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ABSTRACT

This work reports the effect of doping on the energy-band structure of homojunction
light-emitting diode (LED) epitaxial layers. The research correlates the resultant values
of bandgap energy and its depletion region, which are then applied to the luminescence
spectrum of the light-emitting diode. The energy-band structure is simulated by
initializing the various materials’ properties of Gallium Nitride (GaN), including
Gallium Arsenide (GaAs), and solving the Poisson’s equation derived from
Boltzmann’s Transport equation. The equation is solved by applying the finite
difference method and using the Newton-Raphson method. Both materials are
compared with different dopant concentrations in the range of 1 x 10 cm-3to 1 x 102
cm3. Taking the Silicon properties as the controlled variable, the energy-band structure
is validated with literature findings. The calculated band gap energy of GaAs shiftsfrom
1.4273 eV to 1.4640 eV, and for GaN, from 3.3970 eV to 3.4148 eV. The bandgap
energy increases with the proportion to the doping concentration increments. However,
when obtaining the epitaxial layer’s active 1-D spatial regions for GaAs and GaN, it
reduces from (1.5700x10'pm — 7.5000x103um) and from (1.8450x10lpm —
8.5000x10-3um) x 1 um? respectively. The findings show that doping concentration is
saturated at a certain threshold, which provides a less significant impact on the
semiconductor energy-band structure. Thus, the numerical system determines the LED
output spectrum and the threshold values for bandgap energy. The analyzed bandgap
thresholds are obtained as 1.440eV for GaAs and 3.403eV for GaN at dopants’
concentrations of 2.951x10*%cm2 and 4.467x10%°cm3, respectively. The peak intensity
wavelengths are obtained as 363.17nm for GaN and 845.7nm for GaAs.
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CHAPTER ONE

INTRODUCTION

1.1 RESEARCHBACKGROUND

As the modernized lighting technologies that produce environmental-friendly
illumination are globally demanding, realizing the physics behind them undoubtedly
benefits humankind and mother nature. Lighting technology has evolved from
illumination based on the electron thermal agitation mechanism known as
incandescence tothe electrons transition mechanism, known as luminescence (Derenzo,
2003). Respectively, some of the well-known examples of lighting devices are torches,
candles, and tungsten lightbulbs, fluorescent tubes (Maclsaac et al., 1999), and the
semiconductor light-emitting diodes (LED) (Y. K. Cheng & Cheng, 2006).

The semiconductors are widely applied to high energy mobility transistor
(HEMT), LED, laser diodes, and solar cells (Denbaars et al., 2013; Fletcher & Nirmal,
2017; Gobat et al., 1962; Metaferia et al., 2019; Shealy et al., 2002). Various numerical
simulations have been performed to analyze the semiconductor materials’ doping effect,
mechanism, and performance (Datta, (2005), and Pisarenko and Ryndin, (2019). They
describe the carriers’ transport mechanisms with their formulation modelings in detail.
The numerical analysis is recently focused on the thermoelectric properties, the
effective mass of carriers, and piezo-polarisation effects (Misra et al., 2020; Sirkeli et
al., 2015a; Wu et al., 2020; X. Zhang et al., 2019).

The EBS overviews the semiconductor material’s valence and conduction bands,

including the bandgap energy, which is essential. Commonly, most of the carriers’



dynamical mechanism is connectively analyzed via its energy band structure (EBS).
Otherwise, it can be deductively concluded via its efficiency calculations, such as the
internal and external quantum efficiencies (Shaari et al., 2020; Zhu et al., 2009). Several
reports show the enhancement of semiconductor performance can be achieved by
inducing doping (Asl & Rozati, 2020; Egerton et al., 2005; Hao et al., 2019; Yi et al.,
2006). The compatible doping concentration towards a p or n-types material will
produce desirable optical and electrical properties useful for specific applications
(Dewan et al., 2017; Egerton et al., 2005). However, the dopants’ concentration
optimization requires extensive numerical simulation works, including the drift-
diffusion model (DDM) and EBS theory.

The DDM has been widely used in previous works of literature for analyzing
and solving the problem in the semiconductor field (Lundstrom, 2015; Sujecki, 2014a;
Vasileska et al., 2017). However, the incompatible dopant concentration infused affects
the semiconductor to behave like the non-semiconductor, leading to an incorrect
estimation of the desired luminescence spectrum. Another issue is that bandgap
energy’s and depletion region’s correlation with the EBS affected by the dopant
concentration is still ambiguous.

In this research, the DDM is performed by approximating the semiconductor
chip layers to a homogenous media, altering the dopants concentration, and imposing
conditions at the boundary of the epilayer with 0 and bias potential at the start of n-type
and at the end of p-type semiconductor. The model is used to analyze the performance
of the GaN- and GaAs-based LED in a homojunction vertical chip configuration. The
analysis is performed based on the effective mass of carriers (electrons and holes), the

bandgap energy, and the depletion region of the semiconductor. Lastly, the validation



is executed by estimating the luminescence spectrum of both LEDsand compare it with

literature findings.

1.2 PROBLEM STATEMENT

Doping in semiconductors helps to reduce the potential energy required for electrical
conduction to occur between the electrodes. Yet, an extensive amount of the dopants’
concentration affects the properties of the semiconductor, thus changing it to behave as
the non-semiconductor. Non-semiconductor, which are the conductors and insulators,
have distinct nature of EBS to the semiconductor. Inaccurate EBS causes the incorrect
model of chip’s output spectrum. Besides, the doping process affects the bandgap
energy and depletion region of a semiconductor as well. Thus, the correlation of these
properties with the EBS is still vague which can affect the numerical estimation of the
light properties produced by a LED chip. The dynamic correlation between dopant
concentration aand luminescence spectrum is still unclear which requires a comparative
study and analysis across different materials. Eventually, the incompatible dopants
concentration infused in semiconductor material leads to incorrect estimation of the

desired luminescence spectrum.

As an analogy, one desires to produce a specific-colored light, with the help of
dopants in semiconductors, one expects to improve the energy efficiency. But,
unfortunately, the LED color is shifted to a different wavelength beyond the visible
range. The worst case is that it would not make any light of any wavelength at all as it

has converted to a non-semiconductor.



1.3 RESEARCH OBJECTIVES

The research is mainly focused on investigating the effect of dopant concentration on

the LED performance. The specific objectives include:

1)

2)

3)

4)

To apply the drift-diffusion model equations in creating a numerical
simulation script for the EBS simulation of homojunction LED chip.

To correlate the bandgap energy and depletion region with dopants
concentration through Newton’s Raphson method.

To compare the effects of dopant concentration on GaN and GaAs-based
homojunction LED chip in terms of bandgap energy and depletion region.
To simulate and analyze the output luminescence spectrum of LED chips

based on the EBS.

1.4 RESEARCH QUESTIONS

1)

2)

3)

4)

What are the mathematical theories involved in estimating the energy band
structure of the homojunction LED using DDM.

What is the relationship between the bandgap energy and depletion region
to the dopant concentration?

2) What effects of dopant concentration changes are different between
GaN- and GaAs-based semiconductors?

3) How the luminescence spectrum of LED change with the heavily

doped semiconductor epitaxial layers?



1.5 RESEARCHHYPOTHESIS

This research has predicted results as the following hypotheses:

1) The EBS of GaAs and GaN will differ significantly from each other since
both emit different spectrums.

2) There will be a threshold of dopants concentration for enhancing the
bandgap energy of the homojunction epilayer.

3) The output wavelength of GaAs and GaN-based epilayer will shift with the

increment of dopant concentration.

1.6 RESEARCH SCOPE

This research is conducted to develop numerical programming for EBS simulation. The
solution of the modeled simulation covers the mathematical theories of Newton
Raphson’s method, Poisson’s equation, current equation, and drift-diffusion equation.
Deriving from EBS, this research focuses on the doping effects in LED epitaxial layers
visualized via their luminescence spectrums and supported by their bandgap energy and
depletion region values.

The effect of doping is considered for heavy dopantsconcentration in basic LED
material. The concentration values are chosen from 1x108 cm to 1x10%! cm3. The
epitaxial layer configuration follows the vertical LED chip where the electrodes are
connected vertically. The LED epitaxial layers dimension is set with 1x1x1 ums. The
complex equations are approximate by linearization to 1-dimension to compensate for

the time and high-end hardware requirement for 3-dimensional simulation.



CHAPTER TWO

LITERATUREREVIEW

2.1 INTRODUCTION TO SEMICONDUCTOR

The semiconductor can be defined as the material that can conduct electricity if applied
with specific minimum electrical potential (0-15 eV), according to Dittmer et al. (2019),
providing enough energy for their valence electrons to break free (Zhang et al., 2019).
For example, germanium (Ge) and silicon (Si) - elements with single valence electrons,
or Gallium Nitride (GaN) and Gallium Arsenide (GaAs) - the combinations of two or
more elements. These combinations of two elements are called binary semiconductors
(Kurchin et al., 2018), where the p-type semiconductor is made up of element with holes
(unoccupied states in the valence shells) and the n-type that consists of the element with
extra valence electrons (Meyer et al., 2012).

Combining elements made up of group-3 and group-5 (111-V) from the periodic
table will produce stable state valence electrons. More of such semiconductor studied
by Akiyama et al. (2009), Bhuiyan et al. (2003), Dayeh (2010), and Kazan et al. (2007)
are Aluminum Nitride (AIN), Indium Arsenide (InAs), Indium Nitride (InN) and the
rest are shown in Figure 2.1. Yet, as Campbell et al. (2012) have clarified, two of the
most common combination of group I11-V are the GaAs and GaN.

In the world that we are living now, semiconductors are found everywhere in
computer systems (Cheng & Cheng, 2006; Hart & Estrin, 1991), transportation
advancements (Ndiaye et al., 2016; Shamsi et al., 2013), communication technologies

(Abarbanel et al., 2001; Vrijen & Yablonovitch, 2001), lighting(Berencén et al., 2011;



Haitz & Tsao, 2011), sensing (Rothberg et al., 2011; Toumazou et al., 2013), etc.
Modernized technologies have developed numerous semiconductor configurations to
enhance the overall efficiency. Heterojunctions and heterostructures semiconductors
are hot topics in the current semiconductor research. Such works were conducted by
Schultz et al. (2021), Wang et al. (2019), Yang and Hao (2019), Zhang and Jaroniec

(2018).

(s

Figure 2.1. Group I11-V semiconductor combinations

2.2 DOPING IN SEMICONDUCTOR

One of the earliest techniques to increase efficiency for basic binary semiconductors is
by doping the semiconductor material. Doping is adding extrinsic carriers into the pure
semiconductor (Gupta et al., 2017; Manyala et al., 2008). Such carriers come from
impurity element that is compatible with the intrinsic semiconductor. The element that
Is compatible with the group 111-V semiconductor comes from the same group.
Aluminum (Al) and Indium (In) are both compatible with GaAs and GaN. Works
by Burgess et al. (2016), Malguth et al. (2008), Pradhan et al. (2017), Yilmaz et al.
(2017) configure such compatible configurations as the dopants for enhancing the group

I11-V semiconductors. On the other hand, Man (1971) and Piprek (2012) found that





