
 

 

 

 

ANALYSIS OF WARPAGE AND SPRINGBACK OF THICK 

UNIDIRECTIONAL CARBON-EPOXY LAMINATES 

CURED USING AUTOCLAVE 

 

 

BY 

 

 

MUHAMMAD MUSHAB BIN ZAKARIA 

 

 

A thesis submitted in fulfilment of the requirement for the 

Master of Science (Mechanical Engineering) 

 

 

Kulliyyah of Engineering 

International Islamic University Malaysia 

 

 

SEPTEMBER 2022 

 



ii 

ABSTRACT 

This thesis presents the study of the post-cure behaviour of thick carbon-epoxy 

composite laminates manufactured to Airbus specification AIMS05-27-002 cured using 

autoclave. The post-cure behaviour being studied is the warpage of flat laminates and 

the springback of curved or angled laminates. These laminates resemble the geometrical 

features found on the actual structure of the rib of the flap of Airbus A350. The gap left 

from previous works using similar material and process is the uncertainty that exists 

within the predictive finite element model for the thicker range of the laminates. This 

study thus attempted to close this gap by first extending the warpage and springback 

database from the thin laminates (16 layers and below) to thick laminates of up to 28 

layers. Then the predictive model is iterated several times by changing the initial stress 

within the first layer of the elements until the warpage in the simulation matches that of 

the experiment respectively. The outcomes are a warpage and springback database 

covering both thin (less than 20 layers) and thick (more than 20 layers) range of 

thickness as well as a predictive finite element model that is able to predict the 

behaviour of laminates of the actual aircraft structure. Three categories of specimen 

were defined; flat unidirectional, curved unidirectional, and flat symmetrical. The effect 

of four parameters were studied; specimen size, corner angle, laminate thickness, and 

ply configuration. The results of the analysis indicate that the effect of specimen size 

for flat unidirectional and aspect ratio for curved unidirectional specimens is negligible. 

Quadratic response can be found for the effect of specimen size for curved 

unidirectional and aspect ratio for flat unidirectional. The effect of specimen thickness 

is linear for all specimen types. The accuracy of the predictive finite element model is 

mostly above 70% and peaking above 90% around the middle range of each parameter. 

Overall, the results of the experiment are satisfactory and the practicality of the 

predictive model is acceptable but more works are required in order to further improve 

the accuracy of the model. 
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البحث ملخص  

ABSTRACT IN ARABIC 

تقدم هذه الأطروحة دراسة سلوك ما بعد المعالجة للصفائح السميكه المركبة من 

-AIMS0S-27يببوكس،  المصععة وققا لمواففا  ييبربا  وو   الكربون والإ

(  والمعالجة باستخدام جهاز الأوتوكلاف. سلوك ما بعد المعالجة الذي يبتم دراسته 002

هعا هو اوفتال الصفائح المسطحة والإرتداد الخلف، للصفائح المعحعية. هذه الصفائح 

 الحقيق، لضلع رقرف طائرة ييبربا تماثل الخصائص الهعدسية الموجودة ق، الهيكل 

 .A350 ،الفجوة الباقية ق، الأعمال السابقة باستخدام وفس المادة ويجراء مماثل  ه )

الضبايبية المتواجدة ق، وموذج الععصرالمحدود التعبؤي للصفائح ذا  المدى السميك. 

ال حاولت هذه الدراسة حل هذه الفجوة أولا عن طريبق توسيع قاعدة بياوا  الاوفت

طبقة وما دون ذلك( يلى الصفائح السميكة  16والإرتداد الخلف، من الصفائح الرقيقة  

طبقة. ثم تم تكرار العموذج التعبؤي عدة مرا  عبر تغيير الضغط الأول،  28يلى حد 

داخل الطبقة الأولى للععافر  حتى تتطابق الاوفتال خلال المحاكاة مع التجربة. العتائج 

طبقة( والسميك  20لاوفتال والإرتداد الخلف، للعطاق الرقيق  أقل من ه، قاعدة بياوا  ل

طبقة(  ويضاقة يلى ذلك  أثبت وموذج الععصر المحدود قدرته على التعبؤ  20 أكثر من 

بسلوك ففائح الهيكل الحقيق، للطائرة. ثلاث قئا  تم تحديبدها من العيعة؛ مسطح أحادي 

متماثل. تمت دراسة تأثير أربعة معايبير؛ حجم  الاتجاه ومعحع، أحادي الاتجاه و مسطح

العيعة  الزاويبة  سمك الصفيحة  وتكويبن الرقائق. تشير وتائج التحليل يلى أن تأثير حجم 

العيعة على المسطح الأحادي ومعدل العسبة للعيعا  أحاديبة الاتجاه المعحعية لا يبكاد 

اه وكذلك عة للمعحع، أحادي الاتجيبذكر. يبمكن ييبجاد الإستجابة التربيعية لتأثير حجم العي

معدل العسبة للمسطح أحادي الاتجاه. تأثير سمك العيعة خط، لجميع أووا  العيعة. كاوت 

 ٪90وق، ذروتها أعلى من  ٪70دقة وموذج الععصر المحدود التعبؤي غالبا أعلى من 

حول المدى المتوسط لكل معيار. بشكل عام  كاوت وتائج التجربة مرضية وكذلك 

لتطبيق العمل، للعموذج التعبؤي كان مقبول  ولكن هعاك حاجة يلى مزيبد من العمل ا

 .لأجل زيبادة تحسين دقة العموذج
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CFRP Carbon fibre reinforced polymer 

CNC Computer Numerical Control 

CSV Comma-separated values 

CTRM Composites Technology Research Malaysia 

FE Finite element 

FEA Finite element analysis 

FEM Finite element method 

FEP Fluorinated ethylene propylene 

IBF Inboard flap 

IIUM International Islamic University Malaysia 
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MPA Multi-phase array 

MRO Maintenance, repair and overhaul 

MS Microsoft 

N/A Not applicable 

NDT Non-destructive test 

OBF Outboard flap 

XWB Extra wide body 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

This study represents a part of a long-term roadmap in establishing a comprehensive 

database and a predictive finite element model of warpage and springback phenomena 

of carbon fibre reinforced polymers (CFRP). The motivation behind this research 

stemmed from the need to solve one of the manufacturing defects known as warpage 

and springback. The consequence of warpage and springback on the manufactured parts 

is critical because unlike metals, this defect in composites is not repairable and the 

affected parts must be scrapped. Additionally, geometrical tolerance such as surface 

profile of aero-structures is usually quite tight and meeting this requirement can be 

challenging. In some cases, where surface profile discrepancy is minor, customers are 

willing to accept the affected parts but only through concessions which would only 

cause delays and incur cost to manufacturers. 

Warpage or springback defect is not necessarily structural on its own. However, 

affected panels would fail to be assembled in higher assembly level without the need to 

exert additional forces to bring mating surfaces together. This additional forces would 

induce unnecessary pre-load to the structures, reducing their load-carrying capability 

(L Liu, 2013). Worse still, assemblers may not be able to assemble the parts at all due 

to major misalignment. Some assemblers make use of shims to close whatever gaps 

(Krithika Manohar, 2018) that exist due to warpage or springback but this would lead 

to other issues. The use of shims introduces additional weight to the aircraft while the 

selection of fasteners would need to be tailored down to individual part and hole, 

increasing assembly time and cost significantly (Junhao Chang, 2019). Additionally, if 

the assembly surfaces are on the aerodynamic side, the surfaces mismatch would result 

in staggered profile and affect the aerodynamics (Wolf, 2021). 
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This study is a collaboration between a manufacturing company, CTRM Aero 

Composites Sdn. Bhd. (referred simply as CTRM AC), an industrial research institute, 

Aerospace Malaysia Innovation Centre (AMIC), and International Islamic University 

Malaysia (IIUM). CTRM AC mainly provided test specimens while AMIC managed 

the project from financial aspects in addition to providing the necessary measurement 

equipment. 

1.2 STATEMENT OF THE PROBLEM 

A good warpage and springback predictive model must be valid for and applicable to 

the actual aircraft structures such as the main rib of a wing flap in this case. The 

predictive model needs to be validated through experiments by comparing the result of 

the model with the actual measurement of fabricated specimens. This validation has 

been done by previous work (Mezeix, et al., 2015), (M N M Nasir L. M., 2016) in 

establishing springback database for thin laminates (4 to 16 plies). But the applicability 

of the model can be questioned if it is to be used to predict warpage and springback for 

structures of thicker dimension (20 to 28 plies) such as the main rib of flap since the 

validation did not cover such thicknesses. Nonlinearities which may exist in the real 

world may not have been accounted for in the existing model. 

Therefore, this study, which employed similar methodology as the thin 

specimens, would expand the scope of the validation by extending the warpage and 

springback database to include specimens of thicker dimensions. With the database for 

thick laminates, additional validation of the predictive model were carried out to further 

improve the accuracy of the model. In addition, thicker laminates exhibited relatively 

smaller amount of springback (Nikhare, 2020). This small magnitude produced even 

smaller variation among specimens with different parameters. This situation demanded 

measurement equipment of higher accuracy in order to detect the small variation. For 

this reason, 3D scanning was brought into this study. 
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1.3 PURPOSE OF THE STUDY 

The purpose of this study was to analyse the warpage and springback behaviour of 

laminates and to determine the parameters involved in the proposed predictive model 

in order to predict the warpage and springback behaviour of the laminates. 

1.4 RESEARCH OBJECTIVES 

There were two main objectives of this research work: 

1. To analyse the effects of different thicknesses and shapes to the warpage and 

springback behaviour of laminates using controlled experiments. 

2. To propose a predictive finite element model used to predict and estimate the 

warpage and springback of thick laminates with different construction. 

1.5 RESEARCH QUESTIONS 

When carrying out research works relating to the study of warpage and springback of 

thermoset composites, some questions were triggered in order to gain deeper 

understanding on the topic. These questions needed to be addressed through 

experiments and analysis. It is thus important to put forth these questions prior to 

determining the actions that need to be taken for data collection and analysis so that the 

results of the analysis did contain the information that was required to answer some, if 

not all, of these questions. There were six research questions that need to be answered: 

1. What are the causes of warpage and springback phenomenon? 

2. How can warpage and springback behaviour of laminates be described and 

quantified? 

3. What are the parameters affecting the extent of warpage and springback of 

laminates? 

4. What is the suitable model and method to predict warpage and springback 

behaviour of laminates? 




