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ABSTRACT

Touchscreen devices have become increasingly popular recently, mostly due to the
affordability and availability of smartphones and tablets. Smartphone security
constitutes a necessary requirement due to the functions of smartphones that hold
sensitive information and perform essential tasks. Numerous authentication techniques
such as passwords, personal identification number codes, number locks, and graphical
passwords are presently used to secure smartphones from unauthorised access.
However, these techniques remain vulnerable to certain types of security breaches. To
overcome the drawbacks of the current authentication techniques, behavioural
biometric technology such as touch gesture authentication is being increasingly
investigated. The touchscreen is a major source of data input, allowing users to make
various movements such as scrolling, tapping, swiping, and so on. Touch gesture
biometrics are identified as the process of computing and evaluating user touch gestures
on touchscreen devices. When users interact with touchscreen devices, some forms of
digital signatures are generated. These signatures may be used as an individual verifier
because they are considered to be distinctive and unique for each user. Touch-based
data collected from touchscreen sensors has been useful in various applications, such as
emotion recognition, automotive vehicles, banking applications, signature verification,
health care applications, gaming applications, and others. Recently, a number of studies
have focused on using touch gestures as a form of biometric authentication for
touchscreen mobile devices. However, these studies have faced several issues when
developing touch gesture behavioural biometric approaches, mainly in improving the
accuracy of the authentication system. Moreover, several behavioural factors such as
emotions and their influences on touch gesture user authentication performance have
remained unaddressed. In this research, the effect of emotions on user behaviour in
influencing the performance of a touch gesture authentication approach was examined.
To achieve this, a touch gesture behavioural biometric authentication approach was
developed, and suitable experiment procedures were designed. Furthermore, a
controlled experiment was conducted which allowed the collection of touch data in
different emotional states (emotional and normal). An Android application was
developed in order to collect the 572 touch gestures of 25 participants from touchscreen
smartphones. The participants’ emotion states were induced using film clips’ emotion
elicitation method and categorised based on the discrete emotion dimension
(amusement, anger, sadness, tenderness, fear, and disgust). Eighteen touch features
were extracted from the touch data and five machine learning classifiers were employed.
Then, they were compared to evaluate the approach's accuracy. The results of the
experiment indicate that the Random Forest technique achieved the best accuracy for
the developed touch gesture authentication approach with 95.129% accuracy, 4.8%
FRR, 0.22% FAR, and 2.5% EER. Furthermore, the influence of emotions was
significant on the accuracy performance of the developed approach due to the accuracy
value drop to 82.51%. Only 38.25% of the emotion datasets were correctly classified.
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CHAPTER ONE

INTRODUCTION

1.1 RESEARCH OVERVIEW

Over the years, mobile technology has improved remarkably. Through essential
inventions in hardware design, wireless technology, networking, human-computer
interaction, and power-efficient computing, mobile devices offer access to information
and computation processes everywhere and anywhere. The latest growth in mobile
technology has provided a new type of programmable mobile device, the smartphone.
Smartphones present modern mobile operating systems, location-aware services, large
application stores, and massive social networks that reach millions of users globally,
thus impacting their lives (Laffaye, 2014). According to Statista (2019), 45.12% of the

population has a smartphone, with 3.5 billion smartphone users in 2020.

Today, more and more people use smartphones to manage their lives.
Smartphones are being used to perform significant tasks, such as transferring money,
and storing private and sensitive information, such as financial details, pictures, emails,
password list, and location history. However, the availability of these services and
private information poses multiple security risks and attacks. Data security is as
essential for smartphones as it is for laptops, tablets, or any electronic devices. Thus, it
IS an important priority to protect their integrity, confidentiality, and availability.
Numerous authentication schemes are presently used to secure smartphones from
unauthorised access. However, these techniques remain vulnerable to certain types of

security breaches (Shafique et al., 2017).

Authentication is an essential stage to protect the confidentiality and integrity of
mobile devices that can only be sustained by identifying the end users. Numerous
authentication schemes such as password, PIN code, number lock, and graphical
password are presently used to secure smartphones from unauthorised access. However,
these techniques remain vulnerable to certain types of security breaches such as

shoulder surfing, Brute Force, smudge, and dictionary attack (Shafique et al., 2017).



To overcome the drawbacks of password, PIN code, number lock, and graphical
password authentication, biometric-based methods have been investigated in
smartphone authentication (Meng et al., 2015). Within a wide variety of security
systems, biometrics technology is now progressively adopted. These systems verify
users using their human assessable traits, such as keystroke dynamics, speech, gait,
fingerprint, signature, and hand geometry (Bokor, Antal, & Aszl, 2014).

Based on the biometric characteristics used to identify the users, biometric
methods consist of two categories: behavioural and physical. Physical biometrics have
been employed in mobile phone authentication, as each human’s physical biometric
characteristics are unique and not transferable or duplicable (Meng et al., 2015).
However, physical biometrics can be expensive, hard for collect, and require special
purpose hardware. Moreover, physical biometric systems are complex, can be
challenging to implement, and have low user acceptability (Alariki & Manaf, 2014;
Shafique et al., 2017).

Behavioural biometrics are another potential solution to verify and identify users
by measuring their unique behavioural characteristics. The most common behavioural
characteristics include gait, voice, signature, keystroke dynamics, mouse dynamics, and
touch dynamics. The behavioural biometric system provides a transparent security layer
that is easy to execute, as it only requires a software implementation (Yampolskiy &
Govindaraju, 2010). Additionally, collecting data in most behavioural biometric
systems can be cost effective without the need for special hardware (Yampolskiy &
Govindaraju, 2008).

Currently, different behavioural biometric techniques have been considered in
mobile device authentication such as gait recognition, voice recognition, signature
recognition, keystroke dynamics, mouse dynamics, and touch dynamics. With the
arrival of touchscreen smartphones, touch gesture biometrics have become important to

both industry and academia (Meng et al., 2015).

Touch gesture biometrics are identified as the process of computing and
evaluating human touch strokes on touchscreen devices. When humans interact with
touchscreen devices, some form of a digital signature is generated. These signatures

may be used as an individual verifier, where they are considered to be distinctive and



unique for each person (Teh et al., 2016).

Because practically all smartphones utilize the touch screen as the primary input
method, touch gesture behaviour is becoming more relevant compared to its
counterpart, keyboard behaviour, as the popularity of touchscreen mobile phones grows
(Meng et al. 2013). Even if a shoulder surfer witnesses the full motion, a gesture-based
authentication system would make it more difficult to repeat the password. Subtleties
such as speed, pressure, force, flexibility, and individual anatomical variances would
hinder the casual viewer of the password from mimicking the password (Niu and Chen
2012).

Extensive research has been conducted to use touch-based data collected from
touchscreen sensors for a variety of applications, including automotive applications
(Pitts et al. 2014), authentication in banking applications (Basar et al. 2019), Signature
verification (Ren et al. 2020), health care applications (Farhana et al. 2019; Siek et al.
2011), emotion recognition applications (Meng et al. 2021; Shah, Teja, and
Bhattacharya 2015), touch recognition systems (Park et al. 2019), gaming applications
(A. Lee et al. 2015), Free-hand-Sketching application (Yi Li et al. 2015), and others.

A growing number of research have recently focused on the use of touch
gestures behavioural biometric as an authentication method for touchscreen mobile
devices. The studies reported that touch gesture could identify user behaviour and can
be used as an authentication scheme to secure touchscreen mobile devices by
authenticating legitimate users and detecting imposters (Alariki & Manaf, 2014; De
Luca et al., 2012; Beton, Marie, & Rosenberger, 2013; Shahzad, Liu, & Samuel, 2013;
Caietal., 2013; Lin, Chang, & Liang, 2013; Alpar, 2015; Li et al., 2015; Antal & Szabd,
2016). However, while developing touch gesture behavioural biometric methods, these
research ran into number of challenges, the most significant of which was enhancing
the accuracy of the authentication systems (De Luca et al., 2012; Beton et al., 2013;
Alariki & Manaf, 2014; Burgbacher, Prétorius, & Hinrichs, 2014; Alpar, 2015).

Some studies reported that the gesture length and type affects the accuracy
performance of the authentication system (De Luca et al., 2012; Bokor et al., 2014;
Alpar, 2015; Li et al., 2015; Matsubara et al., 2016). If the length of the gesture is too

short, the accuracy of the system is low, but if it is too long it affects the usability of the



authentication system (Teh et al., 2016). Moreover, one of the challenges in previous
studies is the feature selection and extraction (De Luca et al., 2012; Alariki & Manaf,
2014; Burgbacher et al., 2014). Selecting and extracting the appropriate set of touch
gesture features have a huge impact on the system performance (Mahfouz, Mahmoud,
& Eldin, 2017).

Another issue is the selection of the appropriate machine learning classifier for
the authentication system. Using the appropriate machine learning technique, to be
compared to other techniques, affects the performance of the authentication system
(Beton et al., 2013; De Lucaet al., 2012; Matsubara et al., 2016). Other issues faced by
previous studies in the development of touch gesture authentication systems included
user body posture (Lin et al., 2013; Burgbacher et al., 2014), subject size (Beton et al.,
2013; Alariki & Manaf, 2014; Gong et al., 2016), and the number of training sample
(Shahzad et al., 2013; Burgbacher et al., 2014; Alpar, 2015; Martinez-Diaz, Fierrez, &
Galbally, 2016).

Individual behaviour is not totally repeatable, which is one of the issues with
behavioural biometrics. Rather, it is heavily influenced by a variety of external factors,
including mood, emotion, exhaustion, health, drugs, conflicts, prior experiences, and
the surrounding environment (Yampolskiy & Govindaraju, 2010; Abdulkader, Atia, &
Mostafa, 2015; Cherifi et al., 2010; Revett, 2010). Some behavioural recognition
systems are very sensitive to all these factors, depending on the sensor being used

(keystroke dynamics, mouse dynamics, touch dynamics, etc.) (Cherifi et al., 2010).

Additionally, emotions impact a person's behavioural touch gestures, with a
simple finger movement on a touchscreen providing a profound emotional experience
(Zhu & Li, 2014). A biometric system's robustness must be validated against all of these
causes of variation before it can be used in a real-world setting (Cherifi et al., 2010).
Given that the major goal of touch gesture biometric system design has been to improve
accuracy (Sayed et al., 2013), the impact of an individual's emotional state on touch
gesture biometric system needs to be investigated (Alariki, Manaf, and Mousavi 2016;
Teh et al. 2016).



1.2 PROBLEM STATEMENT

Behavioural biometrics can be used as an alternative authentication method for mobile
devices to overcome the drawback of current authentication methods. Touch gesture is
gaining popularity as a behavioural biometric authentication method. Touch gesture can
identify user behaviour and be used as an authentication scheme to secure mobile

devices by authenticating legitimate users and detecting imposters.

Recently, an increasing number of studies have focused on developing touch
gesture authentication schemes (De Luca et al., 2012; Bokor et al., 2014; Alpar, 2015;
Li et al., 2015; Matsubara et al., 2016; Beton et al., 2013; Alariki & Manaf, 2014;
Burgbacher et al., 2014; (De Luca et al. 2012)Lin et al., 2013; Gong et al., 2016;
Shahzad et al., 2013; Martinez-Diaz et al., 2016). These studies faced several concerns
when developing touch gesture behavioural biometric schemes, mainly in enhancing
the accuracy of the authentication schemes. Based on the previous studies, several
issues affected the performance of the authentication systems namely, gesture length
and type, feature extraction, selection of the machine learning classifier, subject size,

and training sample number.

Moreover, one of the problems with behavioural biometrics is that individual
behaviour itself is not perfectly repetitive. Instead, it is highly dependent on many
factors such as mood, emotion, tiredness, health, drugs, conflict, previous events, and
surrounding environment (Yampolskiy & Govindaraju, 2010; Abdulkader et al., 2015;
Cherifi et al., 2010; Revett, 2010).

In addition, emotions have an influence on an individual behaviour’s touch
gesture where a simple finger movement on a device touchscreen can carry rich
emotional experience (Zhu & Li, 2014). In order to be used in real-world context, the
performance of a biometric system needs to be tested against these variations (Cherifi
et al., 2010). Although the primary focus in the design of touch gesture biometric
systems has been on improving their accuracy (Sayed et al., 2013), the influence of
individual emotions on the behaviour of touch gesture biometric systems requires
additional investigation (Alariki et al. 2016; Teh et al. 2016).

From the literature review, it can be observed that when developing a touch

gesture authentication system, different aspects need to be considered. Furthermore,





