year. The research outcomes
will help in solving the relevant problems and setting an appropriate link budget when
designing new satellite networks. Appropriate allocation of higher power transmission
can be deployed to overcome rain fade endured by higher frequency satellite-Earth

links.

1.2 PROBLEM STATEMENT

The terrestrial network has a serious limitation in terms of offering mass coverage for

rural areas and isolated locations. This can be complemented by satellite-Earth



