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ABSTRACT

lon-selective electrode (ISE) sensors have been widely used in diagnostics, food
security, and environmental monitoring applications owing to their low-cost and
straightforward fabrication processes. However, monitoring physiological ions in real-
time remains a challenge where conventional ISEs suffer poor sensitivity, limit of
detection, and lifetime due to the sensing membranes of conventional ISEs, where
ions were not efficiently converted into electrons. Therefore, this project aims to
utilize nanomaterials of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as all-
solid-state transducers to improve the sensitivity, limit of detection, and lifetime of the
sensor. Moreover, this work aims to develop all-solid-state potassium ion-selective
electrode (AS-K*ISE) sensors for detection and quantification of potassium ions (K*)
in aqueous media. This research is also to evaluate and validate the sensor
performance of the AS-K*ISE sensors by monitoring dynamic K* changes in aedes
mosquito larvae. The effects of modifying low-cost screen-printed carbon electrodes
(SPCEs) with poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS),
reduced graphene oxide stabilized in polystyrenesulfonate (rGO:PSS), and their
composite (rGO:PSS-PEDOT:PSS) on the electrical conductivity and electrochemical
reversibility of electrochemical sensor performance were characterised in terms of
peak current (Ip), peak-to-peak potential separation (AEp), shift in peak potentials
(Ep_shitt), and effective surface area (Ae¢). Cyclic voltammetry (CV) results revealed
transducer rGO:PSS-PEDOT:PSS has synergistic effect of PEDOT:PSS and
rGO:PSS, where PEDOT:PSS has high peak current (l,) suggesting fast electron
transfer kinetics at the electrode-electrolyte interface, and rGO:PSS is reversible as
evidenced by small AE, and Ep shit. Owing to PEDOT:PSS having the highest peak
current of 1.637 mA which is 23 folds higher than rGO:PSS, AS-K*ISE sensors were
fabricated by drop-casting potassium-selective membrane (KISM) onto
PEDOT:PSS/SPCEs. Potentiometry measurements were used to determine limit of
detection, sensitivity, linear range, lifetime, response time, and selectivity of AS-
K*ISE sensors of varying K™ concentrations. The AS-K*ISE sensors can detect as low
as 0.01 uM of K*, with a near-Nernstian slope of 59.6 mV per decade within a linear
range between 0.1 mM and 100 mM. The lifespan extends to at least 24 weeks, with
instantaneous response of 3-10 s toward increasing K* concentrations. The AS-K*ISE
sensors showed a superior selectivity toward K* over interfering ions Na*, and was
successfully evaluated to detect varying K* concentrations in aqueous media. Finally,
the ability of the developed AS-K*ISE sensors was validated by monitoring dynamic
K™ changes in aedes mosquito larvae. The results demonstrated performance of all-
solid-state sensors based on screen printed electrodes that have performance of
sensitivity, selectivity, and lifetime compared to microfabricated electrodes, paving
efforts towards a low cost with high performance sensors for biomedical and
environmental applications.
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as a portable sensor. My contribution in this field is in the
development of ISEs using nanotechnology for K*
measurement in aqueous media, which can be applied for
physiological sensing.

Previous works done on detecting specific ions of interest
using ion-selective electrodes (ISEs). In this study, we will
focus on ISEs for monovalent cations detection and
quantification using potassium ion-selective electrode (K*ISE)
sensors. The development of K*ISE sensors is important
because K" is a major ion-species in the function of human
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Figure 2.4:

Figure 2.5:

Figure 2.6:

body and plays a major role in physiological functions. Thus,
the concentration of K" must be carefully monitored and
maintained.

Schematic representation of (a) 2D, (b) 3D, and (c) space-fill
models of mutacin, KTCPB, 0-NPOE, and PVC for
potassium-selective membrane drawn using ACD/ChemSketch
software. The 2D model shows that the positively charged K*
attracts with negatively charged B- in KTCPB. Single and
double bonds of the potassium ion-selective membrane
(KISM) components were also shown. The 3D model
illustrates the arrangement of carbon (turquoise), oxygen
(red), and sulfur (yellow), hydrogen (white), and chloride
(green) atoms and potassium ions (dark blue) of KISM
components. The space-fill model informs the radii of each
atom. The big dark blue ion is the K* of KTCPB. KTCPB:
Potassium  tetrakis(4-chlorophenyl)borate; o-NPOE: o-
nitrophenyl octyl ether; PVC: polyvinylchloride.

Schematic representation of (a) 2D, (b) 3D, and (c) space-fill
models of conductive polymer PEDOT:PSS using
ACD/ChemsSketch software. The 2D model shows that the
positively charged S* of PEDOT backbone interacts with
negatively charged O™ of PSS chain, shown by the dotted line.
Single and double bonds of PEDOT:PSS were also shown.
The 3D model illustrates the arrangement of carbon
(turquoise), oxygen (red), and sulfur (yellow) atoms of
PEDOT:PSS structure. The space-fill model informs us the
radii of each atom.

The schematic representation of graphene and its derivatives.
The 2D structures of (a) graphene, (b) graphene oxide and (c)
partially reduced graphene oxide (edited from Georgakilas et
al., 2016). (d) and their comparisons of conductivity and
hydrophobicity.

Figure 3.1: The flow chart of the research methodology performed by this

Figure 3.2:

Figure 3.3:

study.

(a) Photographic image of SPCEs showing the dimension in
comparison to a 20-cent coin. (b) magnification of working,
counter, and reference electrodes using Leica images; the
reference electrode is 1 mm in diameter. (¢) magnification of
working electrode (WE) using Leica images; the WE is 2 mm
in diameter, almost one tenth of the diameter of the 20-cent
coin.

Schematic of the components of AS-K'ISE sensors. (a)
Screen-printed carbon electrodes (SPCEs) drop-cast with
PEDOT:PSS transducer and ion-selective membrane for K*
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(KISM), showing the chemical structures of transducers
PEDOT:PSS and mutacin-based KISM; four main
components of KISM which includes PVC, 0-NPOE,
KTC|PB, and mutacin. (b) Illustration of the interactions
between the mutacin-based ionophore and K*/Na* in bulk
solution. K" interacts with the mutacin at the KISM surface,
which makes the sensing layer energetically favorable for K*
to pass through the KISM; however, smaller Na* cannot fully
interact with the oxygen atoms of the KISM, thus, Na™ is less
attractive to the KISM and repels from the KISM surface. The
flow of electrons generated from transducer to electronic
components was also shown. K* detected by the mutacin are
carried to transducers. Conductive polymers PEDOT doped
with PSS react with K* which generate electrons. The
electrons are then measured and quantified by a potentiostat
and signals are displayed using IVIUM software. (c)
Interactions of PEDOT:PSS with K* as the target ions, and the
generations of electrons. (d) Analysis performed in this study:
cyclic voltammetry (CV) and potentiometry. CVs are
performed to characterize transducers by understanding the
peak current, I,, peak potential, Ep, and effective surface area,
Ae. Potentiometry is conducted to analyze the sensors
performance which includes sensitivity, linear range, response
time, selectivity, limit of detection, and lifetime.

Figure 3.4: A linear curve of a response against analyte concentration. The

Figure 3.5:

Figure 4.1:

Figure 4.2:

slope of the linear curve represents the sensitivity of AS-
K*ISE sensors. Larger slope indicates higher sensitivity.

Experimental setup of monitoring extracellular K* levels in
solutions, with and without aedes mosquito larvae, using AS-
K*ISE sensors.

Cyclic voltammogram of activation process of SPCEs using
IVIUM software. The potential was scanned at extreme
anodic (2.5 V) and cathodic potentials (-2.5 V) for 3 cycles at
a scan rate of 100 mV/s in 0.1 N sulfuric acid (H2SOa)
solution. The inset is the cyclic voltammogram from the
manual of PINE Research Instrumentation, (Screen-printed,
2019) which confirmed the successful activation of the SPCEs
conducted in this study.

The Leica Microscope image of (a) bare SPCEs, (b)
electropolymerized and  (c)  drop-cast  rGO:PSS-
PEDOT:PSS/SPCEs. In comparison to bare SPCEs as control,
the microscope images confirmed the deposition of
electropolymerized and drop-cast rGO:PSS-PEDOT:PSS on
the WE of SPCEs.
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Figure 4.3: Surface morphology of (a) bare SPCEs, (b)

Figure 4.4:

electropolymerized rGO:PSS-PEDOT:PSS/SPCEs, and (c)
drop-cast rGO:PSS-PEDOT:PSS/SPCEs. Bare SPCEs display
an original crumbled surface with flaky design and rippled
edged, paper-like sheet structures. Once the working electrode
(WE) of the bare SPCEs was modified using
electropolymerized  rGO:PSS-PEDOT:PSS, the SEM
micrographs show that the surface of the WE is
homogeneously covered by tightly distributed globular
structures. Detailed analysis using Image J software reveal
that the globule diameters are in the range of 1.4 — 5.3 pum.
Meanwhile, drop-cast rGO:PSS-PEDOT:PSS/SPCEs show
some valley-like and bumps structures with tiny grains.

(@) Cyclic voltammetry (CV) measurements of bare SPCEs,
electropolymerized and drop-cast rGO:PSS-
PEDOT:PSS/SPCEs at a scan rate of 100 mV/s in 0.1 M
KaFe(CN)e. Alp is shown. Around 5-fold increase in Al from
0.168 mA for Algpp-are to 0.798 mA for Alpc-eare. CV
measurements of (b) SPCEs, (c) drop-cast rGO:PSS-
PEDOT:PSS/SPCEs, and (d) electropolymerized rGO:PSS-
PEDOT:PSS/SPCEs at scan rates of 75, 100, 150, 200, 250
mV/s in 01 M KzsFe(CN)s. AE, is shown. The
electropolymerized rGO:PSS-PEDOT:PSS/SPCEs showed a
lower AE, of 360 mV, 1.4 times lower than those of drop-cast
rGO:PSS-PEDOT:PSS/SPCEs (AEp = 510 mV).

Figure 4.5: (a) Cyclic voltammetry (CV) measurements of

PEDOT:PSS/SPCEs, rGO:PSS/SPCEs, and rGO:PSS-
PEDOT:PSS/SPCEs at a scan rate of 100 mV/s in 0.1 M
KsFe(CN)e. Al, was shown in the CV graphs. (b) CV
measurements of rGO:PSS/SPCEs at scan rates of 75, 100,
150, 200, and 250 mV/s. AEp and Ep snit were shown. (c) Bar
graphs showing lpa and Ep snirt for SPCEs, rGO:PSS/SPCEs,
PEDOT:PSS/SPCEs, and rGO:PSS-PEDOT:PSS/SPCEs.
Transducer rGO:PSS-PEDOT:PSS revealed synergistic effect
of rGO:PSS and PEDOT:PSS composite where rGO:PSS is
highly reversible as evidenced by the small shift in Ep_shit and
PEDOT:PSS has a high I, suggesting more electron transfer at
the electrode-electrolyte interface. (d) Effective surface area,
Ae, was determined using the slope and the Randles-Sevcik
equation. Results show that PEDOT:PSS and rGO:PSS-
PEDOT:PSS improved the A. with 13.7 mm? and 6.7 mm?,
respectively, compared to SPCEs of 3.1 mm2 The
experimental A. value of SPCEs confirmed the theoretical
area of working electrode which was 3.14 mm?.

Figure 4.6: Cyclic voltammetry of (a) PEDOT:PSS/SPCEs, (b)

rGO:PSS/SPCEs, and (c) rGO:PSS-PEDOT:PSS/SPCEs in
0.1 M KasFe(CN)e with the presence (blue) or absence (black)
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of 1 M KCI at a scan rate of 200 mV/S. A higher I, was
observed when DMSO was mixed to rGO:PSS, indicating
DMSO improves the electrical conductivity of
rGO:PSS/SPCEs.

Figure 4.7: Cyclic voltammetry of PEDOT:PSS/SPCEs at a scan rate 100
mV/s. AEp is shown. The red arrows show the scanning
direction. The blue and black lines represent CV
measurements in the presence and absence of 1 M KCI as a
supporting electrolyte, respectively. A smaller AE, was
produced when incorporating KCI, which implies supporting
electrolyte reduced migration effects.

Figure 4.8: Spectral fingerprint analysis using fourier transform infrared
spectroscopy (FTIR).

Figure 4.9: Raman spectra of bare SPCEs, rGO:PSS/SPCEs,
PEDOT:PSS/SPCEs, and rGO:PSS-PEDOT:PSS/SPCEs
recorded using the 785 nm laser excitation, over a wavelength
range of 100 to 2100 cm™.

Figure 4.10: (a) Potentiometric measurement of KISM/rGO:PSS/SPCEs,
KISM/PEDOT:PSS/SPCEs, and KISM/rGO:PSS-
PEDOT:PSS/SPCEs. (b) Calibration profile  for
KISM/rGO:PSS/SPCEs, KISM/PEDOT:PSS/SPCEs, and
KISM/rGO:PSS-PEDOT:PSS/SPCEs in KCI with increasing
concentration from 0.1, 1, 2, 4, 8, 16, 32, 100, and 1000 mM.
The KISM/PEDOT:PSS/SPCEs indicates a near-Nernstian
responses of 59.6 mV/decade, which is close to the theoretical
Nernstian value of K'ISE sensors (59 mV/decade). A super-
Nernstian response of 68.4 mV/decade was observed for
KISM/rGO:PSS/SPCEs. The inclusion of PEDOT:PSS to the
rGO:PSS made the KISM/rGO:PSS-PEDOT:PSS/SPCEs 31.9
% closer to Nernstian response when compared to the
KISM/rGO:PSS/SPCEs.

Figure 4.11: (a) Potentiometry measurement of KISM/SPCEs,
PEDOT:PSS/SPCEs, and KISM/PEDOT:PSS/SPCEs. (b)
Calibration profile for KISM/SPCEs, PEDOT:PSS/SPCEs,
and KISM/PEDOT:PSS/SPCEs. A linear relationship between
voltage and K* concentration with sensitivity of 52.8
mV/decade for PEDOT:PSS/SPCEs was observed, which
increased to 59.6 mV/decade for KISM/PEDOT:PSS/SPCEs,
and further increased to 64.7 mV/decade for KISM/SPCEs.
The results suggest that transducer layers play an important
role in stabilizing the voltage; as an ion-to-electron transducer
of AS-ISEs, with negligible voltage drift. Meanwhile KISM is
responsible for selectively detecting target ions and allows a
specific capturing of K*, hence more ions are transduced into
electrons, thus improving the voltage signals.
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Figure 4.12: Selective K* detection and real-time monitoring of AS-K*ISE
sensors against a physiological non-target analyte, Na*. (a)
Separate Solution Method. A negligible or small interference
of 2 - 6 mV voltage change was observed in NaCl, compared
to 20 - 45 mV voltage change in KCI. (b) Fixed Interference
Method. The lowest detection limit of KCI was determined in
77 mM of background solution NaCl. KCI was detected as
low as 0.1 mM in 77 mM NaCl. A weak interference of Na* of
log Kkna = -2.9 was observed, suitable for monitoring a low
amount of K™ in the presence of high Na*. This indicates the
superior K* selectivity of the AS-K'ISE sensors attributed to
the KISM that excludes passage of interfering ions. 101

Figure 4.13: The detection limit of AS-K'ISE sensors towards K" was
determined by performing potentiometry at concentrations as
low as 10®° to 100 mM. (a) Voltage changes of AS-K*ISE
sensors were observed and measured as the KCI
concentrations increased from 10 to 100 mM in DI water.
Results suggest that K* was detected as low as 0.01 uM. (b)
Calibration curve for AS-K'ISE sensors in KCI with
increasing concentrations from 10° to 100 mM. Results
indicate that the linear range was from 0.1 mM to 100 mM,
suitable for K* physiological concentration range of 4 - 100
mM. 103

Figure 4.14: Lifetime of the AS-K'ISE sensors was studied.
Potentiometric measurements in (a) the first and (b) the sixth
months after fabrication of the AS-K'ISE sensors. KCI of
concentrations 0.1, 1, 2, 4, 8, 16, and 32, 100, and 1000 mM
were dropped into a glass vial containing 11 ml DI water.
Voltage changes were observed. The AS-K*ISE sensors were
then sealed by parafilm to avoid moisture and contamination
and were stored in the dark. Same measurements were
repeated after 6 months using the same AS-K*ISE sensors.
Steps were seen in both potentiometric graphs, suggesting that
the AS-K'ISE sensors can have lifetime capability and
potentiometric measurements stability after 6 months.
Calibration curve of the AS-K*ISE sensors in (c) the first and
(d) the sixth months after fabrications. The linear range
remained almost the same for both potentiometric
measurements with 0.042 - 3.3 mM in the first month, and
0.080 - 3.3 mM in the sixth month. The R? reduced by only
0.0071, where R? = 0.9974 and R? = 0.9903 for the AS-K*ISE
sensors in the first and sixth months, respectively. The results
indicate lifetime capability of the AS-K*ISE sensors after six
months of storage. 105

Figure 4.15: The extracellular K™ levels of Aegypt and Albopratas
measured by the AS-K'ISE sensors. DI water was measured
as a negative control. Real-time potentiometry measurements
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of solutions containing Aegypt and Albopratas revealed a
trend of increasing and decreasing K* concentrations,
respectively, throughout measurements of 6000 s (1 hour 40
minutes). In contrast, DI water shows a clean, constant, and
stable extracellular K* levels throughout the same time frame
of 6000 s. 112

Figure 4.16: The extracellular K* levels in solutions, with and without (a)
Aegypt and (b) Albopratas, aedes mosquito larvae measured
by the AS-K'ISE sensors. The solutions without the larvae
and solutions in DI water were measured as negative controls.
(@) The trend of extracellular K* levels in solutions without
Aegypt followed the trend of those in DI water, where both
cases reached a stable voltage at around t = 1000 s. On the
contrary, the extracellular K* levels in solutions with Aegypt
revealed a trend of increasing K* concentrations at a slower
rate compared to those without Aegypt, where the voltage
reached stability at t = 3000 s. (b) The same trend of
extracellular K* levels of stable voltage signals was observed
in both solutions without Albopratas and DI water throughout
the 6000 s. On the contrary, the extracellular K* levels in
solutions with Albopratas revealed a trend of decreasing K*
concentrations from 800 mV to 740 mV. 114

Figure 4.17: SEM images of the surface morphology of KISM/SPCEs (a)
before and (b) after potentiometric measurement. The results
show the KISM pores open after the potentiometric
measurement. Detailed analysis using Image J software
reveals that before potentiometric measurement, the pore
diameter is in the range of 1.0 - 2.5 um. However, the pore
diameters enlarge up to around 5.0 um, a two-fold increase
after potentiometric measurement. The results suggest that
potentiometric measurement affects the opening of ionophore
pores which permit only free K* to diffuse into and out of the
KISM pores. 117
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Ccv

FTIR
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GO
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LIST OF ABBREVIATIONS

All-solid-state ion-selective electrode

All-solid-state potassium-ion selective electrode
Counter electrode

Cyclic voltammetry

Fourier transform infrared spectroscopy

Glassy carbon electrodes

Graphene oxide
lon-selective electrodes

lon-selective membrane

Potassium-ion selective electrode
Potassium-ion selective membrane

Potassium tetrakis(chlorophenyl)borate
Low-middle income countries

Limit of detection

National aeronautics and space administration

o-nitrophenyloctylether
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Point-of-care
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SEM
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Scanning electron microscopy
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