DYNAMIC POWER ALLOCATION AND DISCRETE WAVELET TRANSFORM TECHNIQUES IN 5G WIRELESS SENSOR NETWORK SYSTEMS WITH ENERGY HARVESTING

BY

AMAR ESSE AHMED

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

AUGUST 2022

ABSTRACT

Energy harvesting wireless networks are one of the most researched topics in this decade. With a radio frequency (RF) energy harvester (EH) embedded, the sensors can operate for extended periods. Thus, providing sustainable solutions for managing massive numbers of sensor nodes (SN). There are different scheduling methods for information decoding (ID) and energy harvesting (EH) in the literature. These scheduling techniques can be classified into time switching (TS) and power splitting (PS). TS alternates between EH and ID on a temporal basis, receiving data just half of the time. In contrast, PS splits the received signal in theory between ID and EH circuitries without regard for the power requirement differences of the two circuitries. This thesis aims to develop an energy harvesting system with a dynamic power allocation transmitter and dynamic power splitting receiver between information decoding and energy harvesting circuitries for WSN to increase the energy harvester output. The presented receiver architecture integrates input signals from several RF sources and divides them between the EH and ID circuits. In addition, by moving the ID load into a separate circuit, the split design enhances the harvestable power at the RF energy harvester. DPA-SWIPT is implemented at the transmitter, where the ES is transmitted using an unmodulated high-power CW signal centred on the carrier frequency, while the IS is transmitted using a low-power signal around the carrier frequency. In TS and PS, the ES is conveyed on a modulated wave, resulting in increased interference with external networks. In contrast, in DPA-SWIPT, the high-power ES is constrained to a narrow band at the carrier frequency, resulting in less interference with bordering networks. Various system parameters were discussed, including the EH circuit's voltage multiplier output and ID data rates. As a result, the split receiver design demonstrated a considerable increase of more than 15 dBm in harvestable power level compared to the combined receiver. Moreover, this thesis also aims to improve the peak to average power ratio (PAPR). Hence, the PAPR of several wavelet methods are investigated, with the waveletbased modulation technique outperforming fast Fourier transform (FFT) orthogonal frequency division multiplexing (OFDM) substantially where Haar wavelet scored a gain of almost 5dBm. As a result, it is stated that wavelet modulation is an excellent contender for implementation at the SN, where energy efficiency is critical. Ultimately, the increase in the input power level of the EH circuitry coupled with enhancing the energy efficiency of the WSN nodes marks an important milestone toward achieving fully autonomous WSNs.

ملخص البحث

تعد الشبكات اللاسلكية الخاصة بحصاد الطاقة واحدة من أكثر الموضوعات التي تم بحثها في هذا العقد. مع جهاز حصاد طاقة التردد اللاسلكي (RF) مدمج ، يمكن لأجهزة الاستشعار أن تعمل لفترات طويلة. وبالتالي ، بمذه الطريقة ، من الممكن توفير حلول مستدامة لإدارة أعداد هائلة من عقد الاستشعار (SN). توجد طرق جدولة مختلفة لفك تشفير المعلومات (ID) وجمع الطاقة (EH). يمكن تصنيف تقنيات الجدولة هذه إلى تقنيات تبديل الوقت (TS) وتقنيات تقسيم الطاقة (PS). في حالة تقنية تبديل الوقت ، يتناوب جهاز الاستقبال بين EH و ID على أساس زمني ، ويستقبل البيانات نصف الوقت فقط. بينما ، في تقنية تقسيم الطاقة ، يقسم المستقبل الإشارة المستقبلة نظريًا بين دارات ID و EH دون أي اعتبار لاختلافات متطلبات الطاقة بين الدائرتين. تقدم هذه الأطروحة وحدة فك ترميز معلومات متعددة المدخلات والمخرجات (MIMO) مع حاصدة للطاقة. مع دعم تخصيص الطاقة الديناميكي (DPA). علاوة على ذلك ، يتيح النظام للعقد اللاسلكية تلقى المعلومات والطاقة بشكل متزامن. بالإضافة إلى ذلك ، تقدم الأطروحة تصميم جهاز استقبال مقسم له RFEH مع نسبة PS قابلة للتعديل. تدمج بنية المستقبل المقدمة إشارات الإدخال من عدة مصادر RF وتقسمها بين دوائر EH و ID. بالإضافة إلى ذلك ، من خلال نقل حمل المعرف إلى دائرة منفصلة ، فإن التصميم المنفصل يعزز القدرة القابلة للحصاد في جهاز حصاد الطاقة. يتم تنفيذ DPA-SWIPT في جهاز الإرسال ، حيث يتم إرسال ES باستخدام إشارة CW عالية الطاقة غير مشكلة مركزها على تردد الموجة الحاملة ، بينما يتم إرسال IS باستخدام إشارات منخفضة الطاقة حول تردد

الموجة الحاملة. في TS و PS ، يتم نقل ES على موجة مشكلة ، مما يؤدي إلى زيادة التداخل مع الشبكات الخارجية. في المقابل ، في DPA-SWIPT ، يتم تقييد ES عالي الطاقة في نطاق ضيق عند تردد الموجة الحاملة ، مما يؤدي إلى تداخل أقل مع الشبكات المجاورة. تمت مناقشة عوامل النظام المختلفة ، بما في ذلك خرج مضاعف الجهد لدائرة EH ومعدلات بيانات المعرف. ونتيجة لذلك ، أظهر تصميم المستقبل المنفصل زيادة كبيرة حوالي 15 ديسيبل في مستوى الطاقة القابلة للحصاد مقارنة بالمستقبل المدمج. علاوة على ذلك ، تم التحقق من نسبة الذروة إلى متوسط القدرة (PAPR) للعديد من أنواع الموبجات ، حيث تفوقت تقنية تعديل الموبجات بشكل كبير على تقنية تعديل الموجة على تحويل فوريه السريع (FT) بتقسيم التردد المتعامد (OFDM). حيث حققت موجات هار مكاسب تقارب 5 ديسيبل. ونتيجة لذلك ، تم التأكيد على أن تعديل الموبجات هو بديل متاز للتنفيذ في SN ، حيث تكون كفاءة الطاقة أمرًا بالغ الأهمية. في النهاية ، تمثل الزيادة في مستوى طاقة الإدخال لدائرة EH مكاسب تقارب 5 ديسيبل. ونتيجة لذلك ، تم التأكيد على أن

APPROVAL PAGE

The thesis of Amar Esse Ahmed has been approved by the following:

Khaizuran Bin Abdullah Supervisor

Mohamed Hadi Habaebi Co-supervisor

Huda Adibah Mohd Ramli Co-supervisor

> Ani Liza Asnawi Co-supervisor

Md. Rafiqul Islam Internal Examiner

Jafri bin Din External Examiner

Ismaiel Hassanien Ahmed Chairman

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Amar Esse Ahmed	
Signature	Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

DYNAMIC POWER ALLOCATION AND DISCRETE WAVELET TRANSFORM TECHNIQUES IN 5G WIRELESS SENSOR NETWORK SYSTEMS WITH ENERGY HARVESTING

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2022 Amar Esse Ahmed and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Amar Esse Ahmed

Signature

Date

vii

This thesis is dedicated to my father, who passed away during my PhD

journey

ACKNOWLEDGMENTS

First and foremost, I praise and thank Allah glory be to him for guiding me and giving me the strength to complete this work. Then, my mother and father who supported and encouraged me through my life. Special thanks to my father, who always gave unconditional support to me and who is no longer with us today. May the Almighty bestow his mercy upon him. I want to extend my utmost gratitude to my supervisor and mentor, Assoc. Prof. Ir. Dr Khaizuran Bin Abdullah for his guidance and continuous support throughout my study. I also want to express my gratefulness to my co-supervisors, Prof. Dr Mohamed Hadi Habaebi and Assoc. Prof. Dr Huda Adibah Bt. Mohd. Ramli for their valuable insights and suggestions.

I wish to extend my appreciation to the Institute of telecommunications at technical university Wien for sharing simulation projects with me. Finally, I want to acknowledge all those who supported me throughout this journey. I want to specifically thank my sister Aisha and my friend Yasin for being there for me.

TABLE OF CONTENTS

Abstract	ii
Abstract In Arabic	III
Approval Page	V
Declaration	VI
Acknowledgments	IX
Table of Contents	X
List of Tables	XIII
List of Figures	XIV
List of Symbols	XVII
List of Abbreviations	XIX
CHAPTER ONE: INTRODUCTION	1
1 1 Overview	1
1.2 Problem Statement	
1.3 Research Philosophy	5
1.4 Research Objectives	6
1.5 Research Methodology	6
1.6 Research Scope	9
1.7 Thesis Organization	9
CHAPTER TWO- I ITERATURE REVIEW	11
2.1 Introduction	11
2.1 Introduction	
	10
2.2.1 Light Energy	
2.2.2 Mechanical Energy	14
2.2.3 Radio Energy	15
2.2.3.1RF Energy Challenges	
2.3 Wireless Sensor Networks	20
2.3.1 Application of Wireless Sensor Networks	23
2.3.1.1 Animal Health Tracking	23
2.3.1.2 Wearables	24
2.3.1.3 Pipeline Monitoring	25
2.3.1.4 Transportation	

2.4	Design Essentials of RF EH Circuit	26
	2.4.1 Matching Circuit	27
	2.4.2 Rectifier and Voltage Multiplier	27
2.5	Performance Metrics of an RF-EH Circuit	29
2.6	SWIPT	29
	2.6.1 Power Splitting	30
	2.6.2 Time Splitting	30
2.7	Multicarrier Communication	32
2.8	Discrete Wavelet Transform (DWT)	35
	2.8.1 Wavelet Piecewise Representation and Dilation	36
	2.8.2 Scaling Functions of Haar Wavelet	
	2.8.3 Haar Filter Analysis and Synthesis	
	2.8.3.1 Analysis	
	2.8.3.2 Synthesis	45
	2.8.4 Z Domain to Frequency Domain	46
	2.8.5 Perfect Reconstruction	48
	2.8.6 Power Complementarity	49
	2.8.7 Realization of a Two-Band Filter Bank	49
2.9	Wavelet Modulation	51
2.10	Related Work	55
2.11	Proposed Technique	60
2.12	Summary	63
PTER	THREE: METHODOLOGY	64
3.1 Iı	ntroduction	64
3.2 N	IIMO SWIPT RF Eh Architecture With Dynamic Power Allocation	64
3.3 S	WIPT System With A Split Receiver Architecture	70
	3.3.1 Receiver Circuit	70
	3.3.2. Channel Model	71
	3.3.3 Information Decoder	74
	3.3.4 Biased OFDM	77
	3.3.5 Rectifier Modeling	78
	3.3.6 Dickson Voltage Multiplier	80
3.4 V	VAVELET IMPLEMENTATION	84
3.5 P	APR	86
	2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 TER 3.1 In 3.2 N 3.3 S	 2.4 Design Essentials of RF EH Circuit

3.5.1 Approximation of The CDF of the PAPR	9(
3.6 SUMMARY	92
CHAPTER FOUR: RESULTS AND ANALYSIS	93
4.1 Introduction	93
4.2 MIMO SWIPT RF EH Architecture With Dynamic Power Allocat	tion94
4.3 SWIPT System With A Split Receiver Architecture	97
4.4 Wavelet Modulation	106
4.4.1 PAPR	110
4.5 Summary	115
CHAPTER FIVE: CONCLUSION AND FUTURE WORK	116
5.1. CONCLUSION	116
5.2. FUTURE WORK	117
REFERENCES	118
LIST OF PUBLICATIONS	136

LIST OF TABLES

Table 2.1	The FSPL for some of the FCC auctioned frequencies for 5G	18
Table 2.2	Related work	58
Table 3.1	Simulation parameters.	69
Table 3.2	Simulation parameters.	84
Table 4.1	PAPR of a one-level decomposition in dB	110
Table 4.2	PAPR of Two-level decomposition in dB.	113
Table 4.3	PAPR of Three-level decomposition in dB.	113

LIST OF FIGURES

Figure 1.1	Block Diagram of a rectenna	3
Figure 1.2	Flowchart of the research	8
Figure 2.1	Harvestable energy sources.	14
Figure 2.2	Piezoelectric transducer connected to a rectifying circuit.	15
Figure 2.3	Electromagnetic wave spectrum.	16
Figure 2.4	Point to Point Energy Harvesting system.	18
Figure 2.5	The FSPL for some of the FCC auctioned frequencies for 5G.	19
Figure 2.6	RF power density measurements in an underground station .	20
Figure 2.7	SN components	23
Figure 2.8	A three-tier Structure of RF-EHSNs for animal healthcare.	24
Figure 2.9	Personal area network (Saraereh et al., 2020).	25
Figure 2.10	RF energy Harvester primary circuit.	26
Figure 2.11	Cockcroft-Walton multiplier.	28
Figure 2.12	Dickson multiplier.	28
Figure 2.13	Power splitting receiver architecture.	31
Figure 2.14	Time switching receiver architecture.	32
Figure 2.15	OFDM transceiver.	35
Figure 2.16	Time series, Fourier, Gabor and wavelet analysis.	36
Figure 2.17.	2 level Haar approximation	38
Figure 2.18	Dyadic increase of a two-level signal approximation.	39
Figure 2.19	$Yt \in U1.$	39
Figure 2.20	X1(t), X2(t)	40
Figure 2.21	<i>U</i> 1	40
Figure 2.22	<i>U</i> 0	41
Figure 2.23	Q0	41
Figure 2.24	Filter followed by a decimator.	42

Figure 2.25	YU1(t) on the space of $YUo(t)$.	43
Figure 2.26	YU1(t) projection on the space $Y(t)Q0$.	43
Figure 2.27	Projections of $YU1(t)$ in terms of filter coefficients.	44
Figure 2.28	Filter system function.	45
Figure 2.29	Haar wavelet Synthetization process.	45
Figure 2.30	The magnitude and phase responses of the low pass filter.	47
Figure 2.31	The magnitude and phase responses of the high pass filter.	48
Figure 2.32	Two-band filter bank.	49
Figure 2.33	ϕt dilates and translates.	50
Figure 2.34	Haar wavelet $\psi t \in U1$.	50
Figure 2.35.	Analysis and synthesis filter bank.	54
Figure 2.36.	Sensor node antenna power and harvested power.	57
Figure 2.37	DPA transmitter design	61
Figure 2.38	The power spectrum density of the transmitted signal	62
Figure 2.39	Sensor node receiver design	62
Figure 3.1	Flow chart of the research.	66
Figure 3.2	System architecture for EH WSN platform	67
Figure 3.3	AP transmitter architecture.	68
Figure 3.4	General SN receiver architecture.	69
Figure 3.5	Receiver architecture.	70
Figure 3.6	Simulation steps.	76
Figure 3.7	4 stage Cockcroft-Walton multiplier recreated from.	81
Figure 3.8	8 stage Dickson multiplier.	83
Figure 3.9	IDWT synthesis.	85
Figure 3.10	Wavelet modulation chain.	86
Figure 3.11	Arbitrary multicarrier system.	87
Figure 3.12	Subcarrier alignment in a multicarrier system.	88
Figure 3.13	Signal constellation	89
Figure 4.1	The PSD for IS and ES.	95
Figure 4.2	BER of the Information signal	96

Figure 4.3	Throughput of the information signal.	96
Figure 4.4	Dickson rectifier output voltage at 3.5GHz.	97
Figure 4.5	Dickson rectifier output voltage at 24 GHz.	98
Figure 4.6	Dickson rectifier output voltage at 3.5 and 24 GHz.	99
Figure 4.7	Receiver load VS rectifier input voltage at 3.5GHz.	100
Figure 4.8	Receiver load VS rectifier input voltage at 24 GHz.	100
Figure 4.9	Receiver load VS rectifier input voltage at 3.5 and 24 GHz.	101
Figure 4.10	Rectifier input voltage VS the energy storage input power.	101
Figure 4.11	Rectifier efficiency at 3.5 GHz.	102
Figure 4.12	Rectifier efficiency at 24 GHz carrier frequency	103
Figure 4.13	BER of the information decoder	104
Figure 4.14	Throughput of the information decoder	105
Figure 4.15	The harvestable power for combined and uncombined EH and	
	ID circuitries.	105
Figure 4.16	BER 16-QAM one level decomposition.	106
Figure 4.17	BER 32-QAM one level decomposition.	107
Figure 4.18	BER 16-QAM two-level decomposition.	107
Figure 4.19	BER 32-QAM two-level decomposition.	108
Figure 4.20	BER 16-QAM three-level decomposition.	109
Figure 4.21	BER 32-QAM three-level decomposition.	109
Figure 4.22	PAPR comparison at 16 QAM One-level decomposition.	111
Figure 4.23	PAPR comparison at s 32 QAM one level DWT.	111
Figure 4.24	PAPR comparison at 16 QAM two-level DWT.	112
Figure 4.25	PAPR comparison at 32 QAM two-level DWT.	114
Figure 4.26	PAPR comparison at 16 QAM Three-level DWT.	114
Figure 4.27	PAPR comparison at 32 QAM Three-level DWT	115

LIST OF SYMBOLS

A_C	Capacitive Reactance
E_D	Dissipated Energy
E_H	Harvested Energy
$I_d(t)$	The Current Across the Diode
$P_A(t)$	Normalized Power Wave
$P_H(t)$	The Harvested Power
$P_R(t)$	The Received Energy Signal
$S_R(t)$	The Received Signal
$V_{d_b}(t)$	Baseband Voltage
$V_{d_{rf}}(t)$	RF Voltage
V_A	Antenna Voltage
$V_{Rout}(t)$	Output Voltage of the Rectifier.
$V_d(t)$	The Voltage Across the Diode
$n_A(t)$	Antenna Noise
$y_R(t)$	The Received Signal
y_k	Transferred Energy from The Base Station to The Sensor Node.
$\mathcal{C}_{(E-R)}$	The Energy to Rate Ratio (E-R)
β_{sc}	Subcarrier
L	Wavelet Scale
Р	The Average Received Power

- S(t) Transmitted Signal
- r(t) Data Rate.
- ψ Wavelet Function
- ω Angular Frequency
- $\phi(t)$ Translation Function
- **δ** Dilation Function

LIST OF ABBREVIATIONS

AM	Amplitude Modulation
AP	Access Point
ASK	Amplitude Shift Keying
AWGN	Additive White Gaussian Noise
BER	Bit Error Rate
BS	Base Station
CDF	Comulative Distripution Function
CMOS	Complementary Metal-Oxide-Semiconductor
CSP	Concentrated Solar Planet
CW	Continuous Wave
DAC	Digital To Analoge Converter
DC	Discrete Current
DFT	Discrete Fourier Transform
DN	Destination Node
DPA	Dynamic Power Allocation
DSP	Digital Signal Processing
DTFT	Discrete Time Fourier Transform
DWT	Discrete Wavelet Transform
EH	Energy Harvesting
ES	Energy Signal

- FCC Federal Communications Commission
- FSPL Free Space Path Loss
- FT Fourier Transform
- HPA High Power Amplifier
- ID Information Decoding
- ID Information Decoder
- IDWT Inverse Discrete Wavelet Transform
- IFT Inverse Fourier Transform
- IS Information Signal
- IS Information Signal
- LED Light Emitting Diode
- LNA Low Noise Amplifier
- LO Local Oscillator
- LoS Line of Sight
- MC Multicarrier
- MCU Microcontroller Unit
- MIMO Multiple Input Multiple Output
- MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor
- OFDM Orthogonal Frequency Division Multiplexing
- PAN Personal Area Network
- PAPR Peake To Average Power Ratio
- PS Power Splitting
- PV Photovoltaic
- QAM Quadratic Amplitude Modulation

- RFPT Radio Frequency Power Transfer
- SN Sensor Node
- SWIPT Simultaneous Wireless Information And Power Transfer
- TS Time Switching
- VS Versus
- WFT Windowed Fourier Transform
- WIPT Wireless Information And Power Transfer
- WSN Wireless Sensor Network
- WT Wavelet Transform

CHAPTER ONE INTRODUCTION

1.1 OVERVIEW

The exponential growth in the Internet-of-Things (IoT) field and the related applications led to the introduction of low-energy wireless sensor networks (WSN) (Amato & Coronato, 2017), where small sensing nodes collect various types of data from the environment (Elappila, Chinara, & Parhi, 2020), ranging from temperature to radiation levels at the nuclear plants. The most significant predicament against any efficient implementation of such WSN is energy sourcing, as these sensors can accommodate a limited-size battery. Once that battery is depleted, the battery replacement cost for thousands of such nodes is even more expensive than the cost of the node itself. Not to mention the environmental cost of producing and discarding millions, if not billions, of batteries and Sensor Nodes (SNs). One solution to the energy constraint is to power SNs wirelessly by harvesting RF energy (M. Alfaqawi et al., 2020; Lu, Wang, Niyato, Kim, & Han, 2015).

The energy Harvesting notion in wireless communication refers to the process of collecting and storing the ambient RF energy from the environment in order to achieve self-sustaining nodes that can operate for extended lifetimes without the need to recharge them in conventional ways (Cansiz, Altinel, & Kurt, 2019a; Li et al., 2016).

The energy harvesting field has gone through enormous research, leading to the emergence of energy harnessing nodes that can harvest energy from the environment. Energy harvesting wireless nodes are capable of harvesting and storing RF energy from the surroundings. This RF energy could be ambient or interference, in other words, a signal not intended for the harvesting node, which can be categorized as green communication. Whereas, when a dedicated transmitter is used to send energy to a harvesting node, this could be more categorized as a convenience rather than a green solution due to the excessive loss of energy in the wireless medium as a result of fading (Chen, 2019).

RF energy harvesting represents a genuine opportunity for replacing huge batteries (M. Alfaqawi et al., 2020; M. I. M. Alfaqawi et al., 2015), which are not just expensive to produce and discard but also limit the lifetime of a sensor node (Haijun Yu et al., 2020). Furthermore, when a sensor is operating in harsh environments, the battery life could be very much less than the expected lifetime due to the limited linear operating range of such batteries(C. M. Yu, Tala'T, Chiu, & Huang, 2019)(Mathieu & Taylor, 2016). RF power transfer (RFPT) enables an AP to send energy wirelessly to an SN. An AP has unbounded power, for example, connected to the grid, or has massive, stored energy, for example, harvests energy from the sun or other high-power sources.

RFPT is not a new concept, as Nicola Tesla conducted experiments on the earliest wireless energy transfer system almost a century ago (Dana, Sardhara, Sanghani, & Mehta, 2019), with an ambition of realizing global energy to replace the traditional power lines. However, due to the safety concerns of the high transmission power adopted by Tesla, the RFPT field had lost interest for quite some time. In the 1960s, William developed the first rectifying antenna, where he conducted several successful trials to transmit microwave power(Brown, George, ..., & 1969, n.d.). The rectifying antenna or "Rectenna" consists of an antenna element, impedance matching network, RF to DC converter, and an energy reservoir, as shown in Figure 1.1

The field of RF-EH has recently gained attention again as a consequence of the development in microcontroller units (MCU)s. Such developments make it possible to produce MCUs with high computing power, low energy consumption, and very small size, which enables them to be embedded in almost anything.

Figure 1.1 Block Diagram of a rectenna

In wireless communications, both information and energy are transmitted on the same signal. However, traditional wireless systems only extract the data from the received signal. Whereas in an RF energy harvesting system, the receiver partially exploits the energy carried by the RF signal for the purpose of electricity generation (Mouapi, Hakem, & Delisle, 2018), such a system can extract energy and information from RF signals (Tutuncuoglu & Yener, 2013). Furthermore, simultaneous wireless information and power transfer (SWIPT) was proposed to realize a system where energy and information are communicated.

In SWIPT, the transmitter transfers information and energy over the same frequency band. SWIPT can be classified into three categories. The first category assumes that the receiver can simultaneously harvest and extract information from the received signal(Grover & Sahai, 2010) using the same circuit. However, the feasibility of this category is in question, as there is no practical hardware implementation that can extract information and energy at the same time (Zhou, Zhang, & Ho, 2013a). In the second and third categories, which are the more practical ones, the receiver performs time switching (TS) or power splitting (PS). In PS, the receiver splits the received signal between energy harvesting and information decoding circuitries. While in TS, the receiver switches periodically between energy harvester and information decoder circuits. However, information is usually sent in low