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ABSTRACT

Applications of aluminum matrix composites (AMC) in automobile and aerospace
industries have been increasing due to their attractive properties such as lightweight,
high specific modulus, stiffness and good corrosion resistance. However, the cost is the
key factor in making composite materials due to the higher cost of reinforcement
materials. The reuse of industrial waste, which is otherwise dumped as landfills, can
reduce the composite production costs and the pollution levels posed by landfills.
Therefore, this research aims to use industrial waste and graphene oxide as
reinforcement phase materials to develop new and cost-effective AMC materials. In this
study, LM6 aluminum alloy was used as a matrix phase, and industrial waste material
of marble waste (MW) and a distinct novel material of graphene oxide (GO) with 5 wt
% of each reinforcement were used for composite development. The hybrid stir and
squeeze casting method was used to develop the new composites with the use of
optimum casting process parameters derived from the DoE (Taguchi coupled with
ANOVA) technique, integrated with Statistical Process Control (SPC) Excel software.
Mechanical testing of developed AMC such as tensile, impact and hardness were
performed according to ASTM- E8/EMS8-13, ASTM- E23-16b and ASTM-E18
standards, respectively. The microstructural and morphological analysis were done
using optical microscopy (OM), scanning electron microscopy (SEM), energy
dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. Further,
fractography analysis was performed on the tensile fractured surface of both composite
materials using SEM equipped with JED-2300 Analysis Station Plus. Finally, a cost
model for the composite fabrication process was developed and compared with fly ash
and SiC-reinforced composite materials in order to draw valuable insights on the
production cost of the new composites. From the evaluation of the DoE-ANOVA
results, it was confirmed that stirring speed of 600 rpm, stirring time of 10 min, and
melting temperature of 740 °C have had a significant influence on the response variables
of LM6 composites. Mechanical test results showed that there was an increase of 16%
in UTS for LM6+5%MW and 41.8% for LM6+5%GO as compared to LM6 aluminum
alloy. For hardness property values, around 25.34% increase was witnessed in both
composites equally compared to LM6 with the hardness value of 75.52, 94.66 and 94.68
(HRF) for LM6, LM6+5%MW and LM6+5%GO respectively. The enhanced
mechanical properties were duly supported by the microstructures of both composites
captured using OM, SEM, EDS and XRD. The degree of strengthening of LM6
aluminum alloy was determined by micrographs, chemical composition, particle size,
and concentration of reinforcing phase materials. Subsequently, fractography analysis
on tensile fractured composite samples showed no or minor cracks, thus observed that
fracture was caused by matrix cracking, matrix cavitation, interface separation and
rupture. The cost analysis demonstrated that the total reinforcement cost decreased by
44% due to the use of natural and industrial waste materials compared to fly ash and SiC
reinforced composite materials. The current research reflected the concept of circular
economy as applicable to the LM6 composites to maximize the usefulness of the waste
materials. Therefore, the research concluded that MW and GO are prospective alternate
candidates as reinforcements in the LM6 matrix phase to develop composites with
enhanced mechanical properties suitable for automobile, aerospace and maritime
industries.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND

In light of varying design criteria and threshold values of crucial design parameters due
to dynamic environmental and operating conditions, any engineering system demands
its structures and components to be made up of adequately strong materials. A single
metal/alloy fails to meet all the specifications and requirements in a harsh engineering
environment. This aspect stimulates the need for developing new materials possessing
specific unique properties to meet or exceed the engineering requirements and
overcome technical challenges.
The development of innovative materials is almost like a panacea for all mission-critical
problems and requirements. However, innovation lies in how the new materials are
developed without much complications in processing, infrastructure, life expectancy
(longevity) and cost-effectiveness. In the aerospace, transportation, automotive, and
construction industries, there has been a growing demand for newer, stronger, and stiffer
yet lightweight materials over the last few decades. Composite materials are produced
largely to meet the growing technological needs of the automotive and aerospace
sectors. (Chawla et al., 2013). Materials scientists constantly explore ways and means
by which innovative and advanced materials with enhanced material properties can be
developed to meet the ever-changing requirements.

Because of its improved mechanical and physical qualities, composite materials
have proven to be a viable alternative material to many conventional metals and alloys
since their inception. Composite materials are multiphase materials made up of metallic

and nonmetallic materials that are immiscible within each other. The composites have



more enhanced strengths and moduli compared to the properties of individual
constituent materials. Thus, applications of composite materials have been gradually
growing, constantly entering and conquering new markets. Modern composite materials
make up a substantial proportion of the demand for engineered materials, ranging from
consumer goods to specialized niche applications. Types of composites include polymer
matrix-based, ceramic matrix-based and metal matrix-based composites (Rathod,
Kumar & Jain, 2017; Sommers et al., 2010) Figure 1.1 shows the essential factors

relative to the cost of the material.
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Figure 1.1 Basic Factors Relative to Cost for A Material
(Tan et al., 2008)

Due to the challenges of materials inspection, problem-solving, and constituent
material reuse, processing and manufacturing composite components are more
expensive with present technology. The cost, qualities, and availability related to the
reinforcing phase would also contribute to the greater overall cost of creating the
composite. It is estimated that the average price of aluminum alloys is 6 USD/kg, and
the average price of composites is 80 USD/kg (Tan et al., 2008). For example, in a

typical aircraft application (wing part), Tablel.1 shows a comparison between the use



of conventional aluminum alloys and AMC materials in terms of costs and component
weights. Although there is a significant weight reduction (86%) and reduction in the
number of pieces used (64%), it is obvious that the cost of composites has nearly
doubled (93%) and is no longer comparable to that of aluminium alloys. However,
increasing the mechanical qualities of composites will result in lower operating costs

over time and a quicker rate of return on investment (Tan et al., 2008).

Table 1.1 Comparison of Estimated Material Parameters for Al and AMC

%
0) [0)
Materials Number Dfacrease Weight L Estimated /o
used of parts In TG in kg D ecrease Cost $ Increase
number of in weight in cost
parts
Aluminum 117 12959.35 91857.08
64% ——— 86% —— 93%
AMC 42 1873.30 178141.63

Therefore, it is crucial for high-intensive composite users to carefully select the
materials before pressing them into manufacturing. Researchers continue to give their
best to reduce the cost of composites through a range of solutions, including the
reduction in the costs of constituent phase materials besides designing the processes
efficiently. Several approaches could be taken to reduce composites' cost, such as
single-step mixing, opting for selective reinforcements, and using cheaper
reinforcements.

Because of their superior physical, mechanical, and tribological properties
compared to base alloys, the applications of aluminum matrix composite materials in
the automotive and aerospace industries are expanding rapidly. Because of their lower

density, better wear and corrosion resistance, high strength to weight ratio, good



formability, high hardness, high thermal shock resistance, high modulus, and high
fatigue strength, composite materials with metal matrix materials, such as aluminum or
magnesium, are finding widespread use in a variety of industries. In the automobile
industry, they are used in various parts such as car bodies, pistons, valves, engine
blocks, brakes, etc. Aluminum-based composites reinforced with micro/nano SiC,
Al>O3z, B4C, TiB2, ZrOy, SiOz, and graphite particles alter the microstructure, resulting
in superior mechanical and physical properties suitable for automotive/aerospace
applications ( Koli, Agnihotri & Purohit, 2015).

Waste recycling and waste reuse are the results of the creative and innovative
thinking of active researchers. These two phenomena are critical attributes of any
organization that wishes to remain competitive and self-reliant in the dynamic market.
For example, the Sultanate of Oman is surrounded by continuous mountains, potential
natural minerals and metals such as Copper, Gold, Silver, Chromium, Lead, Nickel,
Manganese and Zinc, etc. Further, the country is renowned for exporting high-quality
non-metallic minerals such as marbles, granite and glass materials. Industrial wastes
resulting from processing these materials are dumped in landfills. A rough estimate
reports that an average of 1.6 million tons of solid waste were dumped as landfills in
2010 (Hafidh A. et al., 2019). Marble waste (MW) can be one of the potential materials
for developing composite, which is also being dumped in landfills.

In summary, the costs involved in preparatory and further treatment processes
for the reinforcing phase material also compound the total cost of manufacturing
composites and reinforcing materials. Researchers strive hard to minimize the cost
incurred in producing AMC using various strategies and techniques, including lowering

the amount of reinforcement materials utilized or using low-cost reinforcing materials.



A new class of reinforcing additive called Graphene Oxide (GO), a strong and
abundant mono-atomic layered substance from the graphite family, provides good
mechanical properties at less wt % reinforcements. GO has unique properties such as
lightweight, transparency, and superior mechanical, thermal, and hardness properties
due to its honeycomb structure, making it valuable in a range of areas (Nieto et al.,
2017). On the other hand, the land-fill material is a challenging issue for the government
because of limited land availability and adverse environmental and public health
impacts. One of the potential remedies for reducing the costs is identifying low-cost
reinforcing materials without impairing the composites' desirable properties and quality.
The present attempt aims to solve two issues with one solution, using industrial waste
materials as a reinforcing phase in AMC, which can be used in automotive applications.
The issues include the higher cost of developing AMC and environmental issues, and
greenhouse gas emission due to the landfill of the industrial wastes, which are addressed

in this research.

1.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE

Automotive and aerospace industries demand new-age engineering materials to meet
the strength, tribological and cost factors. Compared to conventional metals and alloys,
composites can meet the requirements with cost challenges due to the higher
development cost of composites. However, there are various composites in hand for
such applications with a wide range of properties. These properties are achieved through
constituent materials (both matrix and reinforcement depend on the field application),
whereas the availability of the reinforcement is the key concern as it determines the
significant development costs. Therefore, there is a need to identify and select new

reinforcement phase materials that can reduce the composites manufacturing costs



without sacrificing the materials' performance properties. Moreover, the reinforcement
phase material from a waste source can reduce the cost and solve environmental
problems posed by such waste materials.

A technological and environmentally sustainable approach to solid industrial
waste management, disposal, reuse, and recycling has emerged as one of the world's
most pressing solutions to industrial waste. Most of the wastes are dumped into landfills
which take up much space and are a significant source of greenhouse gas emissions. In
Oman, for example, all wastes from the marble industry are disposed of as landfills,
thus polluting the environment. To date, only a few engineered land-fill sites remain
among the Sultanate's more than 300 dump sites (Qureshi et al., 2018). However, MW
is a promising and suitable candidate reinforcement material for the development of
composites and reduce aluminum composite materials production costs because it will
add no any additional costs and can contribute to solving the environmental pollution
problems.

The strength of composite materials depends on several factors such as
manufacturing, the existence of porosity, properties of constituent materials and wt %
reinforcement. When unconventional reinforcing materials (viz. industrial or natural
wastes) are used in the stir casting process, it often results in a higher porosity level in
the composites, leading to inferior mechanical and physical properties(Arunachalam et
al., 2019). Hence, the shift from the conventional stir casting process to a hybrid
manufacturing process such as stir squeeze casting would be a promising solution for
the current problem as the squeeze pressure exerted during stirring operation for the
cessations of inter-atomic voids and pores of the materials, resulting in a reduction of

the porosity after solidification.





