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ABSTRACT

Micro Electrical Discharge Machining (WLEDM) is one of the most demanding
manufacturing processes available today. The selection of uEDM parameters remains a
challenge since it is frequently based on machinist intuition and heuristic approaches.
In recent years, soft computing and artificial intelligence have been used to model and
predict the hEDM machining process. However, artificial intelligence has not been
established for predicting tEDM performances based on material properties. Therefore,
this research proposed a model that considers the material properties, such as thermal
conductivity, melting point, and electrical resistivity. Since pEDM is a non-linear and
stochastic process, Coactive Neuro-Fuzzy Inference Systems (CANFIS) was proposed
to model and predict the multiple hEDM performances on various materials. The
material properties, feed rate, capacitance, and gap voltage are the input parameters in
a three-level design based on a full factorial experiment. The CANFIS model can
accurately predict the material removal rate (MRR), total discharge pulse, overcut, and
taperness in a single model. The mean average percentage error (MAPE) from the model
prediction for test dataset of various outputs such as MRR, total discharge pulse, overcut
and taper angle were found to be 9.5% (90.5% accuracy), 8.9% (91.1% accuracy),16.9%
(83.1% accuracy) and 15.7% (84.3% accuracy) respectively. This research proposes a
novel approach in modelling and predicting ptEDM performances by considering

workpiece’s materials using artificial intelligence.
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ABSTRACT IN BAHASA MALAYSIA

Mikro Pemesinan Nyahcas Elektrik (WEDM) adalah merupakan salah satu proses
pembuatan yang mendapat permintaan yang tinggi pada ketika ini. Pemilihan parameter
LEDM masih lagi menjadi cabaran kerana ia sering ditentukan berdasarkan gerak hati
juruteknik dan pendekatan heuristik yang mencabar untuk dimodelkan. Kebelakangan
ini, pengkomputeran lembut dan kecerdasan buatan banyak digunakan untuk memodel
dan meramal proses ptEDM. Walau bagaimanapun, kecerdasan buatan belum lagi
digunakan untuk meramal prestasi hLEDM berdasarkan kepada sifat bahan. Oleh itu,
penyelidikan ini mencadangkan suatu model yang mengambil kira sifat bahan, seperti
kekonduksian terma, takat lebur dan daya tahan elektrik. Oleh kerana nEDM ialah
proses yang tidak linear dan stokastik, sistem inferens neuro-kabur koaktif (CANFIS)
telah diketengahkan untuk memodel dan meramal pelbagai prestasi pEDM untuk
pelbagai jenis bahan. Sifat bahan, kadar suapan, kapasitansi dan jurang voltan adalah
dipilih sebagai parameter input yang direka bentuk dalam tiga peringkat berdasarkan
eksperimen berfaktorial penuh. Model CANFIS ini berjaya meramal dengan tepat
prestasi uLEDM yang terdiri daripada kadar penyingkiran bahan (MRR), jumlah pulsa
nyahcas, lebihan potongan dan ketirusan hanya dengan satu model. Peratusan ralat min
mutlak (MAPE) daripada ramalan model untuk data ujian bagi pelbagai prestasi seperti
MRR, jumlah pulsa nyahcas, lebihab potongan dan ketirusan masing-masing
mencatatkan 9.5% (90.5% ketepatan), 8.9% (91.1% ketepatan), 16.9% (83.1%
ketepatan) and 15.7% (84.3% ketepatan). Penyelidikan ini mencadangkan pendekatan
baharu dalam memodel dan meramal prestasi pEDM dengan mengambil kira sifat
bahan mengunakan kecerdasan buatan.
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CHAPTER ONE

INTRODUCTION

1.1 RESEARCH BACKGROUND

Micro-manufacturing is a highly sought-after manufacturing process in the modern era.
It enables the fabrication of microparts and components for various industries, including
semiconductors, biomedical devices, automotive, and aerospace. Micro Electrical
Discharge Machining (WEDM) is a micromachining process that uses an electrical spark
to erode conductive material. The non-contact interaction between the electrode and the
workpiece makes hEDM an effective method for machining metals regardless of their
hardness. Hence, this eliminates mechanical stresses during the machining process.

Micro components and parts fabrication is a difficult task in the manufacturing
process. For example, micro-hole machining requires a micron level setup. hEDM is a
miniature version of EDM specifically designed for microfabrication. A low discharge
energy per pulse is critical for micro-level machining, which is accomplished by
controlling parameters such as gap voltage, feedrate, and power supply type.

Over the recent years, modelling and prediction of the utEDM machining process
using soft computing and artificial intelligence have emerged. From the literature
review, the different combinations of process parameters and performances, modelling
techniques and workpiece —tool selection can lead to extensive research opportunities
in modelling. So far, the implementation of artificial intelligence in predicting hEDM
performances based on material properties is still not established. Therefore, proper
modelling for tEDM performances on the different types of the workpiece material is

needed for the uEDM application. Since EDM is a non-linear and stochastic process,



coactive neuro-fuzzy inference system (CANFIS) is proposed to model and predict the

LEDM performances.

1.2 PROBLEM STATEMENT

The implementation of artificial intelligence in predicting hEDM performances based
on material properties is still not established. Moreover, the selection of nEDM
parameters remains a challenge since it is frequently based on machinist intuition and

heuristic approaches.

1.3 RESEARCH OBJECTIVES
The study aimed to achieve the following objectives:
1- To design and perform pEDM experiments by considering the material
properties.
2- To implement and evaluate CANFIS model that incorporates material
properties for utEDM application.
3- To evaluate the relationships between the process parameters and the

LEDM performances.



1.4 RESEARCH METHODOLOGY

Flowcharts in Figure 1.1 summarized the research methodology.

Y

Identify the key process
parameters

{

Design an experimental
layout and setup

{

= Perform the experiments

)

Objective 1

Y

Develop CANFIS model

{

Train the CANFIS
model

!

Evaluate the model
accuracy

Objective 2

A

) Perform study on the effect
of machining ease index
and feedrate

!

Perform study on the effect
of capacitance and gap
voltage

Objective 3

END

Figure 1.1 Research methodology flowchart



1.5 RESEARCH SCOPES

The research focuses on modelling and predicting utEDM performances for the different
workpiece materials according to the ease of machining order through soft computing-
based model. Hence, this research only focuses on micro-scale, die sinking EDM. The
workpiece materials used were aluminium, copper, and stainless steel. The pEDM
machine used for the experiment is an in-house-built uEDM machine. It is powered by
an RC-based power supply. It was configured with a 1kQ resistor with three parallel

capacitors of 1nF, 10nF and 100nF. The gap voltage can be set from 50V to 100V.

1.6 RESEARCH SIGNIFICANCE
This research proposes a novel approach in modelling and predicting pnEDM

performances by considering workpiece’s materials using artificial intelligence.

1.7 THESIS ORGANIZATION
This report is divided into five chapters, which are introduction, literature review,
methodology, result and discussion and conclusion.

Chapter 1 introduces the fundamentals related to uEDM. The motivation of this
research is also explained in this chapter.

Chapter 2 conducts a review of the literature on EDM principles and previous
research on modelling and predicting EDM performance. This chapter discusses the
prior literature and the research gap.

Chapter 3 describes the research flow and methodology. Additionally, modelling
techniques such as fuzzy logic, ANFIS, and CANFIS architectures are discussed. The

design of the experiment, as well as the experimental setup, are defined in this chapter.



This chapter also explains the training procedure and parameter selections for CANFIS
modelling.

Chapter 4 summarises the experimental data gathered in Chapter 3. This chapter
discusses the model's training result and accuracy in detail. Additionally, relationships
between process parameters and tEDM performance were investigated.

Chapter 5 summarizes the research findings and presents the thesis’s

recommendation.



CHAPTER TWO

LITERATURE REVIEW

2.1 OVERVIEW
Machining processes are divided into two classes by M. P. Groover (1996). To begin,
traditional machining operations such as turning, drilling, and milling use sharp cutting
tools to remove a chip from the workpiece. Non-traditional machining, on the other
hand, refers to a range of operations that remove material using different mechanisms.
Mechanical, thermal, electrical, chemical, or mixtures of these techniques are used by
this group. These non-traditional methods are required to machine new materials with
unique qualities, as well as to produce odd and complex part geometries and avoid
surface damage caused by conventional machining. The examples of non-traditional
methods are the Ultrasonic Machining (UM) and Electrochemical Machining (EM).
Joseph Priestly discovered the erosive impact of electrical discharges in the
1770s, which started the history of EDM (Ho & Newman, 2003; Kumar, Singh, Singh,
& Sethi, 2009). During World War II, two scientists, Lazarenko and Lazarenko started
working on electrical discharge machining at Moscow University, and later in 1950, the
Lazarenkos introduced an EDM system that used a resistance-capacitance power source
(Ho & Newman, 2003; Kumar et al., 2009; Pandey & Singh, 2010). With the
implementation of Computer Numerical Control (CNC) in EDM in the 1980s, the
efficiency of the machining operation improved (Ho & Newman, 2003; Kumar et al.,

2009) Figure 2.1 illustrates the schematic diagram of EDM.





