# ANALYSIS OF WARPAGE AND SPRINGBACK OF THICK UNIDIRECTIONAL CARBON-EPOXY LAMINATES CURED USING AUTOCLAVE

BY

# MUHAMMAD MUSHAB BIN ZAKARIA

A thesis submitted in fulfilment of the requirement for the Master of Science (Mechanical Engineering)

> Kulliyyah of Engineering International Islamic University Malaysia

> > SEPTEMBER 2022

#### ABSTRACT

This thesis presents the study of the post-cure behaviour of thick carbon-epoxy composite laminates manufactured to Airbus specification AIMS05-27-002 cured using autoclave. The post-cure behaviour being studied is the warpage of flat laminates and the springback of curved or angled laminates. These laminates resemble the geometrical features found on the actual structure of the rib of the flap of Airbus A350. The gap left from previous works using similar material and process is the uncertainty that exists within the predictive finite element model for the thicker range of the laminates. This study thus attempted to close this gap by first extending the warpage and springback database from the thin laminates (16 layers and below) to thick laminates of up to 28 layers. Then the predictive model is iterated several times by changing the initial stress within the first layer of the elements until the warpage in the simulation matches that of the experiment respectively. The outcomes are a warpage and springback database covering both thin (less than 20 layers) and thick (more than 20 layers) range of thickness as well as a predictive finite element model that is able to predict the behaviour of laminates of the actual aircraft structure. Three categories of specimen were defined; flat unidirectional, curved unidirectional, and flat symmetrical. The effect of four parameters were studied; specimen size, corner angle, laminate thickness, and ply configuration. The results of the analysis indicate that the effect of specimen size for flat unidirectional and aspect ratio for curved unidirectional specimens is negligible. Quadratic response can be found for the effect of specimen size for curved unidirectional and aspect ratio for flat unidirectional. The effect of specimen thickness is linear for all specimen types. The accuracy of the predictive finite element model is mostly above 70% and peaking above 90% around the middle range of each parameter. Overall, the results of the experiment are satisfactory and the practicality of the predictive model is acceptable but more works are required in order to further improve the accuracy of the model.

## ملخص البحث

تقدم هذه الأطروحة دراسة سلوك ما بعد المعالجة للصفائح السميكه المركبة من الكربون والإيبوكسي، المصنعة وفقا لمواصفات إيرباص نوع (-27-AIMSOS 002)، والمعالجة باستخدام جهاز الأوتوكلاف. سلوك ما بعد المعالجة الذي يتم در استه هنا هو انفتال الصفائح المسطحة والإرتداد الخلفي للصفائح المنحنية. هذه الصفائح تماثل الخصائص الهندسية الموجودة في الهيكل الحقيقي لضلع رفرف طائرة إيرباص (A350). الفجوة الباقية في الأعمال السابقة باستخدام نفس المادة وإجراء مماثل، هي الضبايية المتواجدة في نموذج العنصر المحدود التنبؤي للصفائح ذات المدى السميك. حاولت هذه الدراسة حل هذه الفجوة أولا عن طريق توسيع قاعدة بيانات الانفتال والإرتداد الخلفي من الصفائح الرقيقة (16 طبقة وما دون ذلك) إلى الصفائح السميكة إلى حد 28 طبقة. ثم تم تكرار النموذج التنبؤي عدة مرات عبر تغيير الضغط الأولى داخل الطبقة الأولى للعناصر، حتى تتطابق الانفتال خلال المحاكاة مع التجربة. النتائج هى قاعدة بيانات للانفتال والإرتداد الخلفي للنطاق الرقيق (أقل من 20 طبقة) والسميك (أكثر من 20 طبقة)، وإضافة إلى ذلك، أثبت نموذج العنصر المحدود قدرته على التنبؤ بسلوك صفائح الهيكل الحقيقي للطائرة. ثلاث فئات تم تحديدها من العينة؛ مسطح أحادي الاتجاه ومنحنى أحادي الاتجاه و مسطح متماثل. تمت در اسة تأثير أربعة معايير ؛ حجم العينة، الزاوية، سمك الصفيحة، وتكوين الرقائق. تشير نتائج التحليل إلى أن تأثير حجم العينة على المسطح الأحادي ومعدل النسبة للعينات أحادية الاتجاه المنحنية لا يكاد يذكر. يمكن إيجاد الإستجابة التربيعية لتأثير حجم العينة للمنحنى أحادي الاتجاه وكذلك معدل النسبة للمسطح أحادي الاتجاه. تأثير سمك العينة خطى لجميع أنواع العينة. كانت دقة نموذج العنصر المحدود التنبؤي غالبا أعلى من 70٪ وفي ذروتها أعلى من 90٪ حول المدى المتوسط لكل معيار. بشكل عام، كانت نتائج التجربة مرضية وكذلك التطبيق العملي للنموذج التنبؤي كان مقبول، ولكن هناك حاجة إلى مزيد من العمل لأجل زيادة تحسين دقة النموذج.

#### **APPROVAL PAGE**

I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Mechanical Engineering).

Mohd Sultan Ibrahim Shaik Dawood Supervisor

Jaffar Syed Mohamed Ali Co-Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Mechanical Engineering).

Hanan Mokhtar Examiner

.....

Jamaluddin Mahmud External Examiner

This thesis was submitted to the Department of Mechanical Engineering and is accepted as a fulfilment of the requirement for the degree of Master of Science (Mechanical Engineering).

> Fadly Jashi Darsivan Head, Department of Mechanical Engineering

This thesis was submitted to the Kulliyyah of Engineering and is accepted as a fulfilment of the requirement for the degree of Master of Science (Mechanical Engineering).

Sany Izan Ihsan Dean, Kulliyyah of Engineering

### DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Muhammad Mushab Bin Zakaria

Signature......Date ......

### INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

### DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

### ANALYSIS OF WARPAGE AND SPRINGBACK OF THICK UNIDIRECTIONAL CARBON-EPOXY LAMINATES CURED USING AUTOCLAVE

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2022 Muhammad Mushab Bin Zakaria and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below.

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Muhammad Mushab Bin Zakaria

.....

Date

Signature

### ACKNOWLEDGEMENTS

Firstly, it is my utmost pleasure to dedicate this work to my dear parents and family, who granted me the gift of their unwavering belief in my ability to accomplish this goal. Thank you for your support and patience.

I wish to express my appreciation and thanks to those who provided their time, effort and support for this project especially to the staffs of CTRM AC and AMIC who were involved directly or indirectly.

Finally, a special thanks to Prof. Yulfian Aminanda and Dr. Mohd Sultan Ibrahim Shaik Dawood for their continuous support, encouragement and leadership, and for that, I will be forever grateful.



This thesis is dedicated to my parents for laying the foundation of what I turned out to

be in life.

# TABLE OF CONTENTS

| Abstract        |                                                        | ii    |
|-----------------|--------------------------------------------------------|-------|
| Abstract in Ar  | abic                                                   | iii   |
| Approval Page   | е                                                      | iv    |
| Declaration     |                                                        | v     |
| Copyright       |                                                        | vi    |
| Acknowledge     | ments                                                  | vii   |
| Dedication      |                                                        | viii  |
| Table of Conte  | ents                                                   | ix    |
| List of Tables  |                                                        | xii   |
| List of Figures | 5                                                      | xiii  |
| List of Symbo   | ls                                                     | xviii |
| List of Abbrev  | viations                                               | xxi   |
|                 |                                                        |       |
| CHAPTER C       | ONE: INTRODUCTION                                      | 1     |
| 1.1             | Background of the Study                                | 1     |
| 1.2             | Statement of the Problem                               | 2     |
| 1.3             | Purpose of the Study                                   | 3     |
| 1.4             | Research Objectives                                    | 3     |
| 1.5             | Research Questions                                     | 3     |
| 1.6             | Theoretical Framework                                  | 4     |
| 1.7             | Research Hypotheses                                    | 5     |
| 1.8             | Research Methodology                                   | 5     |
| 1.9             | Significance of the Study                              | 6     |
| 1.10            | Limitations of the Study                               | 7     |
| 1.11            | Definitions of Terms                                   | 9     |
| 1.12            | Thesis Organisation                                    |       |
|                 |                                                        |       |
| CHAPTER T       | WO: LITERATURE REVIEW                                  |       |
| 2.1             | Introduction                                           |       |
| 2.2             | Thermoset versus Thermoplastic Composites              |       |
| 2.3             | Definition of Warpage and Springback                   |       |
| 2.4             | Quantification of Warpage and Springback               |       |
| 2.5             | Real World Structure - Ribs of Flaps of Airbus A350    |       |
| 2.6             | Aero-Composites Manufacturing Process Overview         |       |
| 2.7             | Autoclave Curing                                       |       |
| 2.8             | Cure Cycle                                             |       |
| 2.9             | Factor of Warpage and Springback Phenomena             |       |
|                 | 2.9.1 Tool-Part Thermal Expansion Mismatch             | 28    |
|                 | 2.9.2 Cure Shrinkage                                   | 32    |
| _               | 2.9.3 Moisture Absorption                              | 32    |
| 2.10            | Theories of Curvatures                                 |       |
| 2.11            | 3D Scanning                                            |       |
| 2.12            | Finite Element Analysis                                |       |
|                 | 2.12.1 Selection of Finite Element Software            | 40    |
|                 | 2.12.2 Model Idealisation and Geometric Representation | 41    |

|           | 2.12.3 Material Properties                                  | 44                   |
|-----------|-------------------------------------------------------------|----------------------|
| 2.13      | Summary                                                     | 45                   |
|           | ΓΠΡΕΕ, ΡΕΚΕΛΡΟΠ ΜΕΤΠΟΡΟΙ ΟΟΥ                                | 16                   |
| CHAPIEK   | Introduction                                                | <b> 40</b>           |
| 3.1       | Design of Experiment                                        | 40<br>18             |
| 3.2       | Specimen Experiment                                         | <del>4</del> 0<br>51 |
| 5.5       | 2 3 1 Kitting                                               | J1<br>51             |
|           | 3.3.2 Lavan                                                 | 52                   |
|           | 3.3.2 Layup                                                 | 54                   |
| 3 /       | Measurement Procedure                                       | 55                   |
| 5.7       | 3.4.1 Flat Specimen                                         | <i>55</i><br>58      |
|           | 3.4.2 Curved Specimen                                       | 50<br>60             |
| 35        | Data Analysis Procedure                                     | 61                   |
| 5.5       | 3.5.1 Derivation of Change of Curvature for Flat Specimen   | 01<br>64             |
|           | 3.5.2 Derivation of Change of Curvature for Curved Specimen | 67                   |
|           | 3.5.2 Determination of Principal Curvature Direction        | 74                   |
|           | 3.5.4 Mode of Warpage                                       | 76                   |
| 3.6       | Regression Analysis                                         | 78                   |
| 3.7       | Finite Element Method                                       |                      |
|           | 3.7.1 Geometries and Mesh                                   | 83                   |
|           | 3.7.2 Load and Boundary Condition                           | 85                   |
|           | 3.7.3 Material and Element Properties                       | 90                   |
|           | 3.7.4 Analysis Setup                                        | 91                   |
| 3.8       | Validation of Finite Element Simulation                     | 91                   |
| 3.9       | Summary                                                     | 93                   |
| CHAPTER   | FOUR PESULTS AND DISCUSSION                                 | 05                   |
|           | Introduction                                                | 95<br>95             |
| 4.1       | Warnage and Springhack Analysis                             | 95                   |
| 7.2       | 4.2.1 Flat Unidirectional                                   | 96                   |
|           | 4.2.2 Curved Unidirectional                                 | 103                  |
|           | 4.2.3 Flat Symmetrical                                      | 111                  |
| 43        | Finite Element Simulation                                   | 116                  |
|           | 4.3.1 Results of Displacement                               | 117                  |
|           | 4.3.2 Results of Stress Distribution                        | 120                  |
|           | 4.3.3 Factor of Thermal Expansion Mismatch                  | 125                  |
|           | 4.3.4 Factor of Cure Shrinkage                              | 130                  |
| 4.4       | Summary                                                     | 134                  |
|           | •                                                           |                      |
| CHAPTER I | FIVE: CONCLUSION AND RECOMMENDATION                         | 136                  |
| REFERENC  | 'ES                                                         | 139                  |

| LIST OF PUBLICATIONS                      |  |
|-------------------------------------------|--|
| APPENDIX A: PART DRAWINGS                 |  |
| APPENDIX B: TOOL DRAWINGS                 |  |
| APPENDIX C: RAW DATA FOR FLAT SPECIMENS   |  |
| APPENDIX D: RAW DATA FOR CURVED SPECIMENS |  |
| APPENDIX E: FINITE ELEMENT BULK DATA      |  |
|                                           |  |
| INDEX                                     |  |



### LIST OF TABLES

| Table 2.1 | Ply stacking table for Main Rib 1 of Outboard Flap (Airbus Op     | perations,  |
|-----------|-------------------------------------------------------------------|-------------|
|           | 2014)                                                             | 20          |
| Table 2.2 | Summary of composites manufacturing processes                     | 21          |
| Table 2.3 | Summary of effect of intrinsic and extrinsic parameters on spring | ingback 27  |
| Table 2.4 | Basic specification of the portable measuring arm                 | 40          |
| Table 2.5 | Basic specification of the 3D laser scanner                       | 40          |
| Table 2.6 | Mechanical and physical properties of the carbon fibre epoxy l    | aminate 45  |
| Table 3.1 | Summary of the 51 parameter configurations of flat unidirection   | onal,       |
|           | curved unidirectional and flat symmetrical specimens              | 49          |
| Table 3.2 | Parameters to be kept constant                                    | 51          |
| Table 3.3 | Layup stacking sequence                                           | 54          |
| Table 4.1 | Database table of nine extraction points for each specimen        | 97          |
| Table 4.2 | Warpage result summary of flat unidirectional specimens           | 98          |
| Table 4.3 | Springback result summary of curved unidirectional speciment      | s 105       |
| Table 4.4 | Warpage result summary of flat symmetrical specimens              | 113         |
| Table 4.5 | Interquartile calculation for finding outliers                    | 131         |
| Table 4.6 | Summary of the effect of each parameter to the warpage and sp     | pringback   |
|           |                                                                   | 134         |
| Table 4.7 | Summary of the effect of each parameter to the residual stress    | build-up in |
|           | flat unidirectional specimens                                     | 134         |
| Table 4.8 | Summary of the effect of each parameter to the FE model accu      | racy of     |
|           | curved unidirectional specimens                                   | 135         |

## LIST OF FIGURES

| Figure 2.1  | In-plane shear of a flat specimen is assumed to have no warpage         | 13 |
|-------------|-------------------------------------------------------------------------|----|
| Figure 2.2  | Twisting of a curved specimen without a change of corner angle is       |    |
|             | assumed to have no springback                                           | 14 |
| Figure 2.3  | Elongation of two unequal length bars of the same material under the    |    |
|             | same tensile force                                                      | 15 |
| Figure 2.4  | Warpage of a flat specimen as quantified by the maximum deflection      | 16 |
| Figure 2.5  | Warpage of two specimens of different sizes, showing similar shape o    | f  |
|             | warpage but different maximum deflection                                | 16 |
| Figure 2.6  | Warpage of two specimens of different sizes, showing same maximum       | n  |
|             | deflection but different shape of warpage                               | 17 |
| Figure 2.7  | Location of flaps on Airbus A350 (Kaminski-Morrow, 2015)                | 18 |
| Figure 2.8  | Structural breakdown of Airbus A350, showing the position of main r     | ib |
|             |                                                                         | 19 |
| Figure 2.9  | Isometric view of Main Rib 1 of Outboard Flap (Airbus Operations,       |    |
|             | 2014)                                                                   | 19 |
| Figure 2.10 | Overall manufacturing process of aerospace composites                   | 21 |
| Figure 2.11 | Schematic diagram of a typical industrial autoclave (Sang Yoon Park,    |    |
|             | 2017)                                                                   | 23 |
| Figure 2.12 | Typical double-dwell curing profile of a composite part                 | 25 |
| Figure 2.13 | Through-thickness cross-section showing tool-part interaction after     |    |
|             | thermal expansion during curing process                                 | 28 |
| Figure 2.14 | Through-thickness in-plane stress gradient of the laminate after therma | al |
|             | expansion during curing process                                         | 29 |
| Figure 2.15 | Effect of curvature on linear thermal expansion                         | 31 |
| Figure 2.16 | Curvature of a curve from three points in Euclidean space               | 33 |
| Figure 2.17 | Different modes of surface distortion                                   | 34 |
| Figure 2.18 | A two-dimensional representation of the measuring arm with the laser    |    |
|             | scanner                                                                 | 35 |
| Figure 2.19 | Measurement principle of the 3D laser scanner (Ebrahim, 2013)           | 36 |
| Figure 2.20 | Components of surface reflectance                                       | 37 |
|             |                                                                         |    |

| Figure 2.21 | Scanning at different incident angles                                   | 38   |
|-------------|-------------------------------------------------------------------------|------|
| Figure 2.22 | Hexagon portable measuring arm (left) (Hexagon AB, 2017) and its 3      | D    |
|             | laser scanning peripheral (right) (Hexagon AB, 2017)                    | 39   |
| Figure 2.23 | Three-dimensional analysis using three-dimensional hexagonal element    | nts  |
|             |                                                                         | 41   |
| Figure 2.24 | Three-dimensional analysis using two-dimensional quad elements          | 42   |
| Figure 2.25 | Two-dimensional planar analysis using 2D quad elements                  | 43   |
| Figure 2.26 | Two-dimensional planar analysis using one-dimensional line elements     | s 43 |
| Figure 3.1  | Springback research framework (Aminanda, 2017)                          | 47   |
| Figure 3.2  | Overall workflow for the semi-empirical research of warpage and         |      |
|             | springback study                                                        | 47   |
| Figure 3.3  | An example of ply map of a square specimen showing nesting of ply       |      |
|             | pieces                                                                  | 52   |
| Figure 3.4  | Flat and curved mould tools used for the layup of flat and curved       |      |
|             | specimens                                                               | 53   |
| Figure 3.5  | Example of scanned points cloud with a close-up view, showing million   | ons  |
|             | of points                                                               | 56   |
| Figure 3.6  | General workflow of measurement process                                 | 56   |
| Figure 3.7  | 3D laser scanning process in action                                     | 57   |
| Figure 3.8  | Extraction pattern for flat specimens                                   | 58   |
| Figure 3.9  | Alignment process of flat specimen (right) against its CAD model (lef   | t)   |
|             |                                                                         | 59   |
| Figure 3.10 | Post-processing of flat specimens, with colour plot representing thickn | iess |
|             | (left) and nine measurement points table (right)                        | 59   |
| Figure 3.11 | Alignment process of curved specimen (left) against its CAD model       |      |
|             | (right)                                                                 | 60   |
| Figure 3.12 | Post-processing of curved specimens, with colour plot represents        |      |
|             | thickness (left) and angle measurement table (right)                    | 61   |
| Figure 3.13 | Change of curvature for flat specimens                                  | 62   |
| Figure 3.14 | Change of curvature for curved specimens                                | 63   |
| Figure 3.15 | Curvature change of flat specimens along both directions                | 64   |
| Figure 3.16 | Determination of curvature change for flat specimens from three         |      |
|             | extraction points in Euclidean space                                    | 65   |
| Figure 3.17 | Nominal geometry of curved specimens                                    | 67   |

| Figure 3.18 | Determination of curvature change for curved specimens                     | 68   |
|-------------|----------------------------------------------------------------------------|------|
| Figure 3.19 | Derivation of curvature change for curved specimen based on change of      |      |
|             | corner angle                                                               | 70   |
| Figure 3.20 | Compensation of curvature change due to flat flange warpage                | 72   |
| Figure 3.21 | Determination of direction of maximum principal curvature                  | 74   |
| Figure 3.22 | Derivation of extraction points for diagonal directions                    | 75   |
| Figure 3.23 | Mode of warpage (negative Gaussian shown)                                  | 77   |
| Figure 3.24 | Fringe lines on result plots of finite element analysis, showing different | nt   |
|             | modes of warpage                                                           | 78   |
| Figure 3.25 | Inputs and options for performing regression analysis using Data           |      |
|             | Analysis Toolpak in MS Excel 2013                                          | 79   |
| Figure 3.26 | Detailed result of regression analysis using Data Analysis Toolpak         | 80   |
| Figure 3.27 | Trendline format pane in MS Office showing selection for linear curv       | e    |
|             | fitting with options to display the fitting equation and R-squared value   | e 81 |
| Figure 3.28 | Regression equation generated from chart tool in MS Office                 | 82   |
| Figure 3.29 | Meshing of a flat specimen in finite element model                         | 84   |
| Figure 3.30 | Meshing of curved specimens in finite element model                        | 84   |
| Figure 3.31 | Constraints applied on flat specimen model                                 | 85   |
| Figure 3.32 | Constraints applied on curved specimen model                               | 86   |
| Figure 3.33 | Normalised initial stress (F) versus normalised distance from neutral      |      |
|             | plane (V1) for flat unidirectional specimens                               | 87   |
| Figure 3.34 | Normalised initial stress (F) versus normalised distance from neutral      |      |
|             | plane (V1) for curved unidirectional specimens                             | 88   |
| Figure 3.35 | Initial condition applied on curved specimen models                        | 89   |
| Figure 3.36 | Orthotropic material properties input for single layer of the unidirection | onal |
|             | carbon epoxy laminar                                                       | 90   |
| Figure 3.37 | Layered composite material properties input for thick laminates            | 91   |
| Figure 3.38 | Superimposition of warpage from experiment with that of finite eleme       | ent  |
|             | analysis                                                                   | 92   |
| Figure 4.1  | Snapshot from CAM software, showing warpage colour plot of a flat          |      |
|             | unidirectional specimen                                                    | 96   |
| Figure 4.2  | Surface chart of vertical displacement of a flat unidirectional specime    | n,   |
|             | showing nearly cylindrical mode of warpage                                 | 99   |

| Figure 4.3  | Surface chart of vertical displacement of a flat unidirectional specime     | en,  |
|-------------|-----------------------------------------------------------------------------|------|
|             | showing highly spherical mode of warpage                                    | 100  |
| Figure 4.4  | Graph of flat unidirectional specimen warpage versus specimen size          | 101  |
| Figure 4.5  | Graph of flat unidirectional specimen warpage versus specimen thick         | ness |
|             |                                                                             | 102  |
| Figure 4.6  | Graph of flat unidirectional specimen warpage versus specimen aspec         | ct   |
|             | ratio                                                                       | 103  |
| Figure 4.7  | Snapshot showing springback colour plot and displacement vectors o          | f a  |
|             | 90° curved unidirectional specimen                                          | 104  |
| Figure 4.8  | Graph of curved specimen springback versus specimen size                    | 106  |
| Figure 4.9  | Graph of curved specimen springback versus specimen aspect ratio            | 107  |
| Figure 4.10 | Graph of curved specimen springback versus specimen corner angle            | 108  |
| Figure 4.11 | Evolution of a bent plate, from fully bent on the left $(0^\circ)$ to fully |      |
|             | unfolded (180°) on the right                                                | 109  |
| Figure 4.12 | Graph of curved specimen springback versus specimen corner angle            | with |
|             | flat specimen data point included                                           | 110  |
| Figure 4.13 | Graph of curved specimen springback versus specimen thickness               | 111  |
| Figure 4.14 | Snapshot showing warpage colour plot of a flat symmetrical specime          | n    |
|             | with ply stacking of [0/90]s                                                | 112  |
| Figure 4.15 | Surface chart of vertical displacement of one of the flat specimens,        |      |
|             | showing hyperbolic mode of warpage                                          | 114  |
| Figure 4.16 | Graph of flat symmetrical specimen warpage versus specimen size             | 115  |
| Figure 4.17 | Graph of flat symmetrical specimen warpage versus specimen aspect           |      |
|             | ratio                                                                       | 116  |
| Figure 4.18 | Displacement result plot of a flat unidirectional specimen showing a        |      |
|             | cylindrical mode of warpage                                                 | 118  |
| Figure 4.19 | Displacement result plot of a flat unidirectional specimen showing          |      |
|             | spherical mode of warpage                                                   | 119  |
| Figure 4.20 | Displacement result plot of a flat unidirectional specimen, showing a       |      |
|             | mixed-mode of warpage                                                       | 119  |
| Figure 4.21 | Displacement result plot of a curved unidirectional specimen showing        | g a  |
|             | spring-in deformation                                                       | 120  |
| Figure 4.22 | Longitudinal stress result plot of the bottom layer of a flat unidirection  | nal  |
|             | specimen                                                                    | 121  |

| Figure 4.23 | Graph of through-thickness longitudinal stress gradient of a flat         |      |
|-------------|---------------------------------------------------------------------------|------|
|             | unidirectional specimen                                                   | 122  |
| Figure 4.24 | Lateral stress result plot of the bottom layer of a flat unidirectional   |      |
|             | specimen                                                                  | 123  |
| Figure 4.25 | Longitudinal stress result plot of the bottom layer of a curved           |      |
|             | unidirectional specimen                                                   | 123  |
| Figure 4.26 | Graph of through-thickness longitudinal stress gradient in the corner     |      |
|             | region                                                                    | 124  |
| Figure 4.27 | Lateral stress result plot of the bottom layer of a curved unidirectional | ıl   |
|             | specimen                                                                  | 125  |
| Figure 4.28 | Graph of residual stress build-up due to thermal expansion mismatch       |      |
|             | versus specimen thickness                                                 | 126  |
| Figure 4.29 | Laminate predicted warpage with linear regression                         | 126  |
| Figure 4.30 | Graph of residual stress build-up due to thermal expansion mismatch       |      |
|             | versus specimen size                                                      | 127  |
| Figure 4.31 | Graph of FE model accuracy versus specimen size                           | 128  |
| Figure 4.32 | Graph of FE model accuracy versus specimen thickness                      | 129  |
| Figure 4.33 | Graph of FE model accuracy versus specimen corner angle                   | 130  |
| Figure 4.34 | Graph of residual stress build-up due to cure shrinkage near the part-    | tool |
|             | interfacing layer versus specimen thickness                               | 131  |
| Figure 4.35 | Graph of residual stress build-up due to cure shrinkage near the part-    | tool |
|             | interfacing layer versus specimen thickness with outlying data remov      | ved  |
|             |                                                                           | 132  |
| Figure 4.36 | Graph of residual stress build-up cure shrinkage near the part-tool       |      |
|             | interfacing layer versus laminate size                                    | 133  |

## LIST OF SYMBOLS

| А                 | Area (mm <sup>2</sup> )                                       |
|-------------------|---------------------------------------------------------------|
| AR                | Aspect ratio                                                  |
| Е                 | Modulus of elasticity (GPa)                                   |
| E <sub>11</sub>   | Modulus of elasticity along fibre (GPa)                       |
| E <sub>22</sub>   | Modulus of elasticity perpendicular to fibre (GPa)            |
| E <sub>33</sub>   | Modulus of elasticity normal to tape (GPa)                    |
| FAW               | Fibre areal weight $(g/m^2)$                                  |
| F <sub>cu1</sub>  | Compressive ultimate strength along fibre (MPa)               |
| F <sub>cu2</sub>  | Compressive ultimate strength perpendicular to fibre (MPa)    |
| F <sub>su12</sub> | Shear ultimate strength (MPa)                                 |
| F <sub>tu1</sub>  | Tensile ultimate strength along fibre (MPa)                   |
| F <sub>tu2</sub>  | Tensile ultimate strength perpendicular to fibre (MPa)        |
| G <sub>12</sub>   | Modulus of rigidity in-plane (GPa)                            |
| G13               | Modulus of rigidity out-of-plane along fibre (GPa)            |
| G <sub>23</sub>   | Modulus of rigidity out-of-plane perpendicular to fibre (GPa) |
| $L_1$             | Length of first segment of measuring arm (mm)                 |
| L <sub>12</sub>   | Length of side of triangle between point 1 and point 2 (mm)   |
| L <sub>13</sub>   | Length of side of triangle between point 1 and point 3 (mm)   |
| $L_2$             | Length of second segment of measuring arm (mm)                |
| L <sub>23</sub>   | Length of side of triangle between point 2 and point 3 (mm)   |
| L <sub>3</sub>    | Distance measurement of laser scanner (mm)                    |
| L <sub>3</sub> ,  | Position of reflected spot along optical sensor (mm)          |
| L <sub>A</sub>    | Length of Bar A (m)                                           |
| L <sub>B</sub>    | Length of Bar B (m)                                           |
| Lflange           | Straight length of flange (mm)                                |
| P'i               | Deflection point coordinate (mm)                              |
| PAW               | Prepreg areal weight (g/m <sup>2</sup> )                      |
| $\mathbf{P}_{i}$  | Point coordinate (mm)                                         |
| R                 | Radius of curvature before thermal expansion (mm)             |
| R'                | Radius of curvature after thermal expansion (mm)              |

| R <sub>act</sub>               | Actual radius of curvature of corner region (mm)                  |
|--------------------------------|-------------------------------------------------------------------|
| R <sub>corner</sub>            | Radius of curvature of corner region (mm)                         |
| R <sub>flange</sub>            | Radius of curvature of flange (mm)                                |
| $R_{\text{nom}}$               | Nominal radius of curvature of corner region (mm)                 |
| S                              | Arc length of curvature before thermal expansion (mm)             |
| S'                             | Arc length of curvature after thermal expansion (mm)              |
| $\mathbf{S}_{\mathrm{flange}}$ | Arc length of flange (mm)                                         |
| t                              | Cured part thickness per laminar (mm)                             |
| $V_{\mathrm{f}}$               | Volume fraction of carbon fibre                                   |
| $\mathbf{V}_{\mathrm{m}}$      | Volume fraction of epoxy matrix                                   |
| <b>x'</b> <sub>1</sub>         | x-coordinate of point 1 of final contour (mm)                     |
| <b>X'</b> 2                    | x-coordinate of point 2 of final contour (mm)                     |
| x'3                            | x-coordinate of point 3 of final contour (mm)                     |
| у                              | Layer position from tool surface                                  |
| <b>Z'</b> 1                    | z-coordinate of point 1 of final contour (mm)                     |
| <b>Z'</b> 2                    | z-coordinate of point 2 of final contour (mm)                     |
| Z'3                            | z-coordinate of point 3 of final contour (mm)                     |
| $\alpha_{lam}$                 | Coefficient of thermal expansion of laminate (°C <sup>-1</sup> )  |
| $\alpha_{tool}$                | Coefficient of thermal expansion of tool (°C <sup>-1</sup> )      |
| δ                              | Deflection (mm)                                                   |
| $\delta_A$                     | Deflection of specimen A (mm)                                     |
| $\delta_{B}$                   | Deflection of specimen B (mm)                                     |
| $\Delta T$                     | Temperature rise from room temperature to curing temperature (°C) |
| $\delta_Z$                     | Change of distance of specimen relative to laser scanner (mm)     |
| $\delta_{Z'}$                  | Change in position of reflected spot along optical sensor (mm)    |
| $\Delta \theta$                | Change of angle (°)                                               |
| Δκ                             | Change of curvature (mm <sup>-1</sup> )                           |
| Δκ                             | Warpage of specimen (mm <sup>-1</sup> )                           |
| $\epsilon \delta_A$            | Elongation or deflection of Bar A (mm)                            |
| ε <sub>B</sub>                 | Elongation of Bar B (mm)                                          |
| ε <sub>T</sub>                 | Thermal strain mismatch between tool and part                     |
| θ                              | Corner angle (°)                                                  |
| $\theta_1$                     | Angle of first segment of measuring arm (°)                       |
| $\theta_2$                     | Angle of second segment of measuring arm (°)                      |

| $\theta_{act}$         | Final corner angle                                                    |
|------------------------|-----------------------------------------------------------------------|
| $\theta_{act}$         | Actual corner angle (°)                                               |
| $\theta_i$             | Incident angle (°)                                                    |
| $\theta_{mea}$         | Measured corner angle (°)                                             |
| $\theta_{nom}$         | Initial corner aAngle (°)                                             |
| $\theta_{nom}$         | Nominal corner angle (°)                                              |
| $\theta_r$             | Reflected angle (°)                                                   |
| κ                      | Line or surface curvature (mm <sup>-1</sup> )                         |
| $\kappa_{act}$         | Curvature of final or actual shape of specimen (mm <sup>-1</sup> )    |
| $\kappa_{flat}$        | Warpage of flat specimen (mm <sup>-1</sup> )                          |
| $\kappa_{guass}$       | Gaussian curvature (mm <sup>-1</sup> )                                |
| $\kappa_{max}$         | Maximum principal curvature (mm <sup>-1</sup> )                       |
| $\kappa_{min}$         | Minimum principal curvature (mm <sup>-1</sup> )                       |
| $\kappa_{nom}$         | Curvature of initial or nominal shape of specimen (mm <sup>-1</sup> ) |
| $v_{12}$               | Poisson's ratio in-plane                                              |
| $v_{13}$               | Poisson's ratio out-of-plane along fibre                              |
| <b>V</b> 23            | Poisson's ratio out-of-plane perpendicular to fibre                   |
| σ                      | Normal stress (MPa)                                                   |
| $\sigma_{\text{peak}}$ | Peak stress (MPa)                                                     |
|                        |                                                                       |

## LIST OF ABBREVIATIONS

| 1D   | One dimensional                                 |
|------|-------------------------------------------------|
| 2D   | Two dimensional                                 |
| 3D   | Three dimensional                               |
| AC   | Aero Composites                                 |
| AFP  | Automated fibre placement                       |
| AMIC | Aerospace Malaysia Innovation Centre            |
| ATL  | Automated tape layup                            |
| BMI  | Bismaleimide                                    |
| BRDF | Bidirectional reflectance distribution function |
| CAD  | Computer-aided design                           |
| CAM  | Computer-aided manufacturing                    |
| CFRP | Carbon fibre reinforced polymer                 |
| CNC  | Computer Numerical Control                      |
| CSV  | Comma-separated values                          |
| CTRM | Composites Technology Research Malaysia         |
| FE   | Finite element                                  |
| FEA  | Finite element analysis                         |
| FEM  | Finite element method                           |
| FEP  | Fluorinated ethylene propylene                  |
| IBF  | Inboard flap                                    |
| IIUM | International Islamic University Malaysia       |
| IQR  | Interquartile range                             |
| MPA  | Multi-phase array                               |
| MRO  | Maintenance, repair and overhaul                |
| MS   | Microsoft                                       |
| N/A  | Not applicable                                  |
| NDT  | Non-destructive test                            |
| OBF  | Outboard flap                                   |
| XWB  | Extra wide body                                 |

#### **CHAPTER ONE**

#### **INTRODUCTION**

#### **1.1 BACKGROUND OF THE STUDY**

This study represents a part of a long-term roadmap in establishing a comprehensive database and a predictive finite element model of warpage and springback phenomena of carbon fibre reinforced polymers (CFRP). The motivation behind this research stemmed from the need to solve one of the manufacturing defects known as warpage and springback. The consequence of warpage and springback on the manufactured parts is critical because unlike metals, this defect in composites is not repairable and the affected parts must be scrapped. Additionally, geometrical tolerance such as surface profile of aero-structures is usually quite tight and meeting this requirement can be challenging. In some cases, where surface profile discrepancy is minor, customers are willing to accept the affected parts but only through concessions which would only cause delays and incur cost to manufacturers.

Warpage or springback defect is not necessarily structural on its own. However, affected panels would fail to be assembled in higher assembly level without the need to exert additional forces to bring mating surfaces together. This additional forces would induce unnecessary pre-load to the structures, reducing their load-carrying capability (L Liu, 2013). Worse still, assemblers may not be able to assemble the parts at all due to major misalignment. Some assemblers make use of shims to close whatever gaps (Krithika Manohar, 2018) that exist due to warpage or springback but this would lead to other issues. The use of shims introduces additional weight to the aircraft while the selection of fasteners would need to be tailored down to individual part and hole, increasing assembly time and cost significantly (Junhao Chang, 2019). Additionally, if the assembly surfaces are on the aerodynamic side, the surfaces mismatch would result in staggered profile and affect the aerodynamics (Wolf, 2021).

This study is a collaboration between a manufacturing company, CTRM Aero Composites Sdn. Bhd. (referred simply as CTRM AC), an industrial research institute, Aerospace Malaysia Innovation Centre (AMIC), and International Islamic University Malaysia (IIUM). CTRM AC mainly provided test specimens while AMIC managed the project from financial aspects in addition to providing the necessary measurement equipment.

#### **1.2 STATEMENT OF THE PROBLEM**

A good warpage and springback predictive model must be valid for and applicable to the actual aircraft structures such as the main rib of a wing flap in this case. The predictive model needs to be validated through experiments by comparing the result of the model with the actual measurement of fabricated specimens. This validation has been done by previous work (Mezeix, et al., 2015), (M N M Nasir L. M., 2016) in establishing springback database for thin laminates (4 to 16 plies). But the applicability of the model can be questioned if it is to be used to predict warpage and springback for structures of thicker dimension (20 to 28 plies) such as the main rib of flap since the validation did not cover such thicknesses. Nonlinearities which may exist in the real world may not have been accounted for in the existing model.

Therefore, this study, which employed similar methodology as the thin specimens, would expand the scope of the validation by extending the warpage and springback database to include specimens of thicker dimensions. With the database for thick laminates, additional validation of the predictive model were carried out to further improve the accuracy of the model. In addition, thicker laminates exhibited relatively smaller amount of springback (Nikhare, 2020). This small magnitude produced even smaller variation among specimens with different parameters. This situation demanded measurement equipment of higher accuracy in order to detect the small variation. For this reason, 3D scanning was brought into this study.

#### **1.3 PURPOSE OF THE STUDY**

The purpose of this study was to analyse the warpage and springback behaviour of laminates and to determine the parameters involved in the proposed predictive model in order to predict the warpage and springback behaviour of the laminates.

#### **1.4 RESEARCH OBJECTIVES**

There were two main objectives of this research work:

- 1. To analyse the effects of different thicknesses and shapes to the warpage and springback behaviour of laminates using controlled experiments.
- 2. To propose a predictive finite element model used to predict and estimate the warpage and springback of thick laminates with different construction.

#### 1.5 RESEARCH QUESTIONS

When carrying out research works relating to the study of warpage and springback of thermoset composites, some questions were triggered in order to gain deeper understanding on the topic. These questions needed to be addressed through experiments and analysis. It is thus important to put forth these questions prior to determining the actions that need to be taken for data collection and analysis so that the results of the analysis did contain the information that was required to answer some, if not all, of these questions. There were six research questions that need to be answered:

- 1. What are the causes of warpage and springback phenomenon?
- 2. How can warpage and springback behaviour of laminates be described and quantified?
- 3. What are the parameters affecting the extent of warpage and springback of laminates?
- 4. What is the suitable model and method to predict warpage and springback behaviour of laminates?