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ABSTRACT 

Ion-selective electrode (ISE) sensors have been widely used in diagnostics, food 

security, and environmental monitoring applications owing to their low-cost and 

straightforward fabrication processes. However, monitoring physiological ions in real-

time remains a challenge where conventional ISEs suffer poor sensitivity, limit of 

detection, and lifetime due to the sensing membranes of conventional ISEs, where 

ions were not efficiently converted into electrons. Therefore, this project aims to 

utilize nanomaterials of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as all-

solid-state transducers to improve the sensitivity, limit of detection, and lifetime of the 

sensor. Moreover, this work aims to develop all-solid-state potassium ion-selective 

electrode (AS-K+ISE) sensors for detection and quantification of potassium ions (K+) 

in aqueous media. This research is also to evaluate and validate the sensor 

performance of the AS-K+ISE sensors by monitoring dynamic K+ changes in aedes 

mosquito larvae. The effects of modifying low-cost screen-printed carbon electrodes 

(SPCEs) with poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), 

reduced graphene oxide stabilized in polystyrenesulfonate (rGO:PSS), and their 

composite (rGO:PSS-PEDOT:PSS) on the electrical conductivity and electrochemical 

reversibility of electrochemical sensor performance were characterised in terms of 

peak current (Ip), peak-to-peak potential separation (ΔEp), shift in peak potentials 

(Ep_shift), and effective surface area (Ae). Cyclic voltammetry (CV) results revealed 

transducer rGO:PSS-PEDOT:PSS has synergistic effect of PEDOT:PSS and 

rGO:PSS, where PEDOT:PSS has high peak current (Ip) suggesting fast electron 

transfer kinetics at the electrode-electrolyte interface, and rGO:PSS is reversible as 

evidenced by small ΔEp and Ep_shift. Owing to PEDOT:PSS having the highest peak 

current of 1.637 mA which is 23 folds higher than rGO:PSS, AS-K+ISE sensors were 

fabricated by drop-casting potassium-selective membrane (KISM) onto 

PEDOT:PSS/SPCEs. Potentiometry measurements were used to determine limit of 

detection, sensitivity, linear range, lifetime, response time, and selectivity of AS-

K+ISE sensors of varying K+ concentrations. The AS-K+ISE sensors can detect as low 

as 0.01 µM of K+, with a near-Nernstian slope of 59.6 mV per decade within a linear 

range between 0.1 mM and 100 mM. The lifespan extends to at least 24 weeks, with 

instantaneous response of 3-10 s toward increasing K+ concentrations. The AS-K+ISE 

sensors showed a superior selectivity toward K+ over interfering ions Na+, and was 

successfully evaluated to detect varying K+ concentrations in aqueous media. Finally, 

the ability of the developed AS-K+ISE sensors was validated by monitoring dynamic 

K+ changes in aedes mosquito larvae. The results demonstrated performance of all-

solid-state sensors based on screen printed electrodes that have performance of 

sensitivity, selectivity, and lifetime compared to microfabricated electrodes, paving 

efforts towards a low cost with high performance sensors for biomedical and 

environmental applications. 
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 خلاصة البحث 
ABSTRACT IN ARABIC 

للأيوناتت الانتقائية  الكهربية  الأقطاب  والأمن  (ISE) عتبر مستشعرات  الطبي  التشخيص  للاستخدام في  مربحاً  خياراً 
الغذائي والمراقبة البيئية نظراً لانخفاض التكلفة وعمليات التصنيع المباشرة. ومع ذلك ، لا تزال المراقبة الفورية للأيونات 

أقطاب   تعاني  حيث  تحديًً  تمثل  الطبي  التشخيص  في  وحد  ISEالفسيولوجية  الحساسية  ضعف  من  ود التقليدية 
ذات الحالة الصلبة   ISEالتقليدية. تعتبر أقطاب    ISEلأغشية الاستشعار في أقطاب  دية  لمحدر الاكتشاف والعمر نظراً  

( المعدلة احد الحلول. لذالك فان فهم الانعكاس الكهروكيميائي لأداء SPCEsباستعمال أقطاب الكربون المطبوعة )
إيثيلين -3،4بـ بولي )  (SPCEsأقطاب الكربون المطبوعة )  بتعديل   هذه الاقطاب الصلبة المعدلة ضروري. لذالك قمنا

)الصوديوم   ثيوفين(  سلفونات(-4ديوكسي  في (PEDOT: PSS)    ستايرين  المستقر  المرجع  الجرافين  أكسيد   ،
(. ثم قمنا بدراسة الخصائص  rGO: PSS-PEDOT: PSS( ، ومركب )rGO: PSSبوليسترين سلفونات )

لـ    و    PEDOT: PSS / SPCEsالكهروكيميائية   ،rGO: PSS / SPCEs    و  ،rGO: PSS-
PEDOT: PSS / SPCEs  ( من حيث ذروة التيارpI  والفرق في ، )  الجهد  ذروة(pEΔ  و انزيًح  في ) ذروة

) p_shiftE)الجهد   السطح  وفعالية مساحة   ، )eA)   الدوري  ـباستعم قCV)ال الجهد  نتائج  الجهد ــ(. كشفت  ياس 
( لـ  CVالدوري   )rGO: PSS-PEDOT:PSS  :  هناك تآزريان  و    PEDOT: PSS  بين    تأثير 

rGO: PSS    حيث ،PEDOT: PSS  ( له ذروة تيار عاليةpI مما يشير إلى حركية نقل الإلكترون سريعة علي )
و    ، الكهربائي  القطب  اقابلله    rGO:PSSواجهة  من  ية  يتضح  ان Ep_shiftو    pEلعكس كما  الي  نظراً   .

PEDOT: PSS    بلغت تيار  ذروة  أعلى  بم  1.637سجل  أعلى  وهو  ـــــر  أمبي من   23قدار   ـــملي  ضعـــفًا 
rGO:PSS    مستشعرات بتصنيع  قمـــنا   ،ISE+K-AS    طريق )  وضععن  للبوتاسيوم  انتقائي  (  KISMغشاء 

ثم  PEDOT: PSS / SPCEs  المحول  على ب.  لتحديد  للقياسات  قمنا  وحد جهد   ، والانتقائية   ، الحساسية 
( البوتاسيوم  لأيون  الانتقائي  الكهربائي  القطب  مجسات  وعمر   ، بISE+K-ASالكشف  ايونات تركيز  تغيير  ( 

  مول ميكرو   0.01  قد يصل الي   ISE+K-ASلـ    وقد اظهرت القياسات ان حد التحسس الادني .K+  البوتاسيىوم
ي مل  100إلى    ولمي  مل  0.1بين  نطاق خطي  في العقد ضمن    فولط  ملي  59.6من    Nernstianمع انحدار شبه  

  . K+كيز  ا ثوانٍ نحو زيًدة تر   10-3  في أسبوعًا، مع استجابة فورية    24إلى    للأقطاب   متد العمر الافتراضيا  كما  .ولم
المتغيرة   K+وتم اختبارها بنجاح لاكتشاف تركيزات   ، K+انتقائية فائقة تجاه    ISE+K-ASأظهرت مستشعرات    كما 

. أظهرت النتائج المتحصل عليها ان أداء مستشعرات الحالة الصلبة بالكامل بناءً على أقطاب كهربائية في الوسائط المائية 
يقة ، مما يمهد بالأقطاب الكهربائية الدق  تهمقارن  يكن  مطبوعة على الشاشة تتميز بأداء من الحساسية والانتقائية والعمر

 .الجهود نحو تكلفة منخفضة مع أجهزة استشعار عالية الأداء للتطبيقات الطبية والبيئية 
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Steps were seen in both potentiometric graphs, suggesting that 
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potentiometric measurements stability after 6 months. 

Calibration curve of the AS-K+ISE sensors in (c) the first and 

(d) the sixth months after fabrications. The linear range 

remained almost the same for both potentiometric 
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months of storage. 105 

Figure 4.15: The extracellular K+ levels of Aegypt and Albopratas 

measured by the AS-K+ISE sensors. DI water was measured 

as a negative control. Real-time potentiometry measurements 
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of solutions containing Aegypt and Albopratas revealed a 

trend of increasing and decreasing K+ concentrations, 

respectively, throughout measurements of 6000 s (1 hour 40 
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of 6000 s. 112 
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Aegypt and (b) Albopratas, aedes mosquito larvae measured 

by the AS-K+ISE sensors. The solutions without the larvae 

and solutions in DI water were measured as negative controls. 

(a) The trend of extracellular K+ levels in solutions without 

Aegypt followed the trend of those in DI water, where both 

cases reached a stable voltage at around t = 1000 s. On the 

contrary, the extracellular K+ levels in solutions with Aegypt 

revealed a trend of increasing K+ concentrations at a slower 

rate compared to those without Aegypt, where the voltage 

reached stability at t = 3000 s. (b) The same trend of 

extracellular K+ levels of stable voltage signals was observed 

in both solutions without Albopratas and DI water throughout 
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Figure 4.17: SEM images of the surface morphology of KISM/SPCEs (a) 

before and (b) after potentiometric measurement. The results 

show the KISM pores open after the potentiometric 

measurement. Detailed analysis using Image J software 

reveals that before potentiometric measurement, the pore 

diameter is in the range of 1.0 - 2.5 µm. However, the pore 

diameters enlarge up to around 5.0 µm, a two-fold increase 
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