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ABSTRACT

Several studies on physiological-based human emotion have suggested that emotion causes
variations in various physiological parameters. As one of the physiological parameters,
heart sound signals (also referred to as phonocardiography) may infer emotions and can
possibly be used for emotion recognition. For this purpose, the use of Phonocardiography
(PCG) signal is substantially cheaper, and the process of acquiring the signal for heart
sound analysis is comfortable as compared to other physiological measures. Capturing
heart-sound signals using PCG does not require touching the surface of the human body
directly. Hence it offers a convenient and practical usage in various applications of emotion
recognition.

Additionally, unlike the use of electrocardiography (ECG) that reflects only heartbeats
through the electrically conductive system of the heart, the PCG can also reflect the muscle
contraction sound of the heart. Nevertheless, the use of PCG in the emotion recognition
domain is still scarce in the research literature. As such, this thesis explored usability and
methods for modelling emotion recognition using PCG signals.

The thesis is developed with four major phases. (i) Since PCG data for emotion recognition
are not widely available, the first phase performs the creation of the corpus for both PCG
and EEG, hence, the performance for both modalities can be compared. (ii) The second
phase investigates the most suitable method for building a computational model for PCG-
based emotion recognition. Three cepstral-based features, namely, MFCC, LFCC, and
GFCC, are considered in the experiment. The DNN, XGBoost, and Decision tree are
selected as the classifiers. The initial experiments of this research indicate that the best
model for recognizing emotion is achieved at 87% accuracy rate by using combination of
MFCC feature extraction and DNN classifier, (iii) The third phase compares PCG-based
emotion recognition using heart sound signal (PCG) with EEG modality. The experimental
results implied that with techniques used in phase two, the PCG signal could achieve
comparatively robust performance in recognizing emotion as compared to the EEG
modality. (iv) In the fourth phase, a new computational approach is proposed and
implemented by incorporating signal decomposition techniques such as Empirical Mode
Decomposition (EMD). As the main issue with this approach is feature dimensionality, the
PCA feature reduction technique is adopted in the proposed method. The proposed method
demonstrated a robust and optimal performance of a PCG-based emotion recognition
model, achieving overall accuracy rate at 98%.

Overall, this research has highlighted the potential use of PCG signals for emotion
recognition as an alternative to other commonly discussed modalities such as EEG.
Additionally, the thesis also empirically proved that with proper methods in pre-processing
the signal and the right feature extraction process and the suitable classifier, the PCG signal
could achieve optimal performance in recognizing emotion. As future works, the proposed
approach can be used to build a wide range of practical application of emotion recognition
such as Ambient Assisted Living (AAL), whereby the patient’s mental state is required to
be continuously monitored.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

The heart is one of the central organs for human beings, which has a superb mechanism. It
is the central organ of the human circulatory system acting as a pump in relation to the
blood vessels. Excepting the lungs, it is the only organ in the body through which the blood
passes in every cycle. The activities of the heart may explain many aspects of human life.
One mechanism to understand the heart activities is through the sounds produced during

the heart's cardiac cycle.

In fact, the sound produced by the acoustic activity of the heart is one of the most
important bio-physiological signals (bio-signal) in the human body. It can be used to
measure or even analyse important bio variables of the heart (e.g., state of cardiovascular,
vessels, atrial and ventricular heart, etc.). Heart auscultation — the process of listening and
interpreting the acoustic wave of the heart — is known as a fundamental component of the
physical assessment of the heart. However, with the advancement of Electrocardiographic
or Echocardiogram (ECG), the use of heart auscultation is somewhat eclipsed in the
research literature. In fact, the research explorations on heart sound bio-signals are

considered lesser compared to other heart-related bio signals such as ECG.

As in other bio-physiological signal modalities, such as brainwave
(Electroencephalography) and galvanic skin response (GSR), the heart sound signals (also
referred as PCG — Phonocardiography) may as well infer emotions and can be used in the
Affective Computing domain for recognizing human emotion (McCraty, 2016; Soosalu et
al., 2019). For this purpose, the use of PCG signal is substantially cheaper, and the process
of acquiring the signal for heart sound analysis is comfortable as compared to other
physiological measures. Capturing heart-sound signals using PCG devices does not require

touching the surface of the body directly. Hence it offers a convenient and practical usage

1



in an application such as Ambient Assisted Living (AAL), whereby the patient’s mental
state is required to be continuously monitored. Additionally, unlike the use of
electrocardiography (ECG) that reflects only heartbeats through the electrically conductive
system of the heart (Chronotropy), the PCG can also reflect the muscle contraction sound
of the heart (Inostropy) (Giordano & Knaflitz, 2019).

However, using the PCG modality in the Affective Computing domain to recognize
human emotion is still scarce in the research literature. The current emotion recognition
research using heart-related modality is merely based on the electrical signals of the heart
captured using an invasive ECG device. It is known that the heart analysis based on ECG
is generally cumbersome due to the many complexities of setting up electrodes over the
body. Unlike ECG, the heart-sound modality offers a convenient and practical usage to be
used in the affective computing domain. Therefore, this thesis investigates and develops a
computational model for emotion recognition (affect recognition) using the PCG signals.

1.2 RESEARCH MOTIVATION

This research is motivated by and proceeds from a central interest in the importance of
evaluating heart sound in recognizing individual affect. The aim is to contribute to the
Affective Computing field by addressing heart sound as one of the modalities in identifying

human emotion.

The ability of a machine or computer to recognize human emotions falls into a field
of research called Affective Computing. Apparently, Affective computing is an emerging
field in technologies, The Gartner Hype Cycle (Figure 1.1) tells us that affective computing
is an area that is experiencing high levels of innovation. As can be seen from Gartner’s
hype cycle, affective computing is expected to reach its “plateau of productivity” (when
mainstream adoption of technology starts to take off) in the next 5-10 years. Therefore, this

practical fact triggers great motivation in contributing to this area of research.
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This research is also motivated by Islamic tradition on the heart. In the Quran — the
primary source of Islamic doctrine, it has been implicitly shown that individual affect or
emotion can be identified and understood from the state of the heart. The heart is referred
in the Quran as the organ of emotions, feelings, and desires. The word al-fuad (2'3) is often
used in the Quran to describe the condition of the heart with a sense of emotion.
Additionally, it is reported in a well-known Hadith (sayings of the Prophet Muhammad)
that the state of the heart also indicates the general state of an individual:

“There is a piece of flesh in the body if it becomes good, the whole body becomes good

but if it gets spoilt the whole body gets spoilt and that is the heart”.

All the religious dogmas mentioned above are another source of motivation to
proceed with this proposed research domain. In practice, if the heart sound is properly
analysed, it can provide information and open various vertical applications in the affective

computing domain and in other vertical domains.



However, technically, to use PCG signal (heart sound) as a modality to recognize
emotion is relatively challenging due to the complex and highly non-stationary nature of
the heart sound signals (Giordano & Knaflitz, 2019; Subasi, 2019). Thanks to the advances
in signal processing and artificial intelligence, the technologies have provided various
techniques to cope with this complexity. Various contributions have been made in the
literature regarding the techniques to process and extract necessary information from the
signals and classification method of non-stationary signals such as heart sound signals.
Thus, the initial aim is to develop a PCG-based computational model for individual emotion
recognition using the most efficient techniques. In this thesis, emotion recognition and
classification are made by extracting features from the heart sound signals. Well established
cepstral based feature engineering techniques, namely MFCC, LFCC and GFCC, are
considered. Deep Neural Network (DNN), Extreme Gradient Boosting (XGBoost), and
Decision Tree are the pattern classification techniques engaged for emotion classification.
Furthermore, a new computational model based on the EMD technique is proposed to
improve the computational performance in recognizing individual emotion using PCG

signals.

1.3 PROBLEM STATEMENTS

In the context of automatic affect recognition, numerous works of literature have argued
that the heart is more than an efficient pump that sustains life. It is also the source of
emotion, courage, and wisdom (McCraty, 2016; Soosalu et al., 2019). As the heart sound
is commonly used to measure the activities of the heart, it may be an essential bio-signal to
be used and analyzed to understand the human affective state, such as emotion, mood or
feeling. However, as shown in the literature review the effort in conducting experimental

works, and analysing heart sound to recognize human emotions remain scarce.

Moreover, in the past years, there has been increasing evidence about the brain-
heart interaction with significant potential implications for the treatment of cardiovascular

diseases. Hence, It can be assumed that there is also a close relationship between the heart



and the brain regarding human emotional states. However, as the effort to use heart sound
for emotion recognition is still scarce, the effort to analyse heart sound and its relationship

with the brain signal in recognizing human emotions remains uncommon.

In light of these facts, there are knowledge gaps that can be explored concerning
heart sounds in the area of affective computing. As such, the following problem statements
are the foundation and the rationale for the significance of this research:

e Heart sounds analysis for emotion recognition is generally less understood than

other bio-physiological modalities, especially the brain-wave signal.

e There have been less attempts to infer emotion automatically from heart sounds
to the best of my knowledge. In this scenario, most heart sounds analysis is
dominated by clinical heart diagnosis and biometric system.

e Moreover, there have been no previous attempts to correlate and compare heart

sounds and brain waves to recognize individual emotions.

1.4 ISSUES IN USING PCG SIGNAL FOR EMOTION RECOGNITION

As the use of PCG signal is essential in this research, below are several challenging tasks
to be considered in realizing a computational system for emotion recognition using heart
sound modality:

1. Datasets: As the research PCG-based emotion recognition is limited, there is a
lack of publicly available PCG signal datasets of human emotions. Therefore,
the research on PCG-based emotion recognition requires the development of
new PCG datasets for emotion recognition. Furthermore, to validate its results,
the development of PCG-based emotion recognition may require the
comparison with other physiological-based emotion recognitions (e.g., EEG)

2. Pre-processing: The PCG signal collected from the participants during data
collections may contains numerous noises like displacement of the digital
stethoscope, participant’s movements etc. These kinds of noises must be

removed using filters for efficient processing.



3. Feature Extraction: Patterns that are extracted from PCG signals are denoted
by the features. The recognition stage or classification are mainly concerned
with the retrieval of PCG characteristics. Feature extraction is defined as the
process of converting a PCG signal into a sequence of feature vectors carrying
characteristic information about the signal, which are used as the basis for
various types of PCG analysis algorithms. The difficulty arises in finding the
suitable feature extraction techniques for PCG signals. In the proposed work
for this thesis, cepstral-based features nhamely MFCC, LFCC and GFCC are
extracted from the PCG signals.

4. Modelling: One of the challenges for modelling emotion recognition is to find
for a suitable classifier. In this study, features extracted from the PCG signal
are modelled using Deep Neural Network (DNN), Extreme Gradient Boosting

(XGBoost) and Decision Tree classifiers.

1.5 RESEARCH QUESTIONS

The research focuses primarily on analysing if and how the heart sound modality

(phonocardiography) can be used to recognize human emotion from an individual. As PCG

signals for emotion recognition are not common, this research will further compare its

performance with the EGG modality. Overall, the study intends to answer the following

questions:

RQ1: What is the effectiveness of using Phonocardiography Signal (PCG) for individual
emotion recognition?

RQ2: What aspects of emotion recognition modelling constitute an effective emotion
recognition system using PCG signals?

RQ3: How reliable is the Phonocardiography Signal (PCG) compared to the EEG
modality in developing an emotion recognition model?

RQ4: What is the potential method to achieve optimal performance of a

phonocardiography-based emotion recognition system?





