DIFFERENTIATION OF GELATINE (BOVINE, PORCINE AND FISH) BY MAILLARD REACTION USING E-TONGUE AND E-NOSE COMBINED WITH CHEMOMETRICS METHOD

BY

ISMARTI MUHAMMAD SOHIEB

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy in Halal Industry

International Institute for Halal Research and Training International Islamic University Malaysia

JUNE 2022

ABSTRACT

Food fraud and adulteration are the global issues, currently. One critical issue is about gelatine which comes from a variety of animal sources. Therefore, analytical method for gelatine must be developed. The objectives of this study were to improve the Maillard reaction, which produces flavour compounds in gelatine. A bovine gelatinexylose model was used for optimisation. Furthermore, this research also aimed to evaluate the ability of E-tongue and E-nose in differentiating gelatine based on its sources and to investigate volatile and non-volatile compounds of gelatine and the Maillard reaction products (MRPs). There were five instruments employed in this research. The first instrument used was Ultra-Violet spectroscopy to determine the browning intensities of gelatine-xylose model's MRPs. The second was E-tongue, which has 16 membrane lipid sensors, and the third was an E-nose with eight metal oxide semiconductors gas sensors. Next, HPLC was used to analysis free amino acids (FAA) as non-volatile chemicals. Lastly, a SPME-GC-MS used to evaluate the volatile organic molecules. This investigation used gelatine standards from bovine, fish, and porcine bought from Sigma Aldrich. MANOVA and ANOVA statistical tests using SPSS software were carried out. Data were also analyzed using a chemometrics that included Principal Component Analysis and Linear Discriminant Analysis. The initial pH, reaction temperature, and heating time had a modest effect on the browning intensity of MRPs and affected the development of brown colour of MRPs. With an initial pH of 10.9, a temperature of 140 °C, and a heating time of 37.28 minutes, the best reaction conditions were established. Additionally, the result showed that E-tongue and E-nose, aided by the Maillard reaction paired with LDA, may be used to differentiate gelatine based on the sources with a percentage of accuracy greater than 95%. Also, the differentiation attained for gelatine samples without Maillard process had an accuracy ranging from 93% to 98%. Eleven amino acids detected for gelatine in various level concentration namely arginine, lysine, isoleucine, leucine, tyrosine, valine, glutamic acid, aspartic acid, threonine, serine, and alanine. Two undetected amino acids in gelatine namely methionine and phenylalanine were detected in the MRPs samples. The diversity of FAA in gelatine and the MRPs induces various E-tongue sensor responses and influences overall sensory qualities. Furthermore, 67 volatile compounds also detected in different concentration level. Among them, furfural, acetic acid, nonanone, dimethyl disulphide, and decanone were considered as the important volatiles in gelatine due to its abundance. In the Maillard reaction products, furfural, 1-(2-furanylmethyl)-1H-pyrrole, 1-(2-furanyl)-ethanone, acetic acid, and 2,2'-bifuran were predominant. Finally, heptanol, octanal, nonanal, nonanone, dimethyl disulphide, and dimethyl trisulphide could be considered as important compounds due to its low odour threshold value. They had a direct impact on the overall flavour of samples assessed using E-nose sensors. All these findings indicate that the proposed extension was successful in meeting the study's objectives.

Keyword: halal authentication, gelatine-xylose, Maillard reaction, E-tongue, Enose, Principal Component Analysis, Linear Discriminant Analysis.

خلاصة البحث

تعتبر قضية التزييف وتخليط األطعمة من القضايا العاملية، ومن أهمها الجيالتين إذ أنه يتم الحصول عليه من الحيوانات بشتى أنواعها. ولذلك، فال بد من تطوير طريقة تحليل الجيالتين.ويستهدفهذا البحثلتطوير تفاعل ميالرد الذي ينتج مركبات النكهة من الجيالتين. تم استخدام نموذج جيالتين البقر مع الزيلوز من أجل عملية التحسين .وبالتالي،يستهدفهذا البحثأيضا لتقييم قدرةاللساناإللكتروبن واألنفاإللكتروبن فيتمييزالجيالتينحسباملصدر األصلي، وتحقيق املركبات املتطايرة وغير املتطايرةمن الجيالتين ومنتجات تفاعل ميالرد(MRPs) املستمدة من نموذج الجيالتين معالزيلوز. تم استخدام خمس أدوات رئيسية في هذا البحث: األداة األولى هيمطيافيةاألشعةفوق البنفسجي لقياسشدةاللونالبنيمنمنتجاتتفاعلميالردلنموذجالجيالتينالزيلوز. واألداةالثانية هياللسان اإللكتروبي بحيث تتوفر له 16 مستشعر الغشاء الدهني. واألداة الثالثة هي األنف اإللكتروبي بثمانية مستشعرات للغاز املصنوعة من أشباه املوصالت ألكسيد املعادن. واألداة الرابعة هي استشراب السائل لرفيع اإلنجاز (HPLC) املستعملة لتعيين األحماض األمينية الحرة كمركبات غير متطايرة في العينات. واألداة األخيرة هي أداة االستخراج الدقيق للحالة الصلبة - االستشراب الغازي-مطيافية الكتلة (MS-GC-SPME) لتعيين املركبات العضوية املتطايرة في العينات. هذا البحث يستخدم ثالثةمعايير جيالتينيةمن األبقارواألسماك والخنازير التي تم شراؤها من شركة سيجما الدريتش.وتم إجراء االختبارات اإلحصائية MANOVA و ANOVA باستخدام برنامج. SPSS وتم تحليل املعطيات أيضا بالقياسات الكيميائية املتكونة من تحليل العنصر الرئيس ي(PCA) وتحليل التمييز الخطى.(LDA) فبناء على نتائج البحث، كان الرقم الهيدروجيني األولي ودرجة حرارة التفاعل ومدة التسخين لها تأثير معنوي في كثافة اللون البني ملنتجات تفاعل ميالرد وأثرتعلىتكويناللونالبنيفيمنتجاتتفاعلميالرد.وتم الحصولعلىالظروفاملثلىللتفاعلعند الهيدروجينياألولي 9.10،ودرجةالحرارة C،140°ووقتالتسخين 28.37 دقيقة. ومن ثم، واستكشف هذا البحث أن اللسان اإللكتروين واألنفاإللكتروين بمساعدةتفاعل امليالردمعتحليلالتمييزالخطي يمكناستخدامهما لتمييزالجيالتينحسباملصدر بنسبة دقة أعلى من 95. / وإضافة إلىذلك، تتم املالحظة باختالفعينات الجيالتين بدون تفاعل ميالردوبدقة نسبية تراوحت بين 93–98 ا فيالجيالتين بمستوياتمختلفة من التركيزاتوهيأرجينين، ا أميني / . تم اكتشافأحد عشر حمض وليسين، وآيزولوسين، وليسين، وتيروسين، وحمض الفالين، وحمض الجلوتاميك، وحمض األسبارتيك، وثريونين، وسيرين، وأالنين. وتم اكتشاف نوعين من أأل حماض ألمينية غير املكتشفة في الجيالتين وها ميثيونين وفينيل أالنين في عينات منتجات تفاعل ميالرد. يؤدي تنوع الحماض المينية الحرة في العينات إلى تمييز استجابات مستشعر اللسان اإللكتروني ويؤثر في جميع الصفات الحسية في العينات. ومن ثم، تم اكتشاف 76 ا متطا مركب ا ب ا أيض ير تركيزات مختلفة، من العينات. ومن ثم، تم اكتشاف 76 ا متطا مركب ا ب ا أيض ير تركيزات مختلفة، من مينهافورفورال، وحمضالخليك، ونونانون، وديميتيل ديسولفيدا، والديكانون، و تعتبر من املواد العينات. ومن ثم، تم اكتشاف 76 ا متطا مركب ا ب ا أيض ير تركيزات مختلفة، من فوران ميتيل 111-)فيرول، و1(-2-فورانيل –)أيتانون، وخمض أسيتات، و2-2-يفوران فوران ميتيل تا11-)فيرول، و1(-2-فورانيل –)أيتانون، وخمض أسيتات، و2-2-يفوران وديميتيل تريسلفيد من املركبات السائدة. وفي النهاية، يمكن اعتبار هيتانول، وأوكتانال، ونونانوي، مودميتيل تريسلفيد من املركبات المائونية، تم تقاعل المائون. وتم قاليانون، وديوران و ال-2-كيوران ميتيل للها-2-يفيولنون، وترعيتيل ديسولفيدا، والديكانون، وتعتبر من املواد مودميتيل تريسلفيد من املركبات المولمة القيمتها المنخفضة للرائحة نظر ، حيثكان لها تأثير مباشر على النكهة الكلية للعينات التي تم تقييمها باستخدام مستشعرات األنف اللكترونية. كل هذه البيانات من نتائج البحث ا فيتحقيق أهدافهذا البحث.

> الكلمات المفتاحية: المصادقة الحلالية، الجيلاتين الزيلوز، تفاعل ميلارد، اللسان الإلكتروني، الأنف الإلكتروني، تحليل العنصر الرئيسي، تحليل التمييز الخطي

APPROVAL PAGE

The thesis of Ismarti Muhammad Sohieb has been approved by the following:

nt Assoc. Prof. Dr. Noor Faizul Hadry Nordin Supervisor

Prof. Dr. Eng. Kuwat Triyana, M. Si. Co-Supervisor

Prof. Hamzah M. Salleh Co-Supervisor

ج ال

Dr. Nurrulhidayah A. Fadzillah Co-Supervisor

> Prof. Dr. Irwandi Jaswir Internal Examiner

Assoc. Prof. Dr. Md. Monowarul Mobin Siddique External Examiner

> Prof. Dr. Othman Omran Khalifa Chairman

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

(Ismarti Muhammad Sohieb)

mti

Signature

Date: June 20th, 2022

COPYRIGHT PAGE

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

DIFFERENTIATION OF GELATINE (BOVINE, PORCINE AND FISH) BY MAILLARD REACTION USING E-TONGUE AND E-NOSE COMBINED WITH CHEMOMETRICS METHOD

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2022 (Ismarti Muhammad Sohieb) and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgment.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by (Ismarti Muhammad Sohieb)

Signature

June20th, 2022 Date This thesis is dedicated to Islam and Muslims.

ACKNOWLEDGEMENTS

Praise be to Allah (SW), the Most Beneficial and Most Merciful, the Lord of all creation. Mercy and Peace be upon the Prophet Muhammad (PBUH). Gratefully, I thank Allah (SW) for giving me health, strength, determination and the ability to write my work.

My profound gratitude goes to my supervisors, Assoc. Prof. Dr. Noor Faizul Hadry Nordin (Main supervisor) and Prof. Dr. Eng. Kuwat Triyana, M.Si. (Cosupervisor) for spending a lot of time on advising and giving constant encouragements, contributions, supports, and deep insight regardless of their occupied responsibilities. To Prof. Hamzah M. Salleh (Co-supervisor) and Dr. Nurrulhidayah A. Fadzillah (Cosupervisor) who with faith and patients have given significant comments, clarification, suggestion, and encouragement throughout the completion of this thesis. To them, I convey the unforgettable motivation for giving me time to enable to complete the work.

I wish to express my appreciation and thanks to my husband, Agus Sulistyo for his prayer and continuous support, my children: Hasna Mazaya, Irsyad Abdirrohman, Abdulloh Umar, Utsman and also baby Rosyid Abdurrozzaq for allowing me to absent in their time growing up. Special thanks to my father (Muhammad Sohieb rahimahullah), who passed away when I'm not beside him, and my mother Suryanah rahimahallah, who struggles with her sick and allowing me to be able in this intellectual journey, and finally also passed away on September 2021, for that, I will be forever grateful.

Finally, For Indonesia Endowment Fund for Education (LPDP), thank you for financial support during my PhD study. For all my teachers, my friends, those who provided their time, effort and support for this project. To the members of my thesis committee, thank you for sticking with me.

Once again, praise be to Allah for His endless mercy on us one of which is enabling us to successfully round off the efforts of writing this thesis. Alhamdulillah.

TABLE OF CONTENTS

Abstractii
Abstract in Arabiciii
Approval Pagev
Declarationvi
Copyrightvii
Acknowledgementsix
Table of Contentsx
List of Tablesxiv
List of Figuresxvi
List of Abbreviationxviii
CHAPTER ONE: INTRODUCTION
1.1 BACKGROUND OF THE STUDY1
1.2 STATEMENT OF THE PROBLEM
1.3 PURPOSE OF THE STUDY4
1.4 RESEARCH QUESTIONS
1.5 RESEARCH OBJECTIVES
1.6 RESEARCH HYPOTHESIS
1.7 SIGNIFICANCE OF THE STUDY
1.8 LIMITATION OF THE STUDY6
1.9 CHAPTER SUMMARY6
CHAPTER TWO: LITERATURE REVIEW8
2.1 INTRODUCTION
2.2 HALAL AND THAYYIB ASPECT IN FOOD PRODUCTION
2.2.1 Basic Concept of Halal Food
2.3 GELATINE
2.3.1 Sources of Gelatine
2.3.2 Structure and Characteristics of Gelatine
2.3.3 Methods for Gelatine Authentication
2.4 SIGNIFICANCE OF THE MAILLARD REACTION IN FOOD
PRODUCTION17
2.4.1 Introduction to the Maillard Reaction
2.4.2 The Factors that Affect the Maillard Reaction
2.4.3 Maillard Reaction Products
2.4.3.1 Coloured Polymeric Maillard Reaction Products20
2.4.3.2 Flavour Compounds
2.5 SENSORY ANALYSIS FOR FOOD DETECTION AND
CLASSIFICATION
2.5.1 Introduction to Sensory Analysis
2.5.2 Artificial Sensor for Food Authentication
2.5.2.1 Electronic Nose
2.5.2.2 Electronic Tongue
2.5.3 Application of E-nose and E-tongue in Halal Authentication31
2.6 CHEMOMETRICS 22

2.6.1 Introduction to Chemometrics	33
2.6.2 The Utilization of PCA and LDA in Halal Authentication	34
2.7 CHAPTER SUMMARY	39
CHAPTER THREE: RESEARCH METHODOLOGY	40
3.1 INTRODUCTION	40
3.2 MATERIALS	40
3.3 INSTRUMENTATION	41
3.3.1 Electronic Tongue	41
3.3.2 Electronic Nose	42
3.4 EXPERIMENT PROCEDURES	44
3.4.1 Screening of Variables Influence the Browning Intensity of	
MRPs	44
3.4.1.1 Effect of Gelatine Solution Concentration	44
3.4.1.2 Effect of Xylose Concentration	44
3.4.1.3 Effect of Initial pH	45
3.4.1.4 Effect of Reaction Temperature	45
3.4.1.5 Effect of Heating Time	45
3.4.1.6 Measurement of Browning Intensity	45
3.4.2 Optimisation of Maillard Reaction Model	46
3.4.2.1 Design of Experiment	46
3.4.2.2 Measurement of Browning Intensity	47
3.4.2.3 Validation of The Model	47
3.4.3 Characterisation of Gelatine from Different Sources	47
3.4.3.1 Amino Acid Analysis using LC-MS	47
3.4.4 E-tongue Sensor Preparation and Testing	48
3.4.4.1 Sensor Preparation	48
3.4.4.2 Preparation of Basic Standard Taste Solution	48
3.4.4.3 Sensor Testing with Standard Tastes Solution	48
3.4.5 Differentiation of Gelatine Sources using E-tongue	49
3.4.5.1 Sample Preparation	49
3.4.5.2 Measurement of Samples	49
3.4.6 Differentiation of Gelatine Sources using E-nose	50
3.4.6.1 Sample Preparation	50
3.4.6.2 Measurement of Samples	50
3.4.7 Investigation of Active Sensory Compounds of Gelatine	
and MRPs	51
3.4.7.1 Non-Volatile Analysis Using HPLC	51
3.4.7.2 Volatile Analysis using SPME-GCMS	52
3.5 DATA ANALYSIS	53
3.5.1 Effect of Variable Reaction to the Browning Intensity	53
3.5.2 Optimisation of Maillard Reaction Model	53
3.5.3 Characterisation of Gelatine from Different Sources	54
3.5.4 E-tongue Data Pre-Processing and Analysis	54
3.5.5 E-nose Data Pre-Processing and Analysis	55
3.5.6 Investigation of Active Sensory Compounds	55
3.5.6.1 Non-Volatile Compounds Analysis	55
3.5.6.2 Volatile Compounds Analysis	56
3.5.7 Multivariate Statistic for Data Analysis	56

3.6 CHAPTER SUMMARY57
CHADTED FOUD. OPTIMISATION OF MAILLADD DEACTION
MODEL OF BOVINE CELATINE VIOSE MODEL SVSTEM
USING RESPONSE SURFACE METHOD 59
4 1 INTRODUCTION 59
4.2 EFFECT OF VARIABLE REACTION TO THE BROWNING
INTENSITY OF MRPS
4.2.1 Gelatine Solution Concentration
4.2.2 Xylose Concentration
4.2.3 Initial pH62
4.2.4 Reaction Temperature
4.2.5 Heating Time
4.3 OPTIMISATION OF MAILLARD REACTION MODEL IN
GELATINE-XYLOSE SYSTEM68
4.3.1 Optimisation of The Model
4.3.2 Validation of the Model72
4.4 CHAPTER SUMMARY73
CHAPTER FIVE: DIFFERENTIATION OF BOVINE, PORCINE AND
FISH GELATINE BY MAILLARD REACTION USING E-
1 INTRODUCTION 74
5.1 INTRODUCTION
ANIMAL SOURCES 74
5.2.1 Amino Acid Composition of Gelatine 74
5 3 E-TONGUE SENSOR'S PREPARATION AND TESTING 78
5.3.1 Potentiometric Signal Profile Data for Sensor Testing
5.3.2 Principle Component Analysis for Sensor Testing
5.4 DIFFERENTIATION OF GELATINE ASSISTED BY
MAILLARD REACTION USING E-TONGUE
5.4.1 Potentiometric Signal Profiles Data Gelatine and The MRPs86
5.4.2 Principle Component Analysis for E-tongue Data
5.4.3 Linear Discriminant Analysis for E-tongue Data
5.5 CHAPTER SUMMARY
CHAPTER SIX: DIFFERENTIATION OF BOVINE, PORCINE, AND
FISH GELATINE BY MAILLARD REACTION USING E-NOSE
COMBINED WITH CHEMOMETRICS
0.1 INTRODUCTION
6.2 DIFFERENTIATION OF GELATINE USING E-NOSE
6.2.1 Signal Processing Data E-nose
6.2.3 Linear Discriminant Analysis for E-nose Data 120
6 3 CHAPTER SUMMARY 124
CHAPTER SEVEN: ACTIVE SENSORY COMPOUNDS OF BOVINE.
PORCINE AND FISH GELATINE AND THE MRPs
7.1 INTRODUCTION

7.2 NON-VOLATILE COMPOUNDS ANALYSIS OF GELATINE	
AND THE MRPS USING HPLC	125
7 3 VOLATILE COMPOUND ANALYSIS OF GELATINE AND ITS	
MRPS USING SPMF-GCMS	132
7 4 CHAPTER SUMMARY	145
7:4 CHAI IER SUMMART	145
CHAPTER EIGHT: CONCLUSION AND RECOMMENDATION	146
8.1 CONCLUSION AND IMPLICATION	146
8.2 RECOMMENDATION	148
REFERENCES	149
APPENDIX A: MANOVA FOR AMINO ACID ANALYSIS OF	
STANDARD GELATINE	167
APPENDIX B: VARIARI F SCREENING OF MAILLARD REACTION	
MODEI	173
ADDENDIY C. DOE DESILT FOD ODTIMIZATION MAILLADD	
AFFENDIA C; DOE RESULT FOR OF INVITABLEARD DEACTION CELATINE VVI OSE MODEL	170
ADDENDIN D. FEATURE EXTRACTION DATA AND CUMMADX	1/0
APPENDIX D: FEATURE EXTRACTION DATA AND SUMMARY	
MULTIVARIATE ANALYSIS OF POTENTIOMETRIC SIGNAL	105
PROFILE OF E-TONGUE FOR SENSOR TESTING	185
APPENDIX E: FEATURE EXTRACTION DATA AND SUMMARY	
MULTIVARIATE ANALYSIS OF POTENTIOMETRIC SIGNAL	
PROFILE OF E-TONGUE FOR GELATINE SAMPLES	202
APPENDIX F: FEATURE EXTRACTION DATA AND SUMMARY	
MULTIVARIATE ANALYSIS OF POTENTIOMETRIC SIGNAL	
PROFILE OF E-NOSE	242
APPENDIX G: FREE AMINO ACID ANALYSIS USING HPLC	286
APPENDIX H: VOLATILE COMPOUND ANALYSIS USING SPME-GC-	
MS	306
APPENDIX I: LIST OF PUBLICATION	310
INDEX	

LIST OF TABLES

Table 2.1	1 Effectiveness and limitation of various analytical techniques for		
	gelatine authentication	16	
Table 2.2	Utilization of PCA and LDA in halal authentication	36	
Table 3.1	Composition of the lipid-polymeric membrane of each sensor		
Table 4.1	ANOVA for effect of gelatine solution concentration to pH	61	
Table 4.2	ANOVA for effect of xylose concentration to browning intensity	62	
Table 4.3	ANOVA for the effect of initial pH to browning intensity	63	
Table 4.4	ANOVA for effect of reaction temperature to the browning		
	intensity	65	
Table 4.5	ANOVA for effect of heating time to the browning intensity	67	
Table 4.6	Central composite design for measurement of browning intensity	69	
Table 4.7	ANOVA for response surface linear model	70	
Table 4.8	ANOVA for response surface reduced linear model	71	
Table 4.9	Result of predicted and actual data at optimum condition for		
	browning intensity	73	
Table 5.1	Amino acid composition in standard gelatine (w/w)	75	
Table 5.2	MANOVA for the amino acid composition of gelatine	76	
Table 5.3	Test between the subjects affected by amino acids in gelatine	77	
Table 5.4	Descriptive statistic for sensor response of standard basic taste		
	solution	79	
Table 5.5	MANOVA for standard basic tastes solution	81	
Table 5.6	Between subject analysis using ANOVA for standard basic taste		
	solutions	82	
Table 5.7	Extracted Eigen-value of the correlation matrix for sensor responses		
	of the standard basic taste solutions	84	
Table 5.8	Descriptive statistics data of sensor response for gelatine and the		
	MRPs	87	
Table 5.9	MANOVA test for gelatine	91	
Table 5.10) MANOVA test for MRPs	91	
Table 5.11	Test of Between-subjects effects for gelatine analysis	92	

Table 5.12	Test of Between-subjects effects for the MRPs	93
Table 5.13	Accuracy of internal and external validation for each LDA model	99
Table 6.1	Descriptive statistics data for E-nose measurement using wet	
	method	102
Table 6.2	MANOVA for gelatine under the wet method	106
Table 6.3	MANOVA for the MRPs under wet method	106
Table 6.4	Test of between- subjects effect of gelatine under wet method	107
Table 6.5	Test of between- subjects effect of the MRPs under wet method	108
Table 6.6	Descriptive statistics data for E-nose measurement using dry	
	method	109
Table 6.7	MANOVA for gelatine under dry method	113
Table 6.8	MANOVA for the MRPs under dry method	114
Table 6.9	Test of between-subject effects for gelatine under dry method	115
Table 6.10	Test Between-subjects effects of the MRPs under dry method	116
Table 6.11	Accuracy of external and internal validations for each method using	
	E-nose-LDA model	123
Table 7.1	Summary of standard amino acid analysis	126
Table 7.2	Free amino acid detected in different samples gelatine and MRPs	128
Table 7.3	MANOVA for FAA analysis of gelatine	130
Table 7.4	Test of between-subjects effect for the FAA of gelatine	130
Table 7.5	MANOVA for FAA analysis of the MRPs	131
Table 7.6	Test of between-subjects effects for the FAA of the MRPs	132
Table 7.7	Relative content of group of volatile compounds detected in	
	gelatine and the MRPs	134
Table 7.8	Volatile compounds detected in gelatine and the MRPs from	
	different sources of origin	137

LIST OF FIGURES

Figure 2.1	Scheme of the Maillard reaction		
Figure 2.2	Scheme of flavour compounds formation and end products of		
	Maillard reaction	22	
Figure 2.3	Schematic diagram of E-nose	27	
Figure 2.4	Schematic diagram of E-tongue	29	
Figure 3.1	The E-tongue system components.	41	
Figure 3.2	The E-nose system components	43	
Figure 3.3	Sensor response of E-nose during the measurement process	51	
Figure 4.1	pH of gelatine solution at various concentration	60	
Figure 4.2	Browning intensity of MPRs at various xylose weights	61	
Figure 4.3	Browning intensity of MRPs at variation initial pH	63	
Figure 4.4	Browning intensity of MPRs at the variation reaction temperature	65	
Figure 4.5	Browning intensity of MPRs at various heating times	66	
Figure 4.6	Dependency of browning intensity toward the initial pH and		
	temperature at a constant heating time	72	
Figure 5.1	Sensor response for five basic standard taste solution	80	
Figure 5.2	PCA plots for basic standard taste solutions	85	
Figure 5.3	Radar plot for gelatine from E-tongue analysis	89	
Figure 5.4	Radar plot for MRPs from E-tongue analysis	90	
Figure 5.5	PCA plots of gelatine	95	
Figure 5.6	PCA plots of MRPs	96	
Figure 5.7	Linear Discriminant Analysis of gelatine for E-tongue analysis	98	
Figure 5.8	Linear Discriminant Analysis of MRPs for E-tongue analysis	98	
Figure 6.1	Radar plot for gelatine and the MRPs for wet method from E-nose		
	analysis.	105	
Figure 6.2	Radar plot for gelatine and MRPs for dry method from E-nose		
	analysis	113	
Figure 6.3	PCA plots of (a) gelatine and (b) MRPs in wet method	118	
Figure 6.4	PCA plot of (a) gelatine and (b) MRPs in dry method	119	
Figure 6.5	LDA plots of (a) gelatine (b) MRPs using the wet method	121	

Figure 6.6	LDA plots of (a) gelatine (b) MRPs using the dry method	122
Figure 7.1	Total number of volatile compounds detected in bovine, fish and	
	porcine gelatine and its MRPs	133

LIST OF ABBREVIATION

ANOVA		Analysis of Variance
ATR-FTIR		Attenuated Total Reflectance Fourier Transform Infra-Red
BEHS		Bis(2-ethylhexyl) Sebacate
BG		Bovine Gelatine
BGX		Bovine Gelatine-Xylose
BPNN		Back Propagation Neural Network
BPPA		Bis (1-buthylpenthyl) Adipate
CAGR		Compound Annual Growth Rate
CCD		Central Composite Design
СР		Conductive Polymer
DAQ		Data Acquisition
DNA		Deoxyribonucleic Acid
DOE		Design of Expert
DSC		Differential Scanning Calorimetry
ELISA		Enzyme Linked Immuno-Sorbent Assay
FAA		Free Amino Acid
FG		Fish Gelatine
FGX		Fish Gelatine-Xylose
FTIR		Fourier Transform Infra-Red
GA		Gallic Acid
GCMS		Gas Chromatography-Mass Spectroscopy
HPLC		High Performance Liquid Chromatography
LCMS		Liquid Chromatography-Mass Spectroscopy
LDA		Linear Discriminant Analysis
LRI		Linear retention Indices
MANOV	Ά	Multivariate Analysis of Variance
MLR		Multiple Linear Regression
MOS		Metal Oxide Semiconductor
MOSFET	Γ	Metal Oxide Semiconductor Field Effect Transistors
MRPs		Maillard Reaction Products
MTAC		Methyl Tri-octyl Ammonium Chloride
NIRS		Near Infra-Red Spectroscopy
NPOE		2-Nitrophenyl Octyl Ether
OA		Oleic Acid
OFAT		One Factor Analysis at Time
OPA		Orto Phtalaldehyde
OT		Odour Threshold
PCA		Principal Component Analysis
PCR		Polymerase Chain Reaction
PG		Porcine Gelatine
PGX		Porcine Gelatine-Xylose
PLS		Partial Least Square
PVC		Polyvinyl Chloride
RT		Retention Time

RBD	Refined Bleached Deodorized
SAW	Surface Acoustic Wave
SD	Standard Deviation
SDS-PAGE	Sodium Dodecyl Sulphate-Poly Acrylamide Gel Electrophoresis
SPME	Solid Phase Micro Extraction
TDAB	Tetra Dodecyl Ammonium Bromide
TGS	Taguchi Gas Sensor
THF	Tetra Hydro Furan
TMR	Transparency Market Research
TOF-MS	Time of Flight Mass Spectroscopy
UV	Ultra Violet

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Food authentication and adulteration detection are huge concern in the food ecosystem, not only for producers but also for consumers and government. Technological advancement in food, pharmaceutical, and cosmetics industries has increased the possibility of counterfeiting practices. Pig and pig derivatives such as pork, lard, and gelatine are not only used as an additive but also as the main material in the manufacture of food and pharmaceutical products. For this reason, the identification of pig derivatives in food and pharmaceuticals is essential.

Currently, gelatine remains a major concern among consumers since its source of origins is deemed unacceptable from the aspect of culture, health, and religion. A report released by Transparency Market Research (TMR) stated that the global gelatine market in 2011 had a production capacity of 348.9-kilo tons and is estimated to reach a production capacity of 450.7-kilo tons by 2018. Another source reinforced that the global gelatine market demand was 620.6-kilo tons in 2019 and is projected to expand at a volume-based CAGR of 5.9% from 2020 to 2027. In contrast, halal gelatine in the global market only less than 2% of the total gelatine production. Most of gelatine is derived from porcine skin (80%), followed by bovine hide (15%) and porcine bone, cattle bone, and fish (5%), respectively (Tongdeesoontorn & Rawdkuen, 2019). Nowadays, many researchers have paid increasing attention on an alternative source of gelatine, such as fish and poultry processing by-products (Abdullah et al., 2016; Abedinia et al., 2017; Khiari et al., 2013; Monsur et al., 2014; Silva, Bandeira, & Pinto, 2014).

Gelatine is a pure protein and has a functional role in living organisms. In this age, gelatine has been widely applied in foods, pharmaceuticals, neutraceuticals, and cosmetics products. The classical food, photographic, cosmetic and pharmaceutical application of gelatine is based mainly on its gel-forming and thickening properties (Gomez-Guillen et al., 2011; Mariod & Adam, 2013). It has been used as an emulsifier, foaming agents, colloid stabilizers, biodegradable film-forming materials, micro-

encapsulating agents, and the source of bioactive peptides (Chung, 2020; Gomez-Guillen et al., 2011).

Species-specific detections of animal protein in food have been reported in various techniques such as chromatography (Bargen et al., 2013), spectroscopy (Mandrile et al., 2017; Rahmania et al., 2015), and also Polymerase Chain Reaction (PCR) (Maryam et al., 2016; Rahmawati et al., 2016). With regards to gelatine authentication, some techniques, such as electrophoretic, chromatography-based techniques, spectroscopy techniques, Enzyme-Linked Immuno-Sorbent Assay (ELISA), thermal analysis, chemical reaction, and PCR have been presented as well. Chromatography-based technique offers a reliable tool for separation and quantitative analysis, and thus, it is mostly employed for differentiation purposes. In addition, the FTIR spectroscopy technique was reported as simple, rapid, and accurately effective in differentiating gelatine sources, while PCR was deemed as an ideal technique to be used for the detection of porcine DNA in gelatine due to the higher stability of DNA compared to protein (Sepminarti et al., 2016). However, the existing methods are mostly in need of modern-technology instruments, which requires high skill level to successfully operate the technology, and high monetary cost. On this basis, it is pivotal to develop an efficient and cheaper alternative method, such as array sensor systems combined with artificial intelligence like electronic tongue (E-tongue) and electronic nose (E-nose), which are deemed promising for this purpose.

Some reports find that UV-spectroscopy techniques have been successfully applied in the differentiation of bovine and porcine gelatine (Tan et al., 2012; Hamid et al., 2019). A chemical reaction, namely the Maillard reaction that was able to develop the browning effect in gelatine, was also introduced as an authentication technique. The differentiation of bovine and porcine gelatine was obtained by the different browning intensities of the Maillard Reaction Products (MRPs) of gelatine after reaction by reducing sugar. However, there was no report about other aspects of the gelatine-MRPs, such as aroma and taste. Therefore, this study aimed to elaborate the possibility to use gelatine -MRPs flavour and taste active component as indicators for differentiation of gelatine sources and to establish the simple, rapid, and accurate method for differentiation of gelatine based on the flavour and taste by using lab-made potentiometric E-tongue and E-nose. Chemometric techniques provide an opportunity for classifying or discriminating materials with respect to their similarities since these techniques have the capability to extract distinctive properties from the complex data generated from the instruments (Cebi et al., 2019). Additionally, several studies (Dong et al., 2017; Hidayat et al., 2019; Nurjuliana et al., 2011) suggest that the application of E-tongue and E-nose combined with chemometrics has great potential to solve adulteration and authentication problems.

1.2 STATEMENT OF THE PROBLEM

The unclear information and labelling regarding gelatine source in the market has increased consumers' concern over its halal authenticity. In concern with food safety, an analytical laboratory approach needs to be done in order to know chemically additive substances that the food product may contain. Currently, several methods have been developed for halal authentication purposes in gelatine. Chromatography, spectroscopy, DNA, and protein-based methods such as PCR and ELISA, respectively, are the most commonly used methods due to their high success rate, accuracy and preciseness. However, the disadvantages of these methods are that it tends to be time-consuming and destructive, and thus requires high-skilled experts to perform the studies. Worse yet, toxic chemicals are used for destruction and sample extraction (Cebi et al., 2019). These challenges reveal a necessity to develop rapid, in-expensive, and effective techniques to determine the sources of gelatine as raw and processed ingredients in food products.

On the other hand, artificial sensing techniques using portable E-nose and Etongue in conjunction with chemometrics was widely used as sensitive and fast techniques for authentication and quality analysis of a wide range of food. Meat differentiation based on the aroma profile was highlighted in some previous studies. Furthermore, volatile compounds in meat and meat processed foods made from different animals have been investigated by using solid-phase microextraction–gas chromatography–mass spectrometry (SPME/GC–MS). Other studies also revealed about amino acids and protein characterisation based on the taste profile. However, no study has been done on gelatine differentiation, as well as based on the aroma and its taste profiles. In addition, very limited literature addressed about flavour compounds of gelatine. Therefore, research needs to be conducted to investigate the possibility of gelatine authentication based on the flavour compounds.

1.3 PURPOSE OF THE STUDY

Chemical analysis using the Maillard reaction has been revealed to successfully differentiate bovine and porcine gelatine based on the colour intensity of melanoidins. However, no previous study has been reported about the flavour of gelatine-MRPs as well as its aroma and taste. Thus, this study was conducted to investigate the differentiation of gelatine based on the flavour compounds of gelatine and gelatine-MRPs. This research sought to establish a rapid method for gelatine authentication based on the flavour characteristics for a different source of origins by focusing on porcine, bovine, and fish gelatine.

1.4 RESEARCH QUESTIONS

The research question in this study as follow:

- 1. What are the optimum conditions of Maillard reaction for gelatine-xylose model for gelatine authentication?
- 2. How is the capability of potentiometric E-tongue in differentiation of gelatine based on the sources?
- 3. How is the capability of E-nose in the differentiation of gelatine based on the sources?
- 4. What are the volatile and non-volatile compounds in the gelatine-xylose model MRPs which can be used as marker compounds in the differentiation of gelatine?

1.5 RESEARCH OBJECTIVES

The present study aimed to achieve the following objectives:

- 1. to use the MRPs of gelatine-xylose model for gelatine authentication
- 2. to evaluate the capability of potentiometric E-tongue in the differentiation of gelatine based on the sources of origin;
- 3. to evaluate the capability of E-nose in the differentiation of gelatine based on the sources of origin; and
- 4. to verify the volatile and non-volatile compounds of MRPs from the gelatine-xylose model as the marker compounds in authentication.

1.6 RESEARCH HYPOTHESIS

Key aroma compounds in food are present only in trace concentrations of $1\mu g/kg$ to 1mg/kg. Nevertheless, they contribute to the respective flavour because of their low odour perception threshold. When a peptide/amino acid and sugar mixture is heated and undergoes Maillard reaction to produce flavour compounds, amino acids contribute differently toward an aroma and taste. The aroma profile can be investigated using E-nose, while the taste profile using E-tongue.

Since the amino acid composition of gelatine varies with its origin, it is possible that flavour compounds, when subjected to Maillard reaction, will vary. The differences will be the key principle in halal authentication of gelatine in this study. The hypotheses are as follows:

- H1 pH, temperature, and heating time have a positive effect on the MRPs of the gelatine-xylose model.
- H2 E-tongue combined with chemometric tools could be applied to differentiate gelatine and MRPs based on the origin sources.
- H3 E-nose combined with chemometric tools could be applied to differentiate gelatine and MRPs based on the origin sources.
- H4 Different volatile and non-volatile compounds of MRPs from gelatinexylose models could be used as marker compounds for authentication.