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ABSTRACT

Energy harvesting wireless networks are one of the most researched topics in this decade.
With a radio frequency (RF) energy harvester (EH) embedded, the sensors can operate for
extended periods. Thus, providing sustainable solutions for managing massive numbers of
sensor nodes (SN). There are different scheduling methods for information decoding (ID)
and energy harvesting (EH) in the literature. These scheduling techniques can be classified
into time switching (TS) and power splitting (PS). TS alternates between EH and ID on a
temporal basis, receiving data just half of the time. In contrast, PS splits the received signal
in theory between ID and EH circuitries without regard for the power requirement
differences of the two circuitries. This thesis aims to develop an energy harvesting system
with a dynamic power allocation transmitter and dynamic power splitting receiver between
information decoding and energy harvesting circuitries for WSN to increase the energy
harvester output. The presented receiver architecture integrates input signals from several
RF sources and divides them between the EH and ID circuits. In addition, by moving the
ID load into a separate circuit, the split design enhances the harvestable power at the RF
energy harvester. DPA-SWIPT is implemented at the transmitter, where the ES is
transmitted using an unmodulated high-power CW signal centred on the carrier frequency,
while the IS is transmitted using a low-power signal around the carrier frequency. In TS
and PS, the ES is conveyed on a modulated wave, resulting in increased interference with
external networks. In contrast, in DPA-SWIPT, the high-power ES is constrained to a
narrow band at the carrier frequency, resulting in less interference with bordering networks.
Various system parameters were discussed, including the EH circuit's voltage multiplier
output and ID data rates. As a result, the split receiver design demonstrated a considerable
increase of more than 15 dBm in harvestable power level compared to the combined
receiver. Moreover, this thesis also aims to improve the peak to average power ratio
(PAPR). Hence, the PAPR of several wavelet methods are investigated, with the wavelet-
based modulation technique outperforming fast Fourier transform (FFT) orthogonal
frequency division multiplexing (OFDM) substantially where Haar wavelet scored a gain
of almost 5dBm. As a result, it is stated that wavelet modulation is an excellent contender
for implementation at the SN, where energy efficiency is critical. Ultimately, the increase
in the input power level of the EH circuitry coupled with enhancing the energy efficiency
of the WSN nodes marks an important milestone toward achieving fully autonomous
WSNE.
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CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW

The exponential growth in the Internet-of-Things (l1oT) field and the related applications
led to the introduction of low-energy wireless sensor networks (WSN) (Amato & Coronato,
2017), where small sensing nodes collect various types of data from the environment
(Elappila, Chinara, & Parhi, 2020), ranging from temperature to radiation levels at the
nuclear plants. The most significant predicament against any efficient implementation of
such WSN is energy sourcing, as these sensors can accommodate a limited-size battery.
Once that battery is depleted, the battery replacement cost for thousands of such nodes is
even more expensive than the cost of the node itself. Not to mention the environmental cost
of producing and discarding millions, if not billions, of batteries and Sensor Nodes (SNs).
One solution to the energy constraint is to power SNs wirelessly by harvesting RF energy
(M. Alfagawi et al., 2020; Lu, Wang, Niyato, Kim, & Han, 2015).

The energy Harvesting notion in wireless communication refers to the process of collecting
and storing the ambient RF energy from the environment in order to achieve self-sustaining
nodes that can operate for extended lifetimes without the need to recharge them in
conventional ways (Cansiz, Altinel, & Kurt, 2019a; Li et al., 2016).

The energy harvesting field has gone through enormous research, leading to the emergence
of energy harnessing nodes that can harvest energy from the environment. Energy
harvesting wireless nodes are capable of harvesting and storing RF energy from the
surroundings. This RF energy could be ambient or interference, in other words, a signal not
intended for the harvesting node, which can be categorized as green communication.

Whereas, when a dedicated transmitter is used to send energy to a harvesting node, this



could be more categorized as a convenience rather than a green solution due to the
excessive loss of energy in the wireless medium as a result of fading (Chen, 2019).

RF energy harvesting represents a genuine opportunity for replacing huge batteries (M.
Alfagawi et al., 2020; M. I. M. Alfagawi et al., 2015), which are not just expensive to
produce and discard but also limit the lifetime of a sensor node (Haijun Yu et al., 2020).
Furthermore, when a sensor is operating in harsh environments, the battery life could be
very much less than the expected lifetime due to the limited linear operating range of such
batteries(C. M. Yu, Tala’T, Chiu, & Huang, 2019)(Mathieu & Taylor, 2016). RF power
transfer (RFPT) enables an AP to send energy wirelessly to an SN. An AP has unbounded
power, for example, connected to the grid, or has massive, stored energy, for example,

harvests energy from the sun or other high-power sources.

RFPT is not a new concept, as Nicola Tesla conducted experiments on the earliest wireless
energy transfer system almost a century ago (Dana, Sardhara, Sanghani, & Mehta, 2019),
with an ambition of realizing global energy to replace the traditional power lines. However,
due to the safety concerns of the high transmission power adopted by Tesla, the RFPT field
had lost interest for quite some time. In the 1960s, William developed the first rectifying
antenna, where he conducted several successful trials to transmit microwave power(Brown,
George, ..., & 1969, n.d.). The rectifying antenna or “Rectenna” consists of an antenna
element, impedance matching network, RF to DC converter, and an energy reservoir, as

shown in Figure 1.1

The field of RF-EH has recently gained attention again as a consequence of the
development in microcontroller units (MCU)s. Such developments make it possible to
produce MCUs with high computing power, low energy consumption, and very small size,

which enables them to be embedded in almost anything.
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Figure 1.1 Block Diagram of a rectenna

In wireless communications, both information and energy are transmitted on the same
signal. However, traditional wireless systems only extract the data from the received signal.
Whereas in an RF energy harvesting system, the receiver partially exploits the energy
carried by the RF signal for the purpose of electricity generation (Mouapi, Hakem, &
Delisle, 2018), such a system can extract energy and information from RF signals
(Tutuncuoglu & Yener, 2013). Furthermore, simultaneous wireless information and power
transfer (SWIPT) was proposed to realize a system where energy and information are

communicated.

In SWIPT, the transmitter transfers information and energy over the same frequency band.
SWIPT can be classified into three categories. The first category assumes that the receiver
can simultaneously harvest and extract information from the received signal(Grover &
Sahai, 2010) using the same circuit. However, the feasibility of this category is in question,
as there is no practical hardware implementation that can extract information and energy at
the same time (Zhou, Zhang, & Ho, 2013a). In the second and third categories, which are
the more practical ones, the receiver performs time switching (TS) or power splitting (PS).
In PS, the receiver splits the received signal between energy harvesting and information
decoding circuitries. While in TS, the receiver switches periodically between energy
harvester and information decoder circuits. However, information is usually sent in low
3





