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ABSTRACT

This thesis presents the investigations of graphene materials’ contribution when
used in combination with the traditional supercapacitor electrode material, the
Activated Carbon (AC). The analyses were conducted via material
characterization and electrochemical characterization methods. The study also
proposed a new Equivalent Circuit Model (ECM) that can be used as another
characterization approach besides producing a better supercapacitor model in a
virtual electronic system environment. Literature works show that a small amount
of graphene addition on the AC electrode enhanced the performance of the
electrode in an improved specific capacitance and lowered the internal resistance.
However, some researchers reported that further graphene addition would offset
the improvement as graphene typically has a lower specific surface area compared
to the AC. This work explores the performance of supercapacitor electrodes with
pure AC, pure graphene, and several AC-graphene composites ratios. Two types
of graphene were used, two-dimensional graphene using Graphene Nanoplatelets
(GNP) and three-dimensional graphene using Graphene Aerogel (GA). It was
found that increasing GNP wt% in the electrode would increase the prototype’s
specific capacitance in a linear relationship, with an insignificant effect on the
internal resistance. On the other hand, 20 wt% GA on the electrode performs the
best capacitance among the GA-based prototypes, while further GA wt% increase
decreases the capacitance. Higher internal resistances were also recorded with
higher GA wt%. Besides the capacitance and internal resistance, the role of
graphene addition was also observed in the prototypes’ self-discharge behavior,
especially on the charge-redistribution effect under the Open Cell Voltage (OCV)
procedure. 20 wt% addition of GNP retained the most charges among the
prototypes after being left for 60 minutes in OCV. The self-discharge result was
used for the ECM profile fitting. The proposed ECM produces the best circuit
fitting on self-discharge among works of literature, especially on the short-term
response. This was achieved by introducing an intermediate layer of RC circuit
branch that represents the transitional charge location domain between the
Helmholtz layer and the Diffuse layer. The ECM was successfully tested on
commercial supercapacitors and the prototypes from this study with an average
Root Mean Squared Error of 0.2 %. Applications with a short-term open circuit
such as the stop/start features in micro-hybrid vehicles can benefit from this ECM
by getting a more accurate State of Charge of the energy storage system used.
New insights can be extracted from the ECM as the simulation shows that the
graphene addition facilitated the ions’ movement into the Helmholtz layer,
whereas for the prototype without graphene, most of the ions were restricted at
the intermediate layer. The new ECM has the potential to be used as a new
characterization method for understanding the supercapacitor’s electrode-
electrolyte interface.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

Supercapacitors, batteries, and fuel cells are the three categories of electrochemical
energy storage. Batteries are the most common device that is used in many applications,
from automotive to personal electronics. In this age of fast technologies, supercapacitors
have started to get increasing attention as an alternative energy storage device because
of their well-known ability of rapid charge and discharge. In addition to much higher
power density performance than the battery, the supercapacitor's high life cycle is
attractive to minimize maintenance costs.

The current commercial supercapacitor can store a very high amount of charge
up to several thousands of Farads. Activated Carbon (AC) is commonly used as the
primary material of the device's electrodes. This porous carbon comprises of an
extensive surface area that provides more space for the charge to occupy. However, as
can be seen from Figure 1.1, the energy density of a supercapacitor is still 1/10% of
battery energy density (Xie et al., 2018). Many approaches are being explored to
increase energy density, including introducing new active materials such as Carbon
Nanotube (CNT) and Graphene.

Graphene is a new carbon material that has the potential to boost supercapacitor
to a new level of the energy storage device. Graphene is said to have much better

electronic properties compared to AC but is more expensive to produce in bulk. The



limited technology to attain low-cost graphene is the barrier for graphene to take over

as the leading material for the supercapacitor's electrode (Lemine et al., 2018).

Capacitor
3.6ms v

Specific power (W kg™)
=)

=

10° 10" 10° 10" 10° 10° 10*
Specific energy (Wh kg™)

Figure 1.1: Specific power and specific energy for supercapacitors compared to
batteries (Xie et al., 2018)

Many works of literature have shown that graphene-based electrode has better
capacitance than the AC electrode even though graphene's theoretical specific surface
area is 2675 m*/g (Ke et al., 2016), much lower compared to AC which is as high as
4000 m?*/g (H. Chen et al., 2012). Since the capacitance of a supercapacitor is a function
of the specific surface area (SSA) of the active material on the electrode (Simon et al.,
2013), this raises the question of whether the surface area estimation method used is a
correct tool to estimate the capacitance potential, or what are the advantages of
graphene's surface area that are more suitable for ion adsorption?

Many types of graphene are available in the research market ranging from 0-

Dimensional (0-D) to 3-Dimensional (3-D) graphene (Ke et al., 2016). A 0-D or



graphene dots and particles are in the form of powder; 1D graphene is produced in the
structure of the fibrous yarn, 2D graphene in the shape of carbon film, and 3D graphene
is produced in the form of aerogels or foam-template. The different graphene synthesis
methods result in various grades of graphene purity and affect its desired properties.

Graphene also faces another physical challenge as graphene sheets tend to
agglomerate and restack because of the van der Walls forces (Atif et al., 2016). This
phenomenon causes the layers of graphene material to rejoin, and the pores are blocked,
preventing maximum ion adsorption on all the available surfaces. Graphene powders
and films have a higher tendency to aggregate compared to the 3D Graphene Aerogels
(GA) due to GA's hexagonally bonded carbon atom structure (Mao et al., 2018). The
opening of layers in GA can better facilitate ion movements compared to dense and
packed layers of graphene in powders or films.

There are a few works that reported a combination of the AC and graphene as
the electrode materials in order to improve the device capacitance and internal
resistance. The graphene was used either to act as the conductive agent to enhance the
performance of the supercapacitor (Zhang et al., 2017) or as the primary material
together with the AC (Azam et al., 2015). While the addition is expected to improve the
device's performance, that is not always the case since there are trade-offs between the
combined material's advantages and drawbacks.

Besides capacitance and internal resistance, self-discharge is another
characteristic that is less focused and reported for a supercapacitor. When a fully
charged supercapacitor is left in an open circuit, the device will gradually lose its charge
between 10 — 20 % within a few days (Gualous et al., 2013). The decline in
supercapacitor voltage in an open circuit creates an unreliable factor that affects the

energy-storing task performance (Conway, 1999). Even though the self-discharge





