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ABSTRACT

Application of aluminium alloy 7075 (AI7075) in automotive components is in
demand due to its high strength-to-weight ratio. For assembly purposes, drilling
operations need to be performed on the components for joining using mechanical
fasteners. Drilling in dry condition is typically conducted in industry to avoid
environmental pollution caused by the usage and disposal of cutting fluid. However,
dry drilling is challenging as it often results in high tool wear rates and poor machined
surface finish. Using cold air in drilling operations is seen as an alternative to achieve
a hygienic and clean process. This study investigates the tool wear mechanisms and
machined surface integrity of AI7075 under dry and cold air (10°C) conditions.
Drilling experiments were conducted using tungsten carbide cutting tools at cutting
speeds of 82 - 163 m/min and feed rates of 0.01 - 0.1 mm/rev. The least tool wear was
found to occur when drilling with the lowest cutting speed of 82 m/min and the
highest feed rate of 0.1 mm/rev, which is 0.06 mm after 140 holes in dry condition,
compared to 0.18 mm when using cold air. Whereas, the highest tool wear occurred
when drilling with the highest cutting speed of 163 m/min at all feed rates in which
the tool broke after only 10 holes in both dry and cold air conditions. The tool failure
in dry drilling of AI7075 was found to be due to adhesive wear mechanisms as a result
of chip adhesion on the cutting edges that led to cutting edge chipping. Whereas,
drilling with cold air resulted in more fracture and edge chipping compared to dry
drilling due to work hardening. Nevertheless, the application of cold air during drilling
Al7075 at cutting speeds of 82 — 123 m/min and feed rates of 0.05 — 0.1 mm/rev
particularly when the wear is minimum (hole 10) was found to improve the surface
roughness (Sa) by 14% - 52% than dry drilling. This is due to less material adhesion
on the machined surfaces when using cold air which caused 22 °C lower temperature
than dry drilling. As for burr height, the usage of cold air in drilling at cutting speeds
of 82 — 123 m/min and feed rate of 0.1 mm/rev resulted in 38% - 68% lower burr
height than dry drilling at the 10" holes. As more holes were drilled (hole 80), the use
of cold air in drilling AI7075 still resulted in 78% lower burr than dry drilling at the
cutting speed of 123 m/min and feed rate of 0.1 mm/rev. This study shows the usage
of cold air when drilling AI7075 was not favourable to reduce tool wear, however, it
can be beneficial in improving the quality of machined surface in terms of surface
roughness and burr formation.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Aluminium is the most abundant element that is widely available in Earth’s crust
comprising 8% of the Earth’s stable surface weight (Krishnan et al. 2019). Aluminium
is generally used in the industry due to its light weight. As a comparison, the density
of aluminium (2700 kg/mq) is three times lower than mild steel (7850 kg/m?). In
addition, aluminium also has good fabricability criteria that make it useful to a range
of applications in industry. However, the pure aluminium is low in yield strength (7-
11 MPa) which limits its usage for high performance application. This issue can be
overcome by alloying aluminium with other elements such as zinc, copper, and
magnesium (Estrada-Ruiz, Flores-Campos, Herrera-Ramirez, & Martinez-Séanchez
2016). Aluminium alloy 7075 (Al7075) was introduced for improving the strength
properties which makes it an alternative to other heavier metals such as steel. This can
be shown by the general characteristics of wrought aluminium 7xxx series alloys
where these alloys have greater combinations of strength, corrosion resistance, and

fracture toughness compared to the copper (Santos et al., 2016).

In automotive, aerospace, and manufacturing industry Al7075 is mainly used
for structural components (Polak et al., 2017) where drilling operation is typically
performed and crucial for assembling of the parts. However, drilling aluminium alloy
is challenging due to its ductility at high cutting temperature which leads to material

adhesion on cutting edges, accelerated tool wear, and poor drilled hole quality. Water



and oil-based cutting fluid has been used to improve the drilling performance in
industry. Despite that, managing and disposal of the fluid is an issue as it could lead to
environmental pollution, health issues, and increase cost. In this research, dry drilling
and usage of cold air during drilling operation which is clean and environmentally
compatible is proposed as an alternative to conventional water and oil-based cutting
fluid. This study aims to investigate the drilling performance of Al7075 in dry and
cold air conditions on the wear of carbide tools and machined surface integrity in

terms of surface roughness and burr formation.

1.2 STATEMENT OF THE PROBLEM

Aluminium alloy is the most economical and attractive metallic materials that has
been used in various manufacturing industries such as automotive, aerospace, and
construction of machines. Aluminium alloys are generally soft and ductile, therefore,
it adheres easily to the cutting edges during drilling operation. The built-up edge
forms on the cutting lips during drilling the alloy at low cutting speed causing the tool
to be less effective in removing the chip, consequently lead to material adhesion and
built-up. Therefore, industry has been using higher cutting speed in drilling Al7075,
however, at higher cutting speed, cutting temperature increases. This had resulted in
rapid tool wear which shorten the tool life, hence, increasing the operational cost.
Thus, cutting fluid or lubricant has been used by industry as solutions to dissipate the
heat generated hence minimizing edge buildup during the drilling operation of

aluminium alloy 6061 (Asok and Chockalingam , 2016).

However, there are some concerns with the usage and disposal of cutting fluid.

It would eventually be accumulated with bacteria, harmful to the operators and its



disposal could lead to environmental pollution. If the cutting fluid is overexposed to
the operators, the possibility to get various kind of disease such as respiratory disease
and skin disease is high (Schwarz et al., 2015). In addition, the cutting fluid cannot be
simply disposed into the river or any streams, thus a proper waste disposal
management system need to be considered which could also increase the operational
cost. Therefore, to achieve a hygienic and clean drilling operation of Al7075, this
research proposes to use cold air (10°C) as an alternative in drilling AI7075, however,
there is limited research in the effectiveness of cold air on the tool wear mechanism.
Therefore, this research investigates the effect of cold air in drilling AI7075 on the

wear of carbide drill compared to dry drilling.

Furthermore, in drilling operation, machined surface integrity is a crucial
aspect in production of holes for assembly part as it represents the product integrity
and function. However, when drilling aluminium alloy, material adhesion at the tool-
workpiece interface tend to occur due to the ductility properties and higher cutting
temperature. This had resulted in presence of scratches, feed mark, and smeared at the
surface of the drilled holes which led to product quality deterioration (Goindi &
Sarkar, 2017). These problems usually occurred when drilling operation was
conducted at the combination of higher cutting speed and feed rate which resulted in
higher cutting temperature and plastic deformation that can affect the machined
surface integrity negatively. Thus, this research investigates the application of cold air
in reducing the cutting temperature when drilling, hence, improving the machined
surface integrity of Al7075. In summary, the problems that occurred when drilling
aluminium alloy can be encountered with the proper selections of cooling conditions

and cutting parameters which are cutting speed and feed rate



1.3 RESEARCH OBJECTIVES

The performance of cold air during drilling AlI7075 is investigated in comparison to
dry drilling. The drilling operation was conducted using tungsten carbide drills at
cutting speed of 82, 123, 163 m/min and feed rates of 0.01, 0.05, 0.10 mm/rev. This

was achieved by the following objectives:

1. To investigate the effect of cutting parameters and drilling conditions (dry and
cold air) on tool wear of carbide drills in drilling AlI7075.

2. To investigate the wear mechanisms of carbide drills with respect to dry and
cold air cooling conditions.

3. To investigate the machined surface integrity of Al7075 in terms of surface
roughness and burr formation produced by drilling with cold air and dry

conditions at different cutting parameters.

1.4 RESEARCH SCOPE

The main purpose of this research is to investigate the potential of cold air as a coolant
during drilling AI7075 using uncoated tungsten carbide drill bits. The source of cold
air was generated from the vortex tube system where the specifications as stated in
Chapter 3. Selection of cutting speeds and feed rates were made based on the
materials of cutting tool, workpiece and machine conditions. This research studies the
tool wear and its mechanisms also the machine surface integrity in aspect of surface
roughness and burr formation. Furthermore, the cutting temperature, Al7075 hardness
and chip morphology were inspected as the supportive evidences for tool wear and

machined surface integrity.



1.5 SIGNIFICANCE OF THE STUDY

The application of Al7075 in automotive industry has been evolving due to their high
strength-to-weight ratio, high corrosion resistance and high fatigue strength. However,
the ductility of aluminum alloy is a major challenge when drilling operations are
required to be performed since the material tends to adhere at the cutting tool edge.
When material adhesion occurs on cutting edges, this can lead to built-up edge which
accelerated the tool wear, hence, results in shorter tool life and poor drilled hole
quality. The key factor in this crucial manufacturing process of parts assembly is the
higher heat generated between the tool and workpiece interface. Therefore, there is a
need to investigate the use and effect of cold air as a coolant on tool wear and

machined surfaced integrity in drilling Al7075.

1.6 THESIS OUTLINE

This thesis outline as stated below:
I.  Chapter 1: Introduction
Background of this research was discussed where the current industrial
practice and the challenges also the significance of this research to industry

was stated.

[l.  Chapter 2: Literature Review
Discussion on previous studies on drilling of aluminium alloys with various
grade and the typical cutting tool materials used in achieving lower tool wear
and better surface finish. The cooling conditions and cutting parameters had

been reviewed in ensuring the research gap.



Chapter 3: Research Methodology

This chapter represents the workflow of this study where the specifications for
each component such as the workpiece, cutting tool and machine tool used
were discussed. Moreover, all the related experimental setup and procedures

were demonstrated precisely.

Chapter 4: Results and Discussions

Findings of this research was particularly analyzed and discussed in term of
tool wear and machined surface integrity (surface roughness and burr
formation).

Conclusions

The benefit on application of cold air in aspects of tool wear and machined

surface integrity during drilling Al7075 was summarized.



CHAPTER TWO
LITERATURE REVIEW

2.1 ALUMINIUM AND ITS ALLOY

Aluminium is silvery white metals that exist abundantly in comprise about 8.1% in the
Earth’s crust. This metal coexist with others minerals such as bauxite and cryolite
which means aluminium is rarely found in nature by itself. Hence, aluminium is
obtained through a process known as Hall-Héroult where the pure aluminium is
extracted electrolytically by dissolving aluminium oxide in molten cryolite (Royal
Society of Chemistry, 2017). Even though aluminium is the most economical metal
resources but the nature of aluminium that is soft and malleable has restricted its
capabilities to be used extensively in various ranges of products and industries.
Therefore, the pure aluminium has been alloy with various metal elements for
improving the mechanical properties respectively and these alloys have their own

designation system centred to the principal alloying elements as shown in Table 2-1.

Table 2.1 Aluminium Alloys Series (MatWeb Material Property Data, n.d.)

Series Major Alloying Element
Commercially pure aluminium (99% aluminium with

Laxx small amounts of silicon and iron)
2XXX Copper

3XXX Manganese

AXXX Silicon

5XXX Magnesium

BXXX Magnesium & Silicone

7XXX Zinc




Aluminium alloys are widely used in various manufacturing industries such as
automotive, aerospace, home appliances, electrical conductors and processing
equipment for chemical and food industry. This is due to the low density, highly
corrosion resistant properties and cost-effective. In this study, the main focus is on the
application of aluminium alloys in automotive industry where it can be said that it is
one of the industries that contributed to a large scale of greenhouse gas (GHG)
emission. Babatundea, K.A., Saida, F.F., and Nora (2019) reported that 14% of carbon
dioxide (CO2) has been emitted from manufacturing and automotive industries. The
CO:2 emission is dangerous since it can be trapped in the earth ozone layer which
cause increases of atmosphere temperature and consequently, be the source of global
warming and climate changes. As Malaysia is currently moving towards sustainable
development, there is a need to reduce the GHG emissions which lead to an increasing
demand to reduce the weight of automobiles. Generally, mild steel is the most widely
used metal in the automobile industry due to its superior strength (295 — 2400 MPa).
However, due to it higher density of 7600 kg/m?, this heavy metal contributes

significantly towards GHG emissions as it needs higher consumption of fuel.

Reducing the weight of automobiles is important as it leads to an improvement
in fuel consumption efficiency, consequently reducing the automobile fuel cost and
carbon dioxide emission. Serrenho, Norman, & Allwood (2017) reported that reducing
vehicle mass by substituting mild steel to aluminium alloy would result in 21%
reduction of carbon dioxide emission by 2050. Thus, using aluminium alloys
specifically Al7075 as alternative to heavier alloys such as mild steel for automotive
components is beneficial economically and environmentally. The advantageous of

Al7075 centred at the higher strength properties with lower density value. In



automobiles construction, AlI7075 is normally used for making the vehicles frames,
door panels and some external parts of engine block (Kelly, Sullivan, Burnham, &
Elgowainy, 2015). Then, drilling operations are needed to be conducted on the

components in order to assemble them by mechanical means.

2.1.1 Composition and Properties

Aluminium alloy is a high strength-to-weight ratio alloy that is made up of a mixture
of aluminium with other alloying metals or non-metals such as copper, magnesium,
silicon, tin, and zinc as demonstrated in Table 2-2 (JR Davis , 2013). The aluminium
alloy has great durability and corrosion resistance which make it versatile and
economical to the industries. In addition, aluminium alloy has no toxic reaction and
come with good electrical and thermal conductivity. Tensile strength of commercial
pure aluminium increase significantly by alloying aluminium with other metals via

cold working or heat treatment process (Lee & Mishra, 2017).

Table 2.2 Composition of common aluminium alloys used in the automotive industry
(MatWeb Material Property Data, n.d.)

Series Composition

1100 Chemical element  Si+Fe Cu Mn Al
Weight % 0.95 0.2 0.05 99

2011 Chemical element  Cu Fe Pb Bi Si Zn Al
Weight % 6.0 0.7 0.6 0.6 0.4 0.3 94.6

2014 Chemical element  Cu Si Mn Mg Fe Zn  Ti Cr Al
Weight % 5.0 12 12 08 07 025 015 01 95

2024 Chemical element  Si+Fe Cu Zn Mn Mg \Y Ti Al
Weight % 0.7 0.1 0.1 005 0.05 0.05 0.03 993

5005 Chemical element Mg Fe Si Zn Mn Cu Cr Al
Weight % 1.1 0.7 0.3 025 0.2 0.2 0.1 97

5052 Chemical element Mg Fe Cr Si Mn Cu Zn Al
Weight % 2.8 0.4 035 025 01 0.1 0.1 97

6061 Chemical element Mg  Si Fe Cu Cr Zn Ti Mg Al
Weight % 12 08 07 04 035 025 015 0.15 986

6063 Chemical element Mg  Si Fe Cu Cr Zn Ti Mn Al
Weight % 0.9 0.6 035 0.1 0.1 0.1 0.1 0.1 97.5

7075 Chemical element  Zn Mg Cu Fe Si Mn Ti Cr Al
Weight % 61 29 20 05 04 03 02 028 914






