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ABSTRACT  
 
 

 
 

This work reports the effect of doping on the energy-band structure of homojunction 
light-emitting diode (LED) epitaxial layers. The research correlates the resultant values 
of bandgap energy and its depletion region, which are then applied to the luminescence 

spectrum of the light-emitting diode. The energy-band structure is simulated by 
initializing the various materials’ properties of Gallium Nitride (GaN), including 

Gallium Arsenide (GaAs), and solving the Poisson’s equation derived from 
Boltzmann’s Transport equation. The equation is solved by applying the finite 
difference method and using the Newton-Raphson method. Both materials are 

compared with different dopant concentrations in the range of 1 x 1018 cm-3 to 1 x 1021 

cm-3. Taking the Silicon properties as the controlled variable, the energy-band structure 

is validated with literature findings. The calculated band gap energy of GaAs shifts from 
1.4273 eV to 1.4640 eV, and for GaN, from 3.3970 eV to 3.4148 eV. The bandgap 
energy increases with the proportion to the doping concentration increments. However, 

when obtaining the epitaxial layer’s active 1-D spatial regions for GaAs and GaN, it 
reduces from (1.5700x10-1μm – 7.5000x10-3μm) and from (1.8450x10-1μm – 

8.5000x10-3μm) x 1 μm2 respectively. The findings show that doping concentration is 
saturated at a certain threshold, which provides a less significant impact on the 
semiconductor energy-band structure. Thus, the numerical system determines the LED 

output spectrum and the threshold values for bandgap energy. The analyzed bandgap 
thresholds are obtained as 1.440eV for GaAs and 3.403eV for GaN at dopants’ 

concentrations of 2.951x1019cm-3 and 4.467x1019cm-3, respectively. The peak intensity 

wavelengths are obtained as 363.17nm for GaN and 845.7nm for GaAs. 
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  خلاصة البحث

 

 
 

 

الثنائي  الصمام  الطاقة لطبقات  نطاق  على بنية  المنشطات  تعاطي  العمل تأثير  هذا  يوضح 
النطاق ومنطقة   الناتجة عن طاقة فجوة  البحث القيم  هذا  المتجانسة. ويربط  للضوء  الباعث 

التلألؤ للصمام الثنائي الباعث للضوء. وتتم استنفادها، التي يتم تطبيقها بعد ذلك على طيف  
(، بما  GaNمحاكاة بنية نطاق الطاقة من خلال تهيئة خصائص المواد المختلفة لنتريد الغاليوم )

الغاليوم ) (، وحل معادلة بواسون المشتقة من معادلة النقل بولتزمان GaAsفي ذلك زرنيخيد 
نيوتن المحدودة وطريقة  الفروق  طريقة  تطبيق  طريق  المادتين  -عن  مقارنة كلتا  وتتم  رافسون. 

. cm–3 2110×  1إلى  cm–3  1810×   1بتركيزات مختلفة من المنشطات في النطاق من 
النت الطاقة مع  الفرقة  التحقق من صحة هيكل  اتخاذ خصائص ويتم  الأدب من خلال  ائج 

لـ المقاسة  النطاق  فجوة  طاقة  تنتقل  عليها.  تسيطر  التي  من    GaAs-السيليكون كمتغير 
1.4273  eV  1.4640إلى  eV  3.3970، ومن  eV  3.4148إلى eV    بالنسبة

إنه GaN-لـ ذلك،  ومع  المنشطات.  زيادات تركيز  نسبة  النطاق مع  فجوة  . وتزداد طاقة 
( من  ومن    10–3×    7.5000  –ميكرومتر    10–1×    57001.ينخفض  ميكرومتر( 

على    1ميكرومتر( ×    10–3×    8.5000  –ميكرومتر    10–1×   1.8450) ميكرومتر 
المحورية لـ  D-1التوالي عند الحصول على المناطق المكانية   و   GaAs-النشطة للطبقة فوق 

GaNعتبة معينة عند  أن تركيز المنشطات مشبع  ، مما يوفر تأثيراً أقل أهمية . وتظهر النتائج 
الموصلات. وبالتالي، يحدد النظام العددي طيف خرج    LEDعلى بنية نطاق الطاقة لأشباه 

الحصول على عتبات فجوة النطاق التي تم تحليلها في   النطاق. وتم  والقيم الحدية لطاقة فجوة 
1.440  eV  لـ-GaAs    3.403و  eV  لـ-GaN    1910×    2.951بتركيزات المواد من 

3–cm    3  1910×   4.467و–cm    شدة الحصول على أطوال موجات  على التوالي. وتم 
  .GaAs-نانومتر لـ  845.7و    GaN-نانومتر لـ  363.17الذروة على أنها  
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CHAPTER ONE 
 
 

INTRODUCTION 
 

 
 
 

1.1 RESEARCH BACKGROUND 

 

 

As the modernized lighting technologies that produce environmental-friendly 

illumination are globally demanding, realizing the physics behind them undoubtedly 

benefits humankind and mother nature. Lighting technology has evolved from 

illumination based on the electron thermal agitation mechanism known as 

incandescence to the electrons transition mechanism, known as luminescence (Derenzo, 

2003). Respectively, some of the well-known examples of lighting devices are torches, 

candles, and tungsten lightbulbs, fluorescent tubes (MacIsaac et al., 1999), and the 

semiconductor light-emitting diodes (LED) (Y. K. Cheng & Cheng, 2006).  

 The semiconductors are widely applied to high energy mobility transistor 

(HEMT), LED, laser diodes, and solar cells (Denbaars et al., 2013; Fletcher & Nirmal, 

2017; Gobat et al., 1962; Metaferia et al., 2019; Shealy et al., 2002). Various numerical 

simulations have been performed to analyze the semiconductor materials’ doping effect, 

mechanism, and performance (Datta, (2005), and Pisarenko and Ryndin, (2019). They 

describe the carriers’ transport mechanisms with their formulation modelings in detail. 

The numerical analysis is recently focused on the thermoelectric properties, the 

effective mass of carriers, and piezo-polarisation effects (Misra et al., 2020; Sirkeli et 

al., 2015a; Wu et al., 2020; X. Zhang et al., 2019).  

 The EBS overviews the semiconductor material’s valence and conduction bands, 

including the bandgap energy, which is essential. Commonly, most of the carriers’ 
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dynamical mechanism is connectively analyzed via its energy band structure (EBS). 

Otherwise, it can be deductively concluded via its efficiency calculations, such as the 

internal and external quantum efficiencies (Shaari et al., 2020; Zhu et al., 2009). Several 

reports show the enhancement of semiconductor performance can be achieved by 

inducing doping (Asl & Rozati, 2020; Egerton et al., 2005; Hao et al., 2019; Yi et al., 

2006). The compatible doping concentration towards a p or n-types material will 

produce desirable optical and electrical properties useful for specific applications 

(Dewan et al., 2017; Egerton et al., 2005). However, the dopants’ concentration 

optimization requires extensive numerical simulation works, including the drift-

diffusion model (DDM) and EBS theory.  

 The DDM has been widely used in previous works of literature for analyzing 

and solving the problem in the semiconductor field  (Lundstrom, 2015; Sujecki, 2014a; 

Vasileska et al., 2017). However, the incompatible dopant concentration infused affects 

the semiconductor to behave like the non-semiconductor, leading to an incorrect 

estimation of the desired luminescence spectrum. Another issue is that bandgap 

energy’s and depletion region’s correlation with the EBS affected by the dopant 

concentration is still ambiguous.  

 In this research, the DDM is performed by approximating the semiconductor 

chip layers to a homogenous media, altering the dopants concentration, and imposing 

conditions at the boundary of the epilayer with 0 and bias potential at the start of n-type 

and at the end of p-type semiconductor. The model is used to analyze the performance 

of the GaN- and GaAs-based LED in a homojunction vertical chip configuration. The 

analysis is performed based on the effective mass of carriers (electrons and holes), the 

bandgap energy, and the depletion region of the semiconductor. Lastly, the validation 
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is executed by estimating the luminescence spectrum of both LEDs and compare it with 

literature findings.  

 

1.2 PROBLEM STATEMENT 

 

 

Doping in semiconductors helps to reduce the potential energy required for electrical 

conduction to occur between the electrodes. Yet, an extensive amount of the dopants’ 

concentration affects the properties of the semiconductor, thus changing it to behave as 

the non-semiconductor. Non-semiconductor, which are the conductors and insulators, 

have distinct nature of EBS to the semiconductor. Inaccurate EBS causes the incorrect 

model of chip’s output spectrum. Besides, the doping process affects the bandgap 

energy and depletion region of a semiconductor as well. Thus, the correlation of these 

properties with the EBS is still vague which can affect the numerical estimation of the 

light properties produced by a LED chip. The dynamic correlation between dopant 

concentration aand luminescence spectrum is still unclear which requires a comparative 

study and analysis across different materials. Eventually, the incompatible dopants 

concentration infused in semiconductor material leads to incorrect estimation of the 

desired luminescence spectrum.  

 

 As an analogy, one desires to produce a specific-colored light, with the help of 

dopants in semiconductors, one expects to improve the energy efficiency. But, 

unfortunately, the LED color is shifted to a different wavelength beyond the visible 

range. The worst case is that it would not make any light of any wavelength at all as it 

has converted to a non-semiconductor. 
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1.3 RESEARCH OBJECTIVES 

 
 

The research is mainly focused on investigating the effect of dopant concentration on 

the LED performance. The specific objectives include: 

1) To apply the drift-diffusion model equations in creating a numerical 

simulation script for the EBS simulation of homojunction LED chip. 

2) To correlate the bandgap energy and depletion region with dopants 

concentration through Newton’s Raphson method. 

3) To compare the effects of dopant concentration on GaN and GaAs-based 

homojunction LED chip in terms of bandgap energy and depletion region. 

4) To simulate and analyze the output luminescence spectrum of LED chips 

based on the EBS.  

 

1.4 RESEARCH QUESTIONS 

 
 

1) What are the mathematical theories involved in estimating the energy band 

structure of the homojunction LED using DDM. 

2) What is the relationship between the bandgap energy and depletion region 

to the dopant concentration?  

3) 2)  What effects of dopant concentration changes are different between 

GaN- and GaAs-based semiconductors? 

4) 3)  How the luminescence spectrum of LED change with the heavily 

doped semiconductor epitaxial layers?  
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1.5 RESEARCH HYPOTHESIS 

 
 

This research has predicted results as the following hypotheses: 

1) The EBS of GaAs and GaN will differ significantly from each other since 

both emit different spectrums. 

2) There will be a threshold of dopants concentration for enhancing the 

bandgap energy of the homojunction epilayer.  

3) The output wavelength of GaAs and GaN-based epilayer will shift with the 

increment of dopant concentration. 

 

1.6 RESEARCH SCOPE 

 
 

This research is conducted to develop numerical programming for EBS simulation. The 

solution of the modeled simulation covers the mathematical theories of Newton 

Raphson’s method, Poisson’s equation, current equation, and drift-diffusion equation. 

Deriving from EBS, this research focuses on the doping effects in LED epitaxial layers 

visualized via their luminescence spectrums and supported by their bandgap energy and 

depletion region values.  

 The effect of doping is considered for heavy dopants concentration in basic LED 

material. The concentration values are chosen from 1x1018 cm-3 to 1x1021 cm-3. The 

epitaxial layer configuration follows the vertical LED chip where the electrodes are 

connected vertically. The LED epitaxial layers dimension is set with 1x1x1 μm3. The 

complex equations are approximate by linearization to 1-dimension to compensate for 

the time and high-end hardware requirement for 3-dimensional simulation.   
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CHAPTER TWO 
 
 

LITERATURE REVIEW 
 

 
 
 

2.1 INTRODUCTION TO SEMICONDUCTOR 

 

 

The semiconductor can be defined as the material that can conduct electricity if applied 

with specific minimum electrical potential (0-15 eV), according to Dittmer et al. (2019), 

providing enough energy for their valence electrons to break free (Zhang et al., 2019). 

For example, germanium (Ge) and silicon (Si) - elements with single valence electrons, 

or Gallium Nitride (GaN) and Gallium Arsenide (GaAs) - the combinations of two or 

more elements. These combinations of two elements are called binary semiconductors 

(Kurchin et al., 2018), where the p-type semiconductor is made up of element with holes 

(unoccupied states in the valence shells) and the n-type that consists of the element with 

extra valence electrons (Meyer et al., 2012).  

 Combining elements made up of group-3 and group-5 (III-V) from the periodic 

table will produce stable state valence electrons. More of such semiconductor studied 

by Akiyama et al. (2009), Bhuiyan et al. (2003), Dayeh (2010), and Kazan et al. (2007) 

are Aluminum Nitride (AlN), Indium Arsenide (InAs), Indium Nitride (InN) and the 

rest are shown in Figure 2.1. Yet, as Campbell et al. (2012) have clarified, two of the 

most common combination of group III-V are the GaAs and GaN. 

In the world that we are living now, semiconductors are found everywhere in 

computer systems (Cheng & Cheng, 2006; Hart & Estrin, 1991), transportation 

advancements (Ndiaye et al., 2016; Shamsi et al., 2013), communication technologies 

(Abarbanel et al., 2001; Vrijen & Yablonovitch, 2001), lighting(Berencén et al., 2011; 
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Haitz & Tsao, 2011), sensing (Rothberg et al., 2011; Toumazou et al., 2013), etc.  

Modernized technologies have developed numerous semiconductor configurations to 

enhance the overall efficiency. Heterojunctions and heterostructures semiconductors 

are hot topics in the current semiconductor research. Such works were conducted by 

Schultz et al. (2021), Wang et al. (2019), Yang and Hao (2019), Zhang and Jaroniec 

(2018). 

 

 

Figure 2.1. Group III-V semiconductor combinations 
 

 
 

2.2 DOPING IN SEMICONDUCTOR 

 
 

One of the earliest techniques to increase efficiency for basic binary semiconductors is 

by doping the semiconductor material. Doping is adding extrinsic carriers into the pure 

semiconductor (Gupta et al., 2017; Manyala et al., 2008). Such carriers come from 

impurity element that is compatible with the intrinsic semiconductor. The element that 

is compatible with the group III-V semiconductor comes from the same group.   

 Aluminum (Al) and Indium (In) are both compatible with GaAs and GaN. Works 

by Burgess et al. (2016), Malguth et al. (2008), Pradhan et al. (2017), Yılmaz et al. 

(2017) configure such compatible configurations as the dopants for enhancing the group 

III-V semiconductors. On the other hand, Man (1971) and Piprek (2012) found that 
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