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ABSTRACT

This thesis presents the study of the post-cure behaviour of thick carbon-epoxy
composite laminates manufactured to Airbus specification AIMS05-27-002 cured using
autoclave. The post-cure behaviour being studied is the warpage of flat laminates and
the springback of curved or angled laminates. These laminates resemble the geometrical
features found on the actual structure of the rib of the flap of Airbus A350. The gap left
from previous works using similar material and process is the uncertainty that exists
within the predictive finite element model for the thicker range of the laminates. This
study thus attempted to close this gap by first extending the warpage and springback
database from the thin laminates (16 layers and below) to thick laminates of up to 28
layers. Then the predictive model is iterated several times by changing the initial stress
within the first layer of the elements until the warpage in the simulation matches that of
the experiment respectively. The outcomes are a warpage and springback database
covering both thin (less than 20 layers) and thick (more than 20 layers) range of
thickness as well as a predictive finite element model that is able to predict the
behaviour of laminates of the actual aircraft structure. Three categories of specimen
were defined; flat unidirectional, curved unidirectional, and flat symmetrical. The effect
of four parameters were studied; specimen size, corner angle, laminate thickness, and
ply configuration. The results of the analysis indicate that the effect of specimen size
for flat unidirectional and aspect ratio for curved unidirectional specimens is negligible.
Quadratic response can be found for the effect of specimen size for curved
unidirectional and aspect ratio for flat unidirectional. The effect of specimen thickness
is linear for all specimen types. The accuracy of the predictive finite element model is
mostly above 70% and peaking above 90% around the middle range of each parameter.
Overall, the results of the experiment are satisfactory and the practicality of the
predictive model is acceptable but more works are required in order to further improve
the accuracy of the model.
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CHAPTER ONE

INTRODUCTION

11 BACKGROUND OF THE STUDY

This study represents a part of a long-term roadmap in establishing a comprehensive
database and a predictive finite element model of warpage and springback phenomena
of carbon fibre reinforced polymers (CFRP). The motivation behind this research
stemmed from the need to solve one of the manufacturing defects known as warpage
and springback. The consequence of warpage and springback on the manufactured parts
is critical because unlike metals, this defect in composites is not repairable and the
affected parts must be scrapped. Additionally, geometrical tolerance such as surface
profile of aero-structures is usually quite tight and meeting this requirement can be
challenging. In some cases, where surface profile discrepancy is minor, customers are
willing to accept the affected parts but only through concessions which would only

cause delays and incur cost to manufacturers.

Warpage or springback defect is not necessarily structural on its own. However,
affected panels would fail to be assembled in higher assembly level without the need to
exert additional forces to bring mating surfaces together. This additional forces would
induce unnecessary pre-load to the structures, reducing their load-carrying capability
(L Liu, 2013). Worse still, assemblers may not be able to assemble the parts at all due
to major misalignment. Some assemblers make use of shims to close whatever gaps
(Krithika Manohar, 2018) that exist due to warpage or springback but this would lead
to other issues. The use of shims introduces additional weight to the aircraft while the
selection of fasteners would need to be tailored down to individual part and hole,
increasing assembly time and cost significantly (Junhao Chang, 2019). Additionally, if
the assembly surfaces are on the aerodynamic side, the surfaces mismatch would result

in staggered profile and affect the aerodynamics (Wolf, 2021).



This study is a collaboration between a manufacturing company, CTRM Aero
Composites Sdn. Bhd. (referred simply as CTRM AC), an industrial research institute,
Aerospace Malaysia Innovation Centre (AMIC), and International Islamic University
Malaysia (1IlUM). CTRM AC mainly provided test specimens while AMIC managed
the project from financial aspects in addition to providing the necessary measurement

equipment.

1.2 STATEMENT OF THE PROBLEM

A good warpage and springback predictive model must be valid for and applicable to
the actual aircraft structures such as the main rib of a wing flap in this case. The
predictive model needs to be validated through experiments by comparing the result of
the model with the actual measurement of fabricated specimens. This validation has
been done by previous work (Mezeix, et al., 2015), (M N M Nasir L. M., 2016) in
establishing springback database for thin laminates (4 to 16 plies). But the applicability
of the model can be questioned if it is to be used to predict warpage and springback for
structures of thicker dimension (20 to 28 plies) such as the main rib of flap since the
validation did not cover such thicknesses. Nonlinearities which may exist in the real
world may not have been accounted for in the existing model.

Therefore, this study, which employed similar methodology as the thin
specimens, would expand the scope of the validation by extending the warpage and
springback database to include specimens of thicker dimensions. With the database for
thick laminates, additional validation of the predictive model were carried out to further
improve the accuracy of the model. In addition, thicker laminates exhibited relatively
smaller amount of springback (Nikhare, 2020). This small magnitude produced even
smaller variation among specimens with different parameters. This situation demanded
measurement equipment of higher accuracy in order to detect the small variation. For

this reason, 3D scanning was brought into this study.



1.3 PURPOSE OF THE STUDY

The purpose of this study was to analyse the warpage and springback behaviour of
laminates and to determine the parameters involved in the proposed predictive model

in order to predict the warpage and springback behaviour of the laminates.

1.4  RESEARCH OBJECTIVES

There were two main objectives of this research work:
1. To analyse the effects of different thicknesses and shapes to the warpage and
springback behaviour of laminates using controlled experiments.
2. To propose a predictive finite element model used to predict and estimate the

warpage and springback of thick laminates with different construction.

1.5 RESEARCH QUESTIONS

When carrying out research works relating to the study of warpage and springback of
thermoset composites, some questions were triggered in order to gain deeper
understanding on the topic. These questions needed to be addressed through
experiments and analysis. It is thus important to put forth these questions prior to
determining the actions that need to be taken for data collection and analysis so that the
results of the analysis did contain the information that was required to answer some, if
not all, of these questions. There were six research questions that need to be answered:
1. What are the causes of warpage and springback phenomenon?
2. How can warpage and springback behaviour of laminates be described and
quantified?
3. What are the parameters affecting the extent of warpage and springback of
laminates?
4. What is the suitable model and method to predict warpage and springback

behaviour of laminates?





