PRODUCTION AND CHARACTERIZATION OF ACTIVATED CARBON FROM BAOBAB FRUIT SHELL VIA CHEMICAL ACTIVATION FOR THE REMOVAL OF PHENOL

BY

RADHIA NEDJAI

A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

OCTOBER 2021

ABSTRACT

Palm oil mill effluent (POME) causes severe environmental pollution due to its high concentrated pollutants. One of the most effective treatment methods is the adsorption using the activated carbon (AC), which is considered as a solution to wastewater pollution problems but suffering from high cost due to its non-renewable sources. In this study, the potential of converting baobab fruit shells (BFS) into activated carbon was investigated as well as being used in treating POME for removal of the phenol. In this research, different chemicals (ZnCl₂, H₃PO₄, KOH) were used as activating agents for the preparation of AC from baobab fruit shell, which were impregnated (1:1) followed by the carbonized at temperature 500°C for 1 h. The effects of these chemicals on the performances of the prepared activated carbons (yield, iodine number, adsorption properties) were investigated. The BFS-ACs characterized to investigate by using the different analytical approaches such as FTIR, SEM, and XRD. The results indicated that the KOH in terms of adsorption and efficiency showed better results than the ZnCl₂ and H₃PO₄ for the removal of phenol, with a maximum adsorption capacity of 36.9 mg/g at a higher initial concentration (600 mg/L). The aim was to obtain optimum operating conditions for KOH-AC production for maximum phenol removal. KOH-AC samples were produced under varying the operating parameters of temperatures, activation times, and impregnation ratio using face centered central composite design (FCCCD) experimental design under response surface methodology (RMS). The optimum conditions to attain a removal percentage of 93.56 % were determined by employing the RSM. The results demonstrated that the activated carbon prepared at the activation temperature of 700°C for 60 minutes with an impregnation ratio of 1:2 showed the best adsorbent of phenol. KOH-AC was found comparable to the commercial-grade activated carbon. Characterization of the KOH-AC showed good quality adsorbent with highly active sites and well-developed pores with BET surface area of 1263.127 m^2/g . Furthermore, an optimization study for the adsorption conditions of the selected optimum parameters for KOH-AC production was investigated using the RSM. The determining factors such as contact time, AC dose, pH, agitation speed was initially screened using 2-level factorial approach. The screening revealed that the effect of the above parameters was significant. Furthermore, the impact of these four operating parameters was investigated using the FCCCD technique. The results presented the optimum conditions for phenol removal from aqueous solution were found to be contact time of 15 min, KOH-AC dose of 3 g/L, pH 2, and agitation speed of 250 rpm. Phenol adsorption behavior were described by the Redlich-Peterson (R-P) isotherm model as well as the pseudo-second-order kinetics. The maximum adsorption capacity of phenol (q_m) was 196.68 mg/g. An evaluation of the adsorption efficiency of the BFS based KOH-AC was examined in real wastewater as the palm oil mill final effluent (POME) using batch adsorption. It was found that BFS-AC is an efficient adsorbent for the removal of phenol from palm oil mill effluent (POME). Also, BFS-AC with bed height of 15 cm provided better eliminations of phenol with empty bed contact time (EBCT) of 9.9 minutes and carbon usage rate (CUR) of 1.74 g/L. The results obtained in this study have exposed the capability of BFS based AC in the removal of phenol and treating POME wastewater. Thus, this activated carbon can be a promising source for treating POME wastewater.

خلاصة البحث

تتسبب النفايات السائلة لمصانع زيت النخيل (POME) في تلوث بيئي شديد بسبب تركيزها العالى من حيث الملوثات. ومن بين أكثر طرق المعالجة فاعلية هي الامتزاز باستخدام الكربون المنشط (AC)، والذي يعتبر حلاً لمشاكل تلوث مياه الصرف الصحي، ولكنه يعاني من التكلفة العالية بسبب مصادره غير المتجددة. في هذه الدراسة، تمت دراسة إمكانية تحويل قشور فاكهة الباوباب (BFS) إلى كربون منشط وكذلك استخدامه في علاج POME من الفينول. في هذا البحث تم استخدام مواد كيميائية مختلفة (ZnCl₂، H₃PO₄, CnCl₂) كعوامل تنشيط لتحضير AC من قشرة فاكهة الباوباب المشبعة (1: 1) ثم تفحمها عند درجة حرارة 500 درجة مئوية لمدة ساعة. تمت دراسة تأثير هذه المواد الكيميائية على أداء الكربون النشط المحضر (المحصول، عدد اليود، خواص الامتزاز). تم تمييز BFS-ACs بالتحقيق باستخدام نهج تحليلي مختلف مثل SEM ،FTIR، وXRD. أشارت النتائج إلى أن KOH من حيث الامتصاص والكفاءة أظهر نتائج أفضل من ZnCl₂ وH₃PO₄ لإزالة الفينول، مع قدرة امتصاص قصوى تبلغ 36.90 مجم/جم عند تركيز أولي أعلى (600 مجم/لتر). كان الهدف هو الحصول على ظروف التشغيل المثلى لإنتاج KOH-AC لإزالة أقصى قدر من الفينول. تم إنتاج عينات KOH-AC وفقًا لمعايير التشغيل المتغيرة لدرجات الحرارة وأوقات التنشيط ونسبة التشريب باستخدام التصميم التجريبي (FCCCD). كما تم تحديد الظروف المثلى لتحقيق قدرة امتصاص 93.56مج/ج باستخدام منهجية سطح الاستجابة (RSM). أظهرت النتائج أن الكربون المنشط المحضر عند درجة حرارة التنشيط البالغة 700 درجة مئوية لمدة 60 دقيقة مع نسبة تشريب 1: 2 يمثل أفضل امتصاص للفينول. تم الكشف أن KOH-AC قابل للمقارنة مع الكربون المنشط التجاري. أظهر توصيف KOH-AC على أنه مادة ماصة عالية الجودة مع مواقع نشطة للغاية ومسام متطورة مع مساحة سطح BET تبلغ 1263.127 م²/جم. علاوة على ذلك، تم دراسة التحسين لظروف الامتزاز للمعلمات المثلى المحددة لإنتاج KOH-AC باستخدام منهجية سطح

الاستجابة (RSM). تم فحص العوامل المحددة مثل وقت التلامس، وجرعة الكربون، ودرجة الحموضة، وسرعة التحريض في البداية باستخدام نهج عاملي ذو مستويين. أظهر الفحص أن تأثير المعلمات المذكورة أعلاه كان معنويا. علاوة على ذلك، تم التحقق من تأثير هذه المعلمات التشغيلية الأربعة باستخدام تقنيات التصميم المركب المركزي (CCD). عرضت النتائج الظروف المثلى لإزالة الفينول من المحلول المائي حيث وجد أن وقت التلامس 15 دقيقة، جرعة 3 جم/لتر من KOH-AC، درجة الحموضة تساوي 2، وسرعة التحريك 250 دورة في الدقيقة. يمكن وصف سلوك امتصاص الفينول بواسطة نموذج متساوي الحرارة -Redlich Peterson (R-P) بالإضافة إلى الخواص الحركية الزائفة من الدرجة الثانية. كانت السعة القصوى لامتصاص الفينول (qm) 196.68مجم/جم. تم فحص تقييم كفاءة الامتزاز ل KOH-AC القائم على BFS في النفايات السائلة النهائية لمصنع زيت النخيل (POME) باستخدام الامتزاز الدفعي. وجد أن BF-AC هو مادة ماصة فعالة لإزالة الفينول من النفايات السائلة لمصانع زيت النخيل (POME). كما يوفر BF-AC مع ارتفاع السرير 15 سم إزالة أفضل للفينول مع وقت ملامسة السرير الفارغ (EBCT) من 9.9 دقيقة ومعدل استخدام الكربون (CUR) 1.74 جم/لتر. كشفت النتائج التي تم الحصول عليها في هذه الدراسة عن قدرة الكربون المنشط القائم على BFS في إزالة الفينول ومعالجة مياه الصرف الصحى POME. وبالتالي، يمكن أن يكون هذا الكربون المنشط مصدرًا واعدًا لمعالجة مياه الصرف الصحى POME.

APPROVAL PAGE

The thesis of Radhia Nedjai has been approved by the following:

Nassereldeen Ahmed Kabbashi Supervisor

> Ma'an Alkhatib Co-supervisor

Md. Zahangir Alam Co-supervisor

Mohammed Saedi Jami Internal Examiner

Abdurahman Hamid Nour External Examiner

> Mubarak Mujawar External Examiner

Radwan Jamal Yousef Elatrash Chairman

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Radhia Nedjai

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

PRODUCTION AND CHARACTERIZATION OF ACTIVATED CARBON FROM BAOBAB FRUIT SHELL VIA CHEMICAL ACTIVATION FOR THE REMOVAL OF PHENOL

I declare that the copyright holder of this thesis is jointly owned by the student and International Islamic University Malaysia.

Copyright © 2021 by Radhia Nedjai and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Radhia Nedjai

Signature

Date

"Dedicated first to Almighty ALLAH then to my beloved parents & family for their

endless love and support"

ACKNOWLEDGEMENT

First and foremost, I would like to extend my heartfelt gratitude to Almighty ALLAH for giving me strength, perseverance and all the means to make this study a reality. Moreover, the accomplishment of this thesis is made possible with the valuable support from many people who had a direct and indirect contribution to this work.

It is my utmost pleasure to dedicate this work to my dear parents, sister, and brothers. Words cannot express my gratitude to them for their encouragement and endless emotional support. My gratitude goes to my beloved husband for his prayers, support, understanding, and endurance.

To Prof. Dr. Nassereldeen Ahmed Kabbashi, my supervisor, who with his valuable guidance, suggestions, and support made this thesis possible. I am also grateful to my co-supervisors, Prof. Dr. Md. Zahangir Alam and Assoc. Dr. Ma'an Alkhatib, for their valuable explanations which helped me to clarify some obscure parts in this study, and for their kind support and meaningful contributions.

Once again, we glorify Allah for His endless mercy on us one of which is enabling us to successfully round off the efforts of writing this thesis, Alhamdulillah.

TABLE OF CONTENTS

Abstract		ii
Abstract A	rabic	. iii
Approval F	age.	V
Declaration	- <i>8</i>	. vi
Copyright	Page	vii
Dedication	9	viii
Acknowled	løement	ix
Table of Co	ontents	. x
List of Tab	les	xvi
List of Fig	Ires	xix
List of Syn	nos	xiii
List of Abb	reviations	xv
2150 01 1100		
CHAPTEI	R ONE: INTRODUCTION	1
1.1	Background of The Study	1
1.2	Problem Statement	3
1.3	Research Philosophy and Hypothesis	5
1.4	Research Objectives	6
1.5	The Significance of The Study	7
1.6	Research Methodology	8
1.7	Research Scope	9
1.8	Thesis Organisation	10
CHAPTEI	R TWO: LITERATURE REVIEW	12
2.1	Introduction	12
2.1	Dalm Oil Mill Effluent (DOME)	14
2.2	Phanalia Compounds	14
2.5	2.2.1 Health Effects of Dhenels	15
	2.3.1 Health Effects of Flichols	10
2.4	Activated Carbon	$\frac{10}{24}$
2.4	2.4.1 Characteristics and Propriation of AC	24
	2.4.1 Characteristics and Frophetics of AC	$\frac{25}{25}$
	2.4.1.1 Moisture Content	25
	2.4.1.2 ASII CONTENT.	20
	2.4.1.5 Surface Chamisters of Astivated Carbon	20
	2.4.1.4 Surface Chemistry of Activated Carbon	20
	2.4.1.5 BUIK Density	2/
	2.4.1.0 Pore Structure	28
	2.4.1.7 Iodine Number	<u>30</u>
	2.4.1.8 Methylene Blue Number	3U
	2.4.2 Production of Activated Carbon	51
	2.4.2.1 Methods Used for Production	32
	2.4.2.2 Factors Attecting Activated Carbon Production	31

2.5 Ligno	cellulosic	e Biomass as AC Precursors		
2.6 Potential Material For Activated Carbon				
2.7 Adsorbent Characterisation				
2.8 Sorption Theory				
2.8.1	Adsorpt	tion		
2.8.2	Adsorpt	tion Isotherms		
	2.8.2.1	Langmuir Isotherm		
	2.8.2.2	Freundlich Isotherm		
	2.8.2.3	Redlich-Peterson Isotherm		
2.8.2.4 Halsey Isotherm				
2.8.3	Adsorpt	tion Kinetic		
	2.8.3.1	The Pseudo-First-Order Equation		
	2.8.3.2	The Pseudo-Second-Order Equation		
2.9 Adsorption Column Model of Activated Carbon				
2.10 Design of Experiment (DOE)				
2.10.1 Response Surface Methodology (RSM)				
2.10.2 Central Composite Design				
2.11 Summary				

3.1	Introdu	ction		. 75
3.2	Resear	ch Flowc	hart	. 76
3.3	Materi	als		. 77
	3.3.1	Baobab	Fruit Shells (BFS) Sample	. 77
	3.3.2	Raw Pal	m Oil Mill Effluent (POME) Sample	. 77
	3.3.3	Commer	cial Activated Carbon	. 77
	3.3.4	Equipme	ent and Instruments	. 77
		3.3.4.1	Autoclave	. 78
		3.3.4.2	Balance	. 78
		3.3.4.3	Fourier Transforms Infrared Spectroscopy (FTIR)	. 78
		3.3.4.4	Horizontal Tube Furnace	. 78
		3.3.4.5	Reactor	. 79
		3.3.4.6	Muffle Furnace	. 79
		3.3.4.7	Oven	. 79
		3.3.4.8	Dryer	. 79
		3.3.4.9	Hot Plate & Magnetic Stirrer	. 80
		3.3.4.10	Water bath	. 80
		3.3.4.11	Grinder	. 80
		3.3.4.12	pH-meter	. 80
		3.3.4.13	Rotary Shaker (Open Hood)	. 80
		3.3.4.14	Scanning Electron Microscope (SEM)	. 80
		3.3.4.15	Sieve Shaker	. 81
		3.3.4.16	Surface Area Analyzer (BET)	. 81
		3.3.4.17	UV-Spectrophotometer	. 81
		3.3.4.18	Incubator Shaker	. 81
		3.3.4.19	Column	. 81
		3.3.4.20	Pump	. 82
		3.3.4.21	Temperature Controller	. 82

		3.3.4.22	X-Ray Diffraction Spectroscopy (XRD)	82
	3.3.5	Chemica	al and Reagents	82
		3.3.5.1	Potassium Hydroxide (KOH)	82
		3.3.5.2	Phosphoric Acid (H ₃ PO ₄)	83
		3.3.5.3	Zinc Chloride (ZnCl ₂)	83
		3.3.5.4	Nitrogen Gas (N ₂)	83
		3.3.5.5	Phenol (C ₆ H ₅ OH)	83
		3.3.5.6	Sulfuric Acid (H ₂ SO ₄)	83
		3.3.5.7	Nitric Acid (HNO ₃)	83
		3.3.5.8	Acetic Acid (CH ₃ COOH)	84
		3.3.5.9	Anthrone Reagent	84
		3.3.5.10	Iodine (I)	84
		3.3.5.11	Potassium Iodide (KI)	84
		3.3.5.12	Methylene Blue (MB)	84
		3.3.5.13	Starch (C ₁₂ H ₂₅ NO ₁₁)	84
		3.3.5.14	Sodium Carbonate (Na ₂ CO ₃)	85
		3.3.5.15	Folin & Ciocalteu's Phenol Reagent	85
		3.3.5.16	Gallic Acid (C ₇ H ₆ O ₅)	85
		3.3.5.17	Hydrochloric Acid (HCl)	85
		3.3.5.18	Sodium Thiosulfate (Na ₂ S ₂ O ₃)	85
3.4	Experi	mental P	rocedures	85
	3.4.1	Sample	Collection and Preparation	86
	3.4.2	Characte	erization of Precursor	86
		3.4.2.1	Cellulose Content and Lignin Content	86
		3.4.2.2	Proximate Analysis of Precursor	89
	3.4.3	Producti	on of Activated Carbon & Selecting the Activating Ager	it
	with B	est Adsor	rption Properties	91
		3.4.3.1	Activated Carbon Production using Different Activating	5 01
		Agents	Characterization of Durana d Activated Carbon	91
		3.4.3.2	Adapting Test of Deepend AC & Selecting the Dest	92
		3.4.3.3 A ativati	Adsorption Test of Prepared AC & Selecting the Best	00
	2 1 1	Ontimiz	ng Agent	00
	3.4.4 with D	optimiz	ration Droportion	02
	with D	2 1 4 1	Proliminary Determination of the Effective IP 1	02
		3.4.4.1	Production of Selected AC under Varying Process	02
		Conditic	ans using DoF	03
		3 4 4 3	Adsorption Test on BES-ACs Samples Prenared 1	05
		3444	Statistical Analysis to Evaluate the Effects of Production	0 <i>5</i> n
		Conditic	ons of the BFS-AC Samples	05
		3445	Validation of Model	06
		3.4.4.6	Characterization of the Selected AC Produced	06
		3.4.4.7	Comparative Study on Adsorption of Phenol by Selected	d
		BFS-AC	and the Commercial Grade AC	06
	3.4.5	Experim	ental Studies to Determine the Effect of Physico-Chemic	cal
	Factor	s on Adso	protion of Phenol by Selected BFS	07
		3.4.5.1	Preliminary Determination of the Effective pH	08
		3.4.5.2	Preliminary Determination of the Effective AC Dose 1	08
				-

	3.4.5.3	Preliminary Determination of the Effective C	ontact Time.
	3.4.5.4	Determination of the Optimum Conditions fo	r Adsorption
	of Pheno	l by BFS Based-AC Produced Using DoE	
	3.4.5.5	Validation of Model	
3	.4.6 Adsorpti	on Isotherms & Adsorption Kinetics Studies.	
	3.4.6.1	Adsorption Isotherms Study	
	3.4.6.2	Adsorption Kinetics	
3	.4.7 Batch St	udies with POME	
3	.4.8 Bench Se	cale Model Studies	
	3.4.8.1	Analysis of Results from Columns Effluent	
	3.4.8.2	Adsorbents Performance Evaluation	
3.5 S	ummary		
CHAPTER	FOUR: RESU	LTS AND DISCUSSION	
4.1.1			100
4.1 I	ntroduction		
4.2 0	Characterization	of Precursor (BFS)	
4	.2.1 Cellulos	e Content and Lignin Content	
4	.2.2 Proxima	te Analysis of Precursor	

4

4.4.1

4.4.2 4.4.3

4.3	Produc	ction of A	AC & Selecting Sample With Best Adsorption	n Properties
	4.3.1	Activate	ed Carbon Production Using Different Activation	ating Agents
			č	
	4.3.2	Charact	erization of Prepared Activated Carbon	
		4.3.2.1	Proximate Analysis	
		4.3.2.2	Bulk Density	
		4.3.2.3	Yield	
		4.3.2.4	Iodine Number	
		4.3.2.5	Methylene Blue Adsorption	
		4.3.2.6	Scanning Electron Microscope (SEM)	
		4.3.2.7	BET Surface Area	
		4.3.2.8	Surface Chemistry (FTIR)	
		4.3.2.9	X-Ray Diffraction (XRD) Analysis	
	4.3.3	Adsorpt	ion Test of Prepared AC & Selecting the Be	st Activating
	Agent	•••••		
		4.3.3.1	Effect of Initial Phenol Concentration	
		4.3.3.2	Effect of Contact Time on Phenol Adsorpti	on152
	4.3.4	Summar	ry of Findings of Objective One	
4.4	Optimi	ization of	f Selected AC Production & Selection of Sar	mple With Best
Ads	sorption	Properti	es	

Preliminary Determination of the Effective IR 156 Adsorption Test on BFS-AC Samples Prepared 157

4.4.4.1 Effect of Different Factors on the Phenol Removal..... 164

Production of Selected AC under Varying Process Conditions Using Design of Experiment (DoE)......158 4.4.4 Determination of the Optimum Conditions for the Production of the best BFS Based-AC Using DoE.....159

	4.4.6 Characterization of Selected BFS-AC1	67
	4.4.6.1 Scanning Electron Microscopy (SEM) 1	67
	4.4.6.2 Surface Chemistry (FTIR) 1	68
	4.4.6.3 X-Ray Diffraction (XRD) Analysis 1	.70
	4.4.6.4 BET Surface Area 1	70
	4.4.7 Comparative Study on Adsorption of Phenol by Selected BFS-A	C
	and the Commercial Grade Charcoal	73
	4.4.7.2 Security Electron Microsome (SEM)	. 13
	4.4./.2 Scanning Electron Microscope (SEM) 1	. /)
15	4.4.8 Summary of Findings of Objective Two	. 75
4.J	Experimental Studies To Determine The Effect of Physico-Chemical tors on Adsorption of Dhanol by Solosted DES. A.C.	76
Гасі	4.5.1 Preliminary Determination of the Effective nH	76
	4.5.1 Preliminary Determination of the Effective BE_AC Dose 1	78
	4.5.2 Preliminary Determination of the Effective Contact Time	79
	4.5.4 Determination of the Ontimum Conditions for Adsorption of	
	Phenol by BFS Based-AC Produced Using DoE	80
	4 5 4 1 Effects of Optimization Variables on Phenol Removal 1	86
	4.5.5 Validation of Model	88
	4.5.6 Summary of Findings of Objective Three	89
4.6	Adsorption Isotherm and Adsorption Kinetics Studies 1	89
	4.6.1 Adsorption Isotherms Models	.90
	4.6.1.1 Langmuir Isotherm1	92
	4.6.1.2 Freundlich Isotherm 1	.93
	4.6.1.3 Redlich-Peterson isotherm 1	94
	4.6.1.4 Halsey Isotherm 1	.96
	4.6.2 Adsorption Kinetic Studies	202
	4.6.3 Summary of Findings of Objective Four	:06
4.7	Batch Studies for Treatment of POME	207
4.8	Bench Scale Model Studies	208
	4.8.1 Effect of Flow Rate	208
	4.8.2 Effect of Bed Height	212
	4.8.3 Summary of Findings of Objective Five	214
CHAPTER	R FIVE: CONCLUSIONS AND RECOMMENDATIONS	215
5.1	Conclusions	215
5.2	Major Findings	217
5.3	Recommendations	218
REFEREN	NCES 2	219
ACHIEVE	MENITS	152
ACHIEVE	ΔΙVIE IN I δ Ζ	123
APPENDE	X I	255
APPENDI	Х II 2	256
APPENDE	X III	270

APPENDIX V	
APPENDIX VI	
APPENDIX VII	
APPENDIX VIII	

LIST OF TABLES

Table 2.1. Raw POME Characteristics and Their Regulatory Discharge Limits	15
Table 2.2. Adsorption Capacities of Different Adsorbents for the Removal of Phenol.	20
Table 2.3. Cost Estimation of Various Adsorbents (De Gisi et al., 2016; Lin & Juang, 2009).	22
Table 2.4. A Summary of Literature on the Different Raw Materials For Activated Carbon Production for Removal of Phenol.	23
Table 2.5. Chemical Activation of Different Precursors Using Different Chemicals.	35
Table 2.6. Comparison between Chemical and Physical Activation.	37
Table 2.7. Some Activated Carbons Produced from Different Lignocellulosic Precursors and their Surface Area Values.	46
Table 2.8. Estimated Occurrence of Wild Baobab in Southern Africa (Africa,2008)	48
Table 2.9. Overview of Some Studies on Baobab Fruit shell-based Activated Carbon.	51
Table 2.10. Functional Groups of Empty Fruit Bunch Before and After Carbonization Step According to FTIR Spectrum.	54
Table 2.11. Pore morphology parameters of Coconut shell-based AC samples.	55
Table 2.12. A Summary of Linear/Non-Linear Expression of Isotherm Models with their description	63
Table 2.13. A Summary of Linear/Non-Linear Expression of Kinetics Models.	65
Table 3.1. Operating Conditions of Methylene Blue Adsorption Test	96
Table 3.2. Operating Conditions of Phenol Adsorption Test into BFS-ACs.	101
Table 3.3. Experimental factors and their high and low level for central composite design (CCD)	103
Table 3.4. Production Runs Activated Carbon of Obtained by Response Surface Methods (RSM) Design.	104

Table 3.5. Running Conditions of Adsorption Test	105
Table 3.6. Operating Factors for the Comparative Study between a Commercial Grade AC and BFS Based-AC	107
Table 3.7. Operating Conditions for Determination of the Effective pH Phenol Solution	108
Table 3.8. Operating Conditions for Determination of the Effective BFS-AC Dose	109
Table 3.9. Operating Conditions for Determination of the Effective Contact time	110
Table 3.10. Variation of experimental parameters.	111
Table 3.11. Production Runs Obtained by Response Surface Methods (RSM) Design.	112
Table 3.12. Operating Factors for Isotherm Study	114
Table 3.13. Operating Conditions of Phenol Adsorption Test from POME	117
Table 3.14. Column Operating Parameters and Conditions.	120
Table 3.15. Details Packed bed column parameters	121
Table 4.1. Comparison of Lignocellulosic Composition of Baobab Fruit Shell with Other Precursors.	125
Table 4.2. Comparison of Proximate Analysis of Baobab Fruit Shell with Other Precursors.	128
Table 4.3. Comparison of Moisture Content, Ash Content, and Bulk Density for Various Activated Carbon Based-by products and Baobab Fruit Shells.	131
Table 4.4. The Yield of Produced BFS-ACs (Activation temperature: 500°C, Activation time: 60 min, IR: 1:1).	132
Table 4.5. Yield for Various Activated Carbon Based-by products	134
Table 4.6. Iodine Number for Various Activated Carbon Based by Products.	136
Table 4.7. Comparison of Maximum Adsorption of Methylene Blue ontoActivated Carbons Produced from Different Precursors.	138
Table 4.8. BET Surface Area of Prepared BFS-ACs (Activation temperature: 500°C, Activation time: 60 min, IR: 1:1).	143
Table 4.9. BET Surface Area, Pore Diameter sizes, and Pore Volume of Various Activated Carbons	145

Table 4.10. The adsorption capacity results of BFS-ACs produced for its optimum production.	161
Table 4.11. Analysis of variance (ANOVA) for the adsorption capacity using KOH-AC	162
Table 4.12. Suggested Validation Parameters	167
Table 4.13. BET Surface Area, Pore Diameter sizes, and Pore Volume of KOH-ACs (Run 8 and Run 20)	172
Table 4.14 BET Surface Area, Pore Diameter sizes, and Pore Volume of Various Activated Carbons	173
Table 4.15. The Adsorption Capacity Results of Phenol Adsorption for its Optimum Adsorption Process Conditions by Selected BFS-AC.	181
Table 4.16. Analysis of Variance (ANOVA) for the Adsorption Capacity Using BFS-ACs	183
Table 4.17. Comparison of Maximum Adsorption of Phenol onto ActivatedCarbons Produced from Different Precursors.	185
Table 4.18. Suggested Validation Parameters	188
Table 4.19. Isotherm Model Parameters and Correlation Coefficients of Phenol Adsorption onto Selected KOH-AC.	197
Table 4.20. Isotherm Model Parameters for Phenol Adsorption by Various Adsorbents.	200
Table 4.21. Kinetic Model Parameters and Correlation Coefficients for Adsorption of phenol onto Selected KOH-AC.	204
Table 4.22. Pseudo-Second Order Kinetic Parameters for Phenol Adsorption by Various Adsorbents	205
Table 4.23. Total Phenolic Content in POME before and after Treatment by Selected BFS-AC in Batch Model.	207
Table 4.24. Bed Column Parameters Obtained at Different Flow Rates	211
Table 4.25. Bed Column Parameters Obtained at Different Bed Heights.	213

LIST OF FIGURES

Figure 1.1. Overview of Flow Chart for Research Methodology.	9
Figure 2.1. Top Palm Oil Producers in the World (2016) (Statistics, 2017).	13
Figure 2.2. Structures of Phenols Considered Priority Pollutants by US-EPA (Ramírez et al., 2017).	18
Figure 2.3. Typical Oxygen-Containing Functional Groups on the Surface of Activated Carbon (N. Li et al., 2011).	27
Figure 2.4. Scheme of Different Pores Types in a Particle of Activated Carbon (Hasdi, 2020).	29
Figure 2.5. Pores Sizes in Activated Carbon Particles (Bandosz, 2006).	29
Figure 2.6. Particle of Activated Carbon (Menéndez-Díaz & Martín-Gullón, 2006).	29
Figure 2.7. Iodine and Methylene Blue Adsorption into an Activated Carbon Particle.	30
Figure 2.8. Activated Carbon.	32
Figure 2.9. (a) Baobab Trees in Rainy Season and (b). in Dry Season, (c) Baobab fruit.	47
Figure 2.10. Features of Baobab Fruit Shell (BFS) for the Production of AC.	50
Figure 2.11. XRD spectra of Banana Peel-based AC (Van Thuan et al., 2017).	53
Figure 2.12. SEM Images of <i>Moringa Oleifera</i> Seed Pod (a) before and (c) after the Chemical Activation (Magnification 8000×) (Hussin et al., 2017).	53
Figure 2.13. Nitrogen Adsorption–Desorption Isotherms of Various Coconut shell-based AC samples at 77 K.	55
Figure 2.14. Idealized Breakthrough Curve and MTZ of Column (Hung et al., 2005).	68
Figure 3.1. Overview of Methodology Flow Chart	76
Figure 3.2. Cellulose Standard Curve - Anthrone Method	88
Figure 3.3. Schematic of the Experimental Setup for BFS-ACs Production.	92

Figure 3.4. Standard Calibration Curve of Methylene Blue.	97
Figure 3.5. Total Phenol Content Standard Curve (Gallic acid)	118
Figure 3.6. Column Experimental Setup	119
Figure 4.1. Baobab Fruit Shells Composition.	124
Figure 4.2. Proximate Analysis of Baobab Fruit Shells	127
Figure 4.3. Yield of produced BF-ACs (%) (Activation temperature: 500°C, Activation time: 60 min, IR: 1:1).	133
Figure 4.4. Iodine Number of Produced AC.	135
Figure 4.5. Effect of initial concentration on Methylene Blue adsorption (adsorbent dose = 3 g/L, stirring speed = 120 rpm, temperature = 27 ± 1 °C).	137
Figure 4.6. (a) Appearance of Crushed Baobab Fruit Shell (BFS) Particles and (b) Activated Sample.	139
Figure 4.7. Morphological structure of BFS (a) and Activated Carbon impregnated with different activating agents (b, c, and d) (magnification scale ×500 and ×1000).	141
Figure 4.8. Nitrogen adsorption-desorption isotherms of (a) ZnCl ₂ -AC, (b) H ₃ PO ₄ -AC, and (c) KOH-AC at 77 K.	142
Figure 4.9. Fourier Transform Infra-Red Spectra for Raw Baobab Fruit Shells and BFS-derived Activated Carbons.	149
Figure 4.10. The XRD of the Raw BFS and Prepared BFS-ACs.	150
Figure 4.11. Effect of Initial Concentration on Phenol Adsorption (adsorbent dose = 10 g/L, agitation speed = 200 rpm, temperature = 27 ± 1 °C).	152
 Figure 4.12. Effect of Contact Time on Phenol Adsorption (a) ZnCl₂, (b) KOH (c) H₃PO₄ (adsorbent dose = 10 g/L, agitation speed = 200 rpm, temperature = 27±1°C). 	154
Figure 4.13. Effect of the impregnation ratio and phenol adsorption (Dose of adsorbent = 1 g/L, agitation rate = 200 rpm, initial concentration = 100 mg/L, temperature = 27 ± 1 °C, Contact time = 24 h).	157
Figure 4.14. Phenol Adsorption by BFS-AC Samples Prepared at Different Preparation Conditions (Dose of adsorbent = 1 g/L, agitation rate = 200 rpm, initial concentration = 100 mg/L, temperature = 27 ± 1 °C, Contact time = 24 h).	158

Figure 4.15.	Theoretical vs. Experimental Values of BFS-ACs Produced Adsorption Capacity in Aqueous Solution of Phenol.	163
Figure 4.16.	The 3D Plot of the Interaction between (a) Activation Temperature and Activation Time, (b) Activation Time and Impregnation Ratio, and (c) Activation Temperature and Impregnation Ratio.	166
Figure 4.17.	SEM Micrographs of (a) Raw BFS and (b) Selected Produced Activated Carbon (RUN 8) (Magnification of ×1000).	168
Figure 4.18.	FTIR Spectra of Selected AC (RUN 8) before and after the Adsorption.	169
Figure 4.19.	X-Ray Diffraction Patterns of Raw Baobab Fruit Shell and Selected Activated Carbon (RUN 8).	170
Figure 4.20.	Nitrogen Adsorption–Desorption Isotherms of KOH-ACs Samples: (a) Run 20 and (b) Run 8.	171
Figure 4.21.	Phenol Adsorption by the Selected BFS-AC and Commercial Grade AC. (Dose of adsorbent = 1 g/L, agitation rate = 200 rpm, initial concentration = 100 mg/L, temperature = 27 ± 1 °C, Contact time = 60 min).	174
Figure 4.22. S	Scanning Electron Microscope Micrographs of (a) Best Quality KOH-AC Prepared at 700°C and (b) and Commercial Charcoal Grade Sample (magnification of ×1500).	175
Figure 4.23. I	Effect of the pH on the Removal of Phenol and the Adsorption Capacity (Dose of adsorbent= $3g/L$, agitation rate=200 rpm, initial concentration=600 mg/L, temperature= $27\pm1^{\circ}$ C, contact time=24 h).	177
Figure 4.24. I	Effect of the Activated Carbon Dose on the Removal of Phenol (pH=2, agitation rate=200 rpm, initial concentration=600 mg/L, temperature= $27\pm1^{\circ}$ C).	178
Figure 4.25. E	Effect of Contact Time on the Phenol Adsorption (BF-AC Dose= 3 g/L, pH=2, agitation rate=200 rpm, initial concentration=600 mg/L, temperature=27±1°C).	179
Figure 4.26.	Theoretical vs. Experimental Values of BFS-ACs Produced Adsorption Capacity in Aqueous Solution of Phenol.	184
Figure 4.27. T	The 3D Surface Plot of the Interaction between (a) Selected KOH- AC Dose and Contact Time, (b) Contact Time and pH, (c) Contact Time and Agitation Speed, and (d) Selected KOH-AC Dose and Agitation speed.	187

Figure 4.28. Adsorption Capacities of Selected KOH-AC to Phenol with Different Phenol Concentrations and Contact Times (KOH-AC Dosage = 3 g/L, Room Temperature = $27\pm 1^{\circ}$ C, pH = 2, Agitation speed = 250 rpm).	191
Figure 4.29. Langmuir Isotherm Plot for Removal of Phenol onto Selected KOH-AC (KOH-AC Dosage = 3 g/L, Room Temperature = $27\pm 1^{\circ}$ C, pH = 2, Agitation speed = 250 rpm).	193
Figure 4.30. Freundlich Isotherm Plot for Removal of Phenol onto Selected KOH-AC (KOH-AC Dosage = 3 g/L, Room Temperature = $27 \pm 1^{\circ}$ C, pH = 2, Agitation speed = 250 rpm).	194
Figure 4.31. Redlich-Peterson Plot for Removal of Phenol onto Selected KOH- AC (KOH-AC Dosage = 3 g/L, Room Temperature = $27\pm 1^{\circ}$ C, pH = 2, Agitation speed = 250 rpm).	196
Figure 4.32. Halsey Plot for Removal of Phenol onto Selected KOH-AC (KOH-AC Dosage = 3 g/L, Room Temperature = $27\pm 1^{\circ}$ C, pH = 2, Agitation speed = 250 rpm).	197
Figure 4.33. Pseudo-First-Order Kinetic Plot of Phenol Adsorption on Selected KOH-AC (KOH-AC Dosage = 3 g/L, Room Temperature = $27\pm$ 1°C, pH = 2, Agitation speed = 250 rpm).	203
Figure 4.34. Pseudo-Second-Order Kinetic Plot of Phenol Adsorption on Selected KOH-AC (KOH-AC Dosage = 3 g/L , Room Temperature = $27 \pm 1^{\circ}$ C, pH = 2, Agitation speed = 250 rpm).	204
Figure 4.35. Residual and Percentage Removal of Phenol in Treated POME by Selected BFS-AC (Batch Study) (KOH-AC Dosage: 3 g/L, Room Temperature: 27±1°C, pH 2, Agitation: 250 rpm).	208
Figure 4.36. Breakthrough Curves of Phenol Adsorption Obtained at Different Flow Rates (Flow rate=10, 15, 20 ml/min, bed height = 5 cm, phenol initial concentration= 150 mg/L).	210
Figure 4.37. Breakthrough Curves of Phenol Adsorption Obtained at Different Bed Heights (Flow rate=10, 15, 20 ml/min, bed height = 5 cm, phenol initial concentration= 150 mg/L).	214

LIST OF SYMBOLS

0	Degree
%	nercentage
cm	centimeter
mg/g	millioram ner gram
1	liter
cm ³	cubic centimeter
Kσ	kilogram
α σ	aram
5 h	hour
mo	milligram
min	minute
nm	nanometer
°C	degree Celsius
	volume per volume
v/v	weight per volume
w/v ml	milliliter
mm	millimeter
mt	matric tone
nn a/I	gram por liter
g/L	The Intensity Decemptor in Froundlich Isotherm
1/11 C	Ine intensity ratameter in Freundhein Isotherin
C_0	
C_t	Concentration at time t
K_1	Rate constant of pseudo-first-order
K_2	Rate constant of pseudo-second-order
K_F	Freundlich Isotherm Constant
K_L	Langmuir Adsorption Constant
q_e	Equilibrium Adsorption Capacity
q_m	Maximum Adsorption Capacity
q_t	Adsorption Capacity at time t
Т	Temperature
ppm	parts per million
rpm	revolutions per minute
\mathbb{R}^2	Coefficient of determination
sec	second
$H_{MTZ}(\delta)$	Height of Mass Transfer Zone
Ζ	Height of the adsorption column
V_E	Throughput volume to exhaustion
V_B	Throughput volume to breakthrough
f	Fractional capacity of the active adsorption zone
EBCT	empty bed contact time
\mathbf{V}_{f}	Volume occupied by adsorbent media including porosity volume
\mathbf{A}_{f}	Adsorbent area available for flow
Q	Flow rate to adsorber
L	Adsorbent or media depth

- *v* Superficial flow velocity
- *V* volume of liquid passed through the column
- *V_b* represents the effluent volume at breakthrough point
- V_x volume of effluent at exhaustion point
- *t*_b Column Breakthrough Time
- *t_x* Column Exhaust Time
- t_{δ} Time to Exhaust Mass Transfer Zone
- CUR carbon usage rate
- K_H Halsey isotherm constant
- *n* Freundlich constant
- n_H Halsey isotherm constant
- A Redlich-Peterson isotherm constant
- B Redlich-Peterson isotherm constant
- wt weight