INVESTIGATION OF ANTICANCER COMPOUNDS FROM NON-INFECTED AGARWOOD BRANCH TOWARDS DEVELOPMENT OF BREAST CANCER THERAPEUTICS

ΒY

PHIRDAOUS BIN ABBAS

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

FEBRUARY 2022

ABSTRACT

Agarwood; a dark-aromatic resinous substance released by Aquilaria trees upon infection; is one of the most treasured forest valuable resources. The plant materials from the trees were also reported to be utilized traditionally across various communities to fulfil religious, medicinal, and aromatic preparations. There has also been an increase of modern ethnomedicinal reports of agarwood or its plant materials towards various diseases. While a lot of focus has been on the resin itself, less has been focused on the agarwood non-infected branch which is abundant all year round and mostly considered as a waste from agarwood plantation. Our previous work done on Aquilaria subintegra non-infected branch has demonstrated profound growth inhibitory effects against Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. Thus, the current study attempted to investigate the underlying cell death mechanisms behind the agarwood branch ethanolic extract (ABEE) against MCF-7 cells as well as enhance the extraction process conditions via one factor at a time analysis (OFAT) and Response Surface Methodology (RSM)-based experimental design; employing the Faced Centered Central Composite Design (FCCCD). The study also employed a bio-guided approach in an attempt to isolate and identify potential active compounds using column chromatography, thin layer chromatography, Gas Chromatography Mass Spectroscopy (GCMS), Fourier Transformed Infrared Spectroscopy (FTIR), Proton (H-NMR) and Carbon-13 (C-NMR) Nuclear Magnetic Resonance Spectroscopy, Ultraviolet-visible spectroscopy (UV) and Liquid Chromatography Mass Spectroscopy (LCMS). The study first replicated the established extraction process conditions to obtain the extract, which was then subjected to flow cytometry analysis and gene expression profiling with pathway analysis via real time Human Cell Death PathwayFinderTM RT² Profiler PCR array. It was observed that the extract caused time-dependent apoptosis-necrosis of MCF-7 cells and significantly affected 48 genes (41 down-regulated and 7 up-regulated genes) indicative of cellular responses towards stimuli of specific apoptotic signals. NF-KB1 gene was the most down-regulated gene (fold change of -26.704) and TRAF2 gene was the most up-regulated gene (fold change of 5.52). Pathway analysis conducted using online KEGG tool suggested that these differentially expressed genes (DEGs) regulated cell death mechanisms via the apoptosis and p53 signalling pathways. Then, through combination of OFAT and FCCCD; an optimal extraction process employing the temperature and solid-liquid ratio at 45 °C and 1:19 (w/v), respectively, with desirable factors; (i) safe temperature (less risk towards thermos-labile compounds) and (ii) economical solvent volume, was obtained. The model predicted ABEE yield of 30.232 ± 0.266 mg/g dried materials (DM) and validation run afforded ABEE at 25.35 \pm 1.19 mg/g DM (*p*-value = 0.007). ABEE obtained from the recommended process conditions showed cytotoxicity effects on MCF-7 cells with IC₅₀ estimate of 3.645 \pm 0.099 µg/mL. The extract also affected MCF-7 cell attachment and viability with altered morphology. Th bio-guided approach of fractionation and isolation process then led to a plethora of fractions. However, decrease of cytotoxicity was observed after each phase of fractionation suggesting synergism-dependent effect (of the crude extract) which became more apparent towards the end of the fractionation study. Nonetheless, the study isolated and identified a non-active orange-yellow needle-like crystal flavonoid, ABEE-FR4A1; characterized to be 5-hydroxy-7,4'-dimethoxyflavone (13.7 mg, 6.13 %

w/w). The parent fraction (FR 2-3, 2037 mg) and subfraction (FR 3A3, 223.5 mg) exhibited moderate cytotoxic effects (28.52 ± 0.1524 and $23.11 \pm 0.1141 \mu g/mL$), but inferior to the crude extract. In conclusion, the study had determined the underlying cell death mechanisms of ABEE against MCF-7 cells, optimized the extraction process conditions and identified several compounds with varying cytotoxic effects. These finding would add value to the non-infected agarwood branch that is abundant in agarwood plantations thus help promote the sustainable growth of agarwood industry; and pave the way towards development of locally sourced natural anti-cancer therapeutics.

خلاصة البحث

العود، مادة صمغية عطرية داكنة تفرزها أشجار آكيلاريا عند الإصابة بعدوى؛ هي واحدة من أكثر موارد الغابات قيمة. وتشير التقارير إلى استخدام المواد النباتية من هذه الأشجار بشكل تقليدي عبر المجتمعات المختلفة للأغراض الدينية والطبية والعطرية، وهناك أيضًا المزيد من التقارير الطبية العرقية الحديثة عن خشب العود أو مواده النباتية تجاه أمراض مختلفة. وفي حين كان الكثير من التركيز على المادة الصمغية نفسها ، فقد تمّ التركيز بشكل أقلّ على فرع خشب العود غير المصاب والمتوفر بكثرة طيلة العام ويعدّ في الغالب من نفايات مزارع خشب العود. أظهر عملنا السابق الذي تم إجراؤه على فرع Aquilaria subintegra غير المصاب آثارًا مثبطة للنمو العميق ضد خلايا سرطان الثدي MCF-7. وبالتالي ، حاولت الدراسة الحالية التحقيق في آليات موت الخلايا الكامنة وراء المستخلص الإيثانولي لفرع خشب العود (ABEE) ضد خلايا MCF-7 وكذلك تحسين ظروف عملية الاستخراج عبر عملية الاستخلاص عبر التصميم التجريبي القائم على OFAT ومنهجية سطح الاستجابة (RSM) باستخدام التصميم المركب المركزي الموجه (FCCCD). استخدمت الدراسة أيضًا نهجًا موجهًا بيولوجيًا في محاولة لعزل وتحديد المركبات النشطة المحتملة باستخدام كروماتوجرافيا العمود، كروماتوجرافيا الطبقة الرقيقة، الكروماتوجرافيا الغازية المتصلة بمطياف الكتلة (GCMS) ، مطياف فورييه للأشعة تحت الحمراء (FTIR)، التحليل الطيفي بالرنين المغناطيسي النووي: البروتوني (H-NMR) والكربوني - 13 (-C NMR)، التحليل الطيفي للأشعة فوق البنفسجية المرئية (UV) و الكروماتوجرافيا السائل المزود بمقياس طيف الكتلة (LCMS). قامت الدراسة أولاً بتكرار ظروف عملية الاستخلاص المحددة المتعارف عليها للحصول على المستخلص، والذي خضع بعد ذلك لتحليل قياس التدفق الخلوي وتنميط التعبير الجيني مع تحليل المسار الفوري عبر Human Cell Death PathwayFinder[™] RT² Profiler PCR . وقد لوحظ أن المستخلص تسبب في نخر وقتى لخلايا -MCF 7، وأثر المستخلص أيضًا بشكل كبير على 48 جينًا (41 جيناً منظماً بالإنقاص و 7 جينات منظِّمة بالزيادة) مما يدل على الاستجابات الخلوية تجاه محفزات إشارات موت الخلايا المبرمج المحددة. كان جين NF-KB1 هو الجين الأكثر خضوعًا للتنظيم (تغيير بقيمة 26.704-) بينما كان جين TRAF2 هو الجين الأكثر تنظيمًا بالزيادة (تغيير بقيمة 5.52). اقترح تحليل المسار الذي تم إجراؤه باستخدام أداة KEGG عبر الإنترنت أن هذه الجينات المعبر عنها تفاضليًا (DEGs) تنظم آليات موت الخلايا عبر مسارات إشارات موت الخلايا المبرمج وp53. بعد ذلك، ومن خلال الجمع بين OFAT و FCCCD ؛ تم الحصول على عملية استخلاص مثالية تستخدم درجة حرارة ونسبة المادة السائلة إلى صلبة عند 45 درجة مئوية و 1:19 (وزن / حجم)، على التوالي، مع العوامل المرغوبة؛ تم الحصول على (1) درجة حرارة آمنة (مخاطر أقل تجاه المركبات المتأثرة بالحرارة) و (2) حجم اقتصادي للمذيب. تنبًّا النموذج بإنتاجية ABEE تبلغ 30.232 ± 0.266 ملجم/جم من المواد المجففة (DM) وتم التحقق من صحة النموذج بالحصول على ABEE بقيمة DM ملجم/جم DM (القيمة الاحتمالية p=0.007). أظهر ABEE الذي تم الحصول عليه من ظروف

عملية الاستخلاص الموصى بما تأثيرات السمية الخلوية على خلايا سرطان الثدي MCF-7 وغوها مع تغير في الشكل. ثم أدى النهج 0.099 ± ميكروجرام/مل. وأثّر المستخلص كذلك على ارتباط خلية MCF-7 وغوها مع تغير في الشكل. ثم أدى النهج الموجه بيولوجيًا لعملية التجزئة والعزل لعدد كبير من الأجزاء. ومع ذلك، لوحظ انخفاض في السمية الخلوية بعد كل مرحلة من مراحل التجزئة مما يشير إلى التأثير المعتمد على التازر (للمستخلص الخام) والذي أصبح أكثر وضوحًا في نماية دراسة من مراحل التجزئة مما يشير إلى التأثير المعتمد على التآزر (للمستخلص الخام) والذي أصبح أكثر وضوحًا في نماية دراسة الموجه بيولوجيًا لعملية التجزئة والعزل لعدد كبير من الأجزاء. ومع ذلك، لوحظ انخفاض في السمية الخلوية بعد كل مرحلة من مراحل التجزئة مما يشير إلى التأثير المعتمد على التآزر (للمستخلص الخام) والذي أصبح أكثر وضوحًا في نماية دراسة ABEE. ومع ذلك، قامت الدراسة بعزل وتحديد فلافونويد بلوري أصفر برتقالي غير نشط يشبه الإبر ، -ABEE التجزئة. ومع ذلك، قامت الدراسة بعزل وتحديد فلافونويد بلوري أصفر برتقالي غير نشط يشبه الإبر ، -ABEE التجزئة. ومع ذلك، قامت الدراسة بعزل وتحديد فلافونويد بلوري أصفر برتقالي غير نشط يشبه الإبر ، -ABEE التجزئة. ومع ذلك، قامت الدراسة بعزل وتحدير ك، رحميئوكسي فلافون (13.7 ملجم، 13.7)، وأظهر الجزء الأمي (3.7 معنيز بكونه بكونه بكونه 5-هيدروكسي-4،7/-دييئوكسي فلافون (13.7 ملجم، 13.7)، وأظهر الجزء الأوري). وأظهر الجزء الأمي (3.7 ملجم) والجزء الفرعي (3.4 محل ملحم) ، ولكنها أدني في قيمتها من المستخلص الخام. وختاماً، الجزء الأمي (3.5 ملجم) والجزء الفرعي (3.4 محل ملحم) ، ولكنها أدني في قيمتها من المستخلص الخام. وختاماً، حدّدت الدراسة الآليات الأساسية لمستخلص محلوم مرامل) ، ولكنها أدني في قيمتها من المستخلص الخام. وختاماً، حدّدت الدراسة الآليات الأساسية لمستخلص على مناية من المستخلص الخام. وحمتنات ظروف عملية الاستخلاص حدّدت الدراسة الآليات الأساسية مستخلص عدلي مد خلايا 7.7 من مركرة ومن مراوف عملية الاستخلاص وحددت العديد من الركبات ذات تأثيرات مئية متفاوتة. ستضيف هذه النتائج قيمة إلى فروع خشب العود غير الماب وحددت العديد من الركبات ذات تأثيرات مئية متفاوتة. ستضيف هذه النتائج قيمة إلى فروع خشب العود أير الماب وحد وماددت العدي مي مزاي خشب العود، وبالتالي تساعد في تع

APPROVAL PAGE

The thesis of Phirdaous Bin Abbas has been approved by the following

Yumi Zuhanis Has-Yun Hashim Supervisor

> Hazmah Mohd Salleh Co-Supervisor

Ma'an Fahmi Rashid Al-Khatib Co-Supervisor

Saripah Salbiah Syed Abdul Azziz Co-Supervisor

Noor Illi Binti Mohamad Puad Internal Examiner

> Asmah Awal External Examiner

Roslina Othman Chairperson

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Phirdaous Bin Abbas

Un Signature

Date: 11 February 2022

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

INVESTIGATION OF ANTICANCER COMPOUNDS FROM NON-INFECTED AGARWOOD BRANCH TOWARDS DEVELOPMENT OF BREAST CANCER THERAPEUTICS

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2022 Phirdaous Bin Abbas and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand theIIUM Intellectual Property Right and Commercialization policy.

Affirmed by Phirdaous Bin Abbas

Signature

Date: 11 February 2022

ACKNOWLEDGEMENT

In The Name of Allah, the Most Beneficent, the Most Merciful

Praises to Allah S.W.T., The Almighty God for His blessings has enabled me to accomplish the study. This thesis is a result of the long but fruitful process studying at the International Islamic University Malaysia (IIUM). I would like to express the deepest appreciation to my supervisor, Prof. Dr. Yumi Zuhanis Has-Yun Hashim for her guidance, advises, encouragement, patience and valuable assistance that enable me to accomplish my Masters program smoothly and efficiently. I also would like to thank my co-supervisor, Prof. Dr. Hamzah Mohd Salleh, Prof. Dr Ma'an Fahmi Rashid Al-Khatib, and Assoc. Prof. Dr Saripah Salbiah for their vital input, time and support during my study.

I sincerely appreciate the friendship and assistance from all lab mates and lab technicians, Br. Annuar, Br. Aslan, Br. Hafizul, Br. Ezza Faiez, and Sis. Adilla. A special thank you is dedicated to Dr. Amal and Dr. Husna, from the INHART department for their support and attention throughout my study. I wish to extend my appreciation to everyone, although not individually named here, who had contributed directly or indirectly to my project and thesis.

Last but not least, I want to take the opportunity to thank my wife, Norazura Zainal, whose love, patience and company are the strongest motivation. My deepest gratitude to my parents, Abbas Alias and Hasnah Saat, and my sister, Syuhada Abbas, for their unconditional love, patience, willingness and sacrifice for my well-being throughout my life. Without all of you, it would not be possible for me to complete my project and thesis. May Allah bless you all for your kindness and for that, I will forever be grateful.

TABLE OF CONTENTS

Abstract		ii
Abstract in Arabic	2	iv
Approval Page		vi
		vii
Copyright Page		viii
	ts	ix
Ū.		XV
		xxii
-	ons	xxxvii
CHAPTER ONE	: INTRODUCTION	1
	und of the study	1
0	statement and significant of study	4
	h Philosophy	5
	h Objectives	7
	h Methodology	8
	f Study	9
	Drganization	10
1.7 Thesis C		10
CHAPTER TWO	D: LITERATURE REVIEW	11
	tion	11
		11
2.2 Cancer 2.2.1		12
2.2.1	1	12
2.2.3	Breast cancer	17
	2.2.3.1 Breast cancer epidemiology	18
	2.2.3.2 Breast cancer pathophysiology	19
	2.2.3.3 Breast cancer stages	21
2.2.4	Different cancer treatments	22
2.2.5	Natural product and cancer	25
0	od	26
2.3.1	Agarwood taxonomy and botanical profile	28
2.3.2	History of agarwood and trade distribution	30
2.3.3	Agarwood formation and current practises	34
2.3.4	Agarwood ethnopharmacology and phytochemistry	37
	2.3.4.1 Ethnopharmacology of agarwood	37
	2.3.4.2 Phytochemistry of agarwood	39
2.3.5	Agarwood current pharmacological activities	44
2.3.6	Aquilaria subintegra	51
2.4 Natural	product extraction for bioactivity investigation	53
2.4.1	Principle and fundamental aspects	53
2.4.2	Conventional extraction methods	54
2.4.3	Process conditions towards efficient extraction process	57
	2.4.3.1 Extraction temperature effect	57
	2.4.3.2 Extraction time effect	58

		2.4.3.3	Agitation speed effect	58
		2.4.3.4	Solid-liquid (SL) ratio effect	59
	2.4.4	Experim	ental design and extraction	59
	2.4.5		and purification of natural products	61
		2.4.5.1	Column chromatography (CC)	62
		2.4.5.2	Thin layer chromatography (TLC)	64
		0 4 5 0	Preparative TLC, washing and recrystallization	
		2.4.5.3	method	66
2	.5 Bioactiv	vity analys	is and natural product	67
	2.5.1	• •	bioassay in natural product analysis	67
		2.5.1.1	Cell attachment assay	67
		2.5.1.2	Cell viability assay	68
		2.5.1.3	Cell cytotoxicity assay	69
	2.5.2	Flow cyt	ometry in natural product analysis	71
		2.5.2.1	Apoptosis analysis in flow cytometry	72
	2.5.3	Pathway	analysis and cancer study	73
		2.5.3.1	Gene expression and cancer study	74
		2.5.3.2	RT ² profiler PCR array technology	76
2	.6 Summa		1	78
		5		
СНАР	TER THI	REE: RES	EARCH METHODOLOGY	79
				79
3	.2 Plant m	aterial		81
			wood branch	82
			Extraction of agarwood branch based on previous	
	3.3.1			82
	222	Phase 2:	One factor at a time (OFAT) for process	
	3.3.2		as screening	83
		3.3.2.1	Chemicals and reagents	83
		3.3.2.2	OFAT experimental setup	84
		3.3.2.3	Data collection and analysis	86
	3.3.3	Optimiza	tion of process conditions	86
		-	Chemicals and reagents	86
			Response surface methodology for ABEE	
		3.3.3.2	extraction	87
		3.3.3.3	Data collection and analysis	88
3	.4 General	cell cultur	e handling and bioactivity screening	88
	3.4.1		ls and reagents	88
	3.4.2		ç S	89
	3.4.3		preparation	89
		3.4.3.1	Media preparation	89
		3.4.3.2	Preparation of phosphate buffered saline (PBS).	90
			Preparation of culture medium with $10 \% (v/v)$	
		3.4.3.3	fetal bovine serum (FBS)	90
	3.4.4	Cell cult	ure handling techniques	90
		3.4.4.1	Thawing cryopreserved cells	91
		3.4.4.2	Adherent cell subculture technique	91
		3.4.4.3	Cryopreserving adherent cell line	92

		3.4.4.4	Trypan blue dye exclusion technique for cell
			quantification
3.	.5 Investig	ation of bi	iological activities
	3.5.1	Cell atta	chment assay (CAA)
	3.5.2	Cell viat	bility assay (CVA)
	3.5.3	Cell cyto	otoxicity assay using Cell Count Reagent SF
	3.5.4	Flow cyt	tometry
		3.5.4.1	Preparation of agarwood branch extract
		3.5.4.2	Chemicals and reagents
		3.5.4.3	Apoptosis analysis using Annexin A5 FITC kit.
	3.5.5	Real tim	e PCR array
		3.5.5.1	Preparation of extract
		3.5.5.2	Chemicals and reagents
		3.5.5.3	Cell viability study for RNA extraction
			RNA extraction technique via RNeasy [®] Mini
		3.5.5.4	Kit
		3.5.5.5	cDNA synthesis via RT ² First Strand Kit
		5.5.5.5	Real time PCR using RT^2 profiler array using
		3.5.5.6	Human Cell Death PathwayFinder [™] (PAHS-
		5.5.5.0	212Z)
		3.5.5.7	
2	6 Charact		Data collection and analysis
3.			of extract and fractions
	3.6.1		nalysis
2	3.6.2		alysis
3.			fication of ABEE using column chromatography.
	3.7.1		lls and reagents
	3.7.2		chromatography setup for natural product
	3.7.3		loading and elution techniques
	3.7.4	Thin lay	er chromatography
		3.7.4.1	<i>p</i> -anisaldehyde-sulphuric acid preparation and
		5.77.111	procedure
		3.7.4.2	Dragendorff's reagent preparation and
		5.7.1.2	procedure
		3.7.4.3	Vanillin-sulphuric reagent preparation and
			procedure
	3.7.5	Washing	and recrystallization technique
	3.7.6		al elucidation of purified compounds
		3.7.6.1	GCMS Analysis
		3.7.6.2	FTIR Analysis
		3.7.6.3	LC-MS Analysis
		3.7.6.4	Ultraviolet-visible (UV) analysis
		3.7.6.5	Nuclear Magnetic Resonance (NMR) analysis
СНАР	TER FOU	JR: RESU	JLTS AND DISCUSSIONS
4.	1 Introduc	tion	
			nd gene expression analysis of agarwood branch
	-		
	4.2.1	Flow cy	tometry analysis of ABEE16

4.2.2		pression profiling of ABEE16-treated MCF-7			
	cells		121		
	4.2.2.1	ABEE16 effect on cell viability and	100		
		morphology	122		
	4.2.2.2	RNA recovery from ABEE16-treated MCF-7	105		
		cells	125		
		Real time PCR using RT2 profiler array using			
	4.2.2.3	Human Cell Death PathwayFinder TM RT^2	100		
		Profiler [™] PCR Array (PAHS-212Z)	126		
	4.2.2.4	Pathway analysis of DEGs affected in	120		
	1225	ABEE16-treated MCF-7 cells	129		
	4.2.2.5	Roles of selected genes in apoptotic pathway	135		
4.2.4		on: Apoptotic effect and differential gene	139		
4 2 D rocoss a	-	on of ABEE16 treated MCF-7 cellsoptimization for high ABEE yield	144		
4.3 FIOCESS C 4.3.1			144		
		conditions screening via One Factor at a Time	144		
4.3.2		method	144		
	4.3.2.1	Agitation effect on ABEE yield	145		
	4.3.2.2		145		
	4.3.2.3	5	149		
	4.3.2.4	Extraction temperature effect on ABEE yield	151		
	4.3.2.5	Discussion on process conditions OFAT	153		
		tion of selected process conditions for ABEE	100		
4.3.3		n	155		
	4.3.3.1	Model prediction and statistical analysis	156		
	4.3.3.2	Response surface analysis	157		
	4.3.3.3	Model validation	159		
	4.3.3.4	In vitro validation of bioactivity of optimized			
	4.3.3.4	ABEE yield	160		
	4.3.3.5	Characterization of optimized ABEE through			
	4.5.5.5	GCMS and FTIR analysis	168		
	4.3.3.6	Discussion on optimization of process			
		conditions of ABEE extraction	174		
	-	cation	180		
4.4.1		v	180		
4.4.2		Imn chromatography of ABEE	182		
4.4.3	-	se TLC profile and bio-guided assays	185		
4.4.4		rization of active fractions in the first phase CC	190		
4.4.5		on on first column chromatography of ABEE	196		
4.4.6		Second column chromatography of active first phase			
1 1 7		ons	198		
4.4.7		hase TLC profile and bio-guided assays	199		
4.4.8	Characterization of active fractions in the second phase CC				
4.4.9		on on second phase column chromatography	217		
4.4.10		umn chromatography of active second phase	_		
		ons	220		
	4.4.10.1	Column chromatography for FR 2-3	220		

	4.4.10.2	Column chromatography for FR 2-6
	4.4.10.3	Column chromatography for FR 2-7
4.4.11		se TLC profile and bio-guided assays
	4.4.11.1	TLC profile and bio-guided assay on
		subfractions from FR 2-3
	4 4 1 1 0	TLC profile and bio-guided assay on
	4.4.11.2	subfractions from FR 2-6
	4 4 1 1 2	TLC profile and bio-guided assay on
	4.4.11.3	subfractions from FR 2-7
4.4.12	Characteri	zation of active fractions in third phase CC
4.4.13	Discussion	n on third phase column chromatography
4.4.14	Fourth col	umn chromatography of active third phase
4.4.14	subfraction	ns
	4.4.14.1	Column chromatography for FR 3C1-C3
	4.4.14.2	Column chromatography for FR 3C4
		Washing and recrystallization of FR 3A3
4.4.15	-	ase TLC profile and bio-guided assays
		TLC profile and bio-guided assay on
	4.4.13.1	subfractions from FR 3C1-C3
		TLC profile and bio-guided assay on
		subfractions from FR 3C4
		TLC profile on FR 4A1
4.4.16		zations of active fractions in the fourth phase
4.4.17		n on fourth phase column chromatography
4.4.18	Overall di	scussion
		USION AND RECOMMENDATIONS
5.2 Recomm	nendations.	
REFERENCES.	•••••	
	CATTONS	
LIST OF PUBLI	CATIONS	
APPENDIX C		•••••••••••••••••••••••••••••••••••••••

LIST OF TABLES

Table 2.1	Stage of breast cancer as described by Fust, 2015. These stages provide information and reference for treatment and data exchange	22
Table 2.2	Common chemotherapy drugs adminitered for different types of cancer with different mechanism of action as listed by the American Cancer Society and Waks & Winer (2019)	24
Table 2.3	Reported agarwood name based on different regions	27
Table 2.4	List of accepted names of agarwood tree from the Aquilaria genus	29
Table 2.5	Reported traditional use of Aquilaria spp	34
Table 2.6	Reported ethnomedicinal uses of agarwood in different countries	39
Table 2.7	Reported chemical compounds identified/isolated from agarwood and/or its derivatives	42
Table 2.8	Summary of bioactivity studies conducted on agarwood plant in recent years	45
Table 2.9	Summary of isolated and identified compounds from agarwood leaf with their respective bioactivity data.	49
Table 2.10	List of agarwood studies using extraction procedures. Most studies employed exhaustive-type extraction without using experimental design tools.	61
Table 2.11	Common visualization reagents used in TLC analysis	66
Table 2.12	List of potential bioassay that can be employed to create complementary bioactivity data alongside the compound charactirization profiles.	70
Table 2.13	Differences between different types of bioassays that can either be advantages or disadvantages depending on the study preferences.	71

Table 3.1	List of process conditions selected for various plant extraction processes found in literature. These parameter values serve as guide and were modified for the ABEE OFAT analysis in this study.	84
Table 3.2	List of parameter levels for the process conditions screening of agarwood branch extraction via OFAT method	85
Table 3.3	Coded Face Centred Central Composite Design (FCCCD) for optimization of process conditions to obtain maximum ABEE yield (mg/g dried material, DM)	87
Table 3.4	Reverse transcription mix as instructed by the RT ² First Strand Kit	102
Table 3.5	PCR component mixture for Format C 96-well array	103
Table 3.6	Cycling conditions for real-time cycler by Applied Biosystems model StepOnePlus	104
Table 4.2.1	Characterized cell percentage measured using flow cytometry apoptotic cell analysis stained with the DNA fluorescence dye, propidium iodide, and Annexin-V- FITC dye, apoptotic marker dye.	119
Table 4.2.2	Measured RNA absorbance, ratio, and yield extracted from MCF-7 cells. 260/280 ratio is a measure of RNA purity usually \pm 2.0 for pure RNA.	125
Table 4.2.3	Ratio, absorbance, and yield of RNA recovery conducted using T-75 cm ² growth flasks	126
Table 4.2.4	List of DEGs affected by 48 hours of ABEE16 treatment with fold change cut off 2 ($p < 0.05$). Among the 48 genes significantly affected by the treatment, 41 genes were down-regulated while 7 genes were up- regulated based on the collected data	127
Table 4.3.1	Mean yield (mg/g DM) for 1:30 sample-solvent ratio obtained after 24 hours of incubation at 45 °C at different agitation speed. Experiment was conducted in triplicate set of runs (n = $3 \pm s.d.$).	146
Table 4.3.2	Mean yield (mg/g DM) for 1:30 sample-solvent ratio obtained after selected time extraction at 45 °C and 100 rpm. Experiment was conducted in triplicate set of runs (n = $3 \pm $ s.d.).	148

Table 4.3.3	Mean yield (mg/g DM) after 24 hours of extraction at 45 °C and 100 rpm using selected solid-liquid ratios. Experiment was conducted in triplicate set of runs (n = $3 \pm s.d.$).	150
Table 4.3.4	The mean yield (mg/g DM) after 24 hours of extraction at 100 rpm and 1:30 solid-liquid ratio at selected temperature levels. Experiment was conducted in triplicate set of runs (n = $3 \pm s.d.$).	152
Table 4.3.5	Coded Face Centred Central Composite Design (FCCCD) for optimization of process conditions to obtain maximum ABEE yield (mg/g dried material, DM). A represented temperature with midpoint 55 °C and B represented SL ratio with midpoint 20 both from previous selection and screening section. Responses recorded were based on triplicate experimental sets (n = 3).	155
Table 4.3.6	ANOVA data for the regression model for ABEE extraction.	157
Table 4.3.7	Cell number obtained from trypan blue dye exclusion method for CAA showing 50 % of viability reduction in treated sample. CVA data showed 40 % reduction of viable MCF-7 cells. Experiments were conducted in triplicate (n =3 \pm s.d).	166
Table 4.3.8	Classification of the identified volatile chemical constituents of ABEE based on functional group.	171
Table 4.3.9	Summary of characteristic of detected peak bands on FTIR spectra for crude ABEE.	173
Table 4.4.1	Subfractions collected from ABEE fractionation. Each fraction was collected, dried and redissolve in minimum amount of DCM for further analysis using TLC method.	184
Table 4.4.2	Five new subfractions derived from the original 19 based on stain spots analysis and R_f data on the TLC test conducted.	187
Table 4.4.3	Non-linear regression analysis results for IC_{50} estimation on the first column chromatography.	188
Table 4.4.4	Classification of the identified volatile chemical constituents of FR 1-2 based on functional group, area (%) and confidence measure (Qual).	193

Table 4.4.5	Summary of characteristic of detected peak bands on FTIR spectra for FR 1-2.	195
Table 4.4.6	Fractions collected for the CC on FR 1-2. The process managed to separate 31 fractions gradient-eluted by hexane/DCM/MeOH mobile phases.	199
Table 4.4.7	New subfractions combination based on TLC profile analysis of the original 31 subfractions.	201
Table 4.4.8	Derived IC ₅₀ values from non-linear regression analysis. CCK-8 assay was normalized using control group (1 % v/v DMSO) and duplicate experimental setup was used (n=2 \pm s.d) due to scarcity of CCK-8 reagent at the time.	202
Table 4.4.9	Classification of the identified volatile chemical constituents of FR 2-3 based on functional groups, areas (%), and confidence measures (Qual).	206
Table 4.4.10	Summary of characteristic of detected peak bands on FTIR spectra for FR 2-3.	208
Table 4.4.11	Classification of the identified volatile chemical constituents of FR 2-6 based on functional groups, areas (%), and confidence measures (Qual).	209
Table 4.4.12	Summary of characteristic of detected peak bands on FTIR spectra for FR 2-6.	212
Table 4.4.13	Classification of the identified volatile chemical constituents of FR 2-7 based on functional groups, areas (%), and confidence measures (Qual).	214
Table 4.4.14	Summary of characteristic of detected peak bands on FTIR spectra for FR 2-7.	216
Table 4.4.15	Subfractions collected from FR 2-3 eluted using hexane-EA-MeOH mobile phase. Subfractions were collected, dried and redissolve in minimum amount of DCM for further analysis using TLC method.	222
Table 4.4.16	Subfractions collected from FR 2-6 eluted using DCM- EA-MeOH mobile phase. Subfractions were collected, dried and redissolve in minimum amount of DCM for further analysis using TLC method.	224

Table 4.4.17	Subfractions collected from FR 2-7 eluted using hexane-DCM-EA mobile phase with MeOH as final elution solvent for exhaustive rinsing process. Subfractions were collected, dried and redissolve in minimum amount of DCM for further analysis using TLC method.	226
Table 4.4.18	New subfractions combination based on TLC profile analysis of the original 44 subfractions from the CC of FR 2-3.	228
Table 4.4.19	Derived IC ₅₀ values from non-linear regression analysis. CCK-8 assay was normalized using control group (1 % v/v DMSO) and duplicate experimental setup was used (n=2 \pm s.d) due to scarcity of CCK-8 reagent at the time.	229
Table 4.4.20	New subfractions combination based on TLC profile analysis of the original 40 subfractions from the CC of FR 2-6	232
Table 4.4.21	Derived IC ₅₀ values from non-linear regression analysis. CCK-8 assay was normalized using control group (1 % v/v DMSO) and triplicate experimental setup was used (n=3 \pm s.d).	233
Table 4.4.22	New subfractions combination based on TLC profile p- anisaldehyde analysis of the original 69 subfractions from the CC of FR 2-7.	235
Table 4.4.23	Derived IC ₅₀ values from non-linear regression analysis for 3Cs subfractions. CCK-8 assay was normalized using control group (1 % v/v DMSO) and triplicate experimental setup was used (n=3 \pm s.d).	235
Table 4.4.24	Colour stain observed using different staining tests on FR 3C1-C3 and FR 3C4	237
Table 4.4.25	Classification of the identified volatile chemical constituents of FR 3A3 based on functional group, area (%) and confidence measure (Qual).	241
Table 4.4.26	Summary of characteristic of detected peak bands on FTIR spectra for FR 3A3.	244
Table 4.4.27	Classification of the identified volatile chemical constituents of FR 3C1 based on functional group, area (%) and confidence measure (Qual).	246

Table 4.4.28	Summary of characteristic of detected peak bands on FTIR spectra for FR 3C1.	248
Table 4.4.29	Classification of the identified volatile chemical constituents of FR 3C3 based on functional group, area (%) and confidence measure (Qual).	251
Table 4.4.30	Summary of characteristic of detected peak bands on FTIR spectra for FR 3C3.	253
Table 4.4.31	Classification of the identified volatile chemical constituents of FR 3C3 based on functional group, area (%) and confidence measure (Qual).	254
Table 4.4.32	Summary of characteristic of detected peak bands on FTIR spectra for FR 3C4.	257
Table 4.4.33	Colours and R_f values recorded for the FR 3C1-C3 mobile phase screening and selection tests.	263
Table 4.4.34	List of collected 72 FR 4Cs eluted using hex-EA mobile phase. These subfractions were dried, redissolved in minimum amount of DCM for analysis later in the next section.	264
Table 4.4.35	Colours and R_f values recorded for the FR 3C4 mobile phase screening and selection tests.	266
Table 4.4.36	List of collected 48 FR 4Ds eluted using DCM-EA mobile phase. These subfractions were dried, redissolved in minimum amount of DCM for analysis later in the next section.	267
Table 4.4.37	New subfractions combination based on R_f values from TLC profile analysis of the original 72 subfractions from the CC of FR 3C1-C3.	269
Table 4.4.38	Derived IC ₅₀ values from non-linear regression analysis for FR 4Cs. FR 4C4 showed high cytotoxicity towards both MCF-7 and VERO cells. Other subfractions showed unreliable R ² values suggesting non-significant effect towards both cell lines. CCK-8 assay was normalized using control group (1 % v/v DMSO) and triplicate experimental setup was used (n=3 \pm s.d).	271

Table 4.4.39	New subfractions combination based on R_f values from TLC profile analysis of the original 72 subfractions from the CC of FR 3C1-C3.	274
Table 4.4.40	Derived IC ₅₀ values from non-linear regression analysis for FR 4Ds. FR 4D3 showed moderate cytotoxicity towards both MCF-7 and VERO cells. Other subfractions were analysed to be ambiguous as well as having unreliable R^2 values suggesting non-significant effect towards both cell lines. CCK-8 assay was normalized using control group (1 % v/v DMSO) and triplicate experimental setup was used (n=3 ± s.d).	276
Table 4.4.41	Classification of the identified volatile chemical constituents of FR 4C4 based on functional group, area (%) and confidence measure (Qual).	281
Table 4.4.42	Summary of characteristic of detected peak bands on FTIR spectra for FR 4C4.	284
Table 4.4.43	Classification of the identified volatile chemical constituents of FR 4D3 based on functional group, area (%) and confidence measure (Qual).	286
Table 4.4.44	Summary of characteristic of detected peak bands on FTIR spectra for FR 4D3.	288
Table 4.4.45	Classification of the identified volatile chemical constituents of FR 4A1 based on functional group, area (%) and confidence measure (Qual).	290
Table 4.4.46	Spectral data of ABEE-FR4A1 ¹ H-NMR (500 MHz, CDCl ₃) and ¹³ C-NMR (125 MHz, CDCl ₃) compared to 5- hydroxy-7,4'-dimethoxyflavone.	294
Table 4.4.47	List of all potential active subfractions with their estimated IC_{50} values and R^2 score via the non-linear regression analysis	300

LIST OF FIGURES

Figure 2.1	Cancer statistics in Malaysia as reported by Globocan in 2018. Data obtained from https://gco.iarc.fr/today/data/factsheets/populations/458-malaysia-fact-sheets.pdf	18
Figure 2.2	Representative images of BRCA1 and BRCA2 genes located in the long arms of chromosome 17 and 13, respectively. Image was retrieved from Macrogen:Humanizing Genomics website at https://www.macrogen.com/en/business/diagnosis_service1.p hp	20
Figure 2.3	<i>Aquilaria</i> tree a) cultivated in Bangi aged around 6 to 7 years with trunk diameter ranging from 20 cm to 40 cm measured 1.3m from the ground. Image was taken in August 2018. b) Wild agarwood tree in Melaka and image was taken in January 2010.	30
Figure 2.4	Representative images of agarwood presence in felled branches of <i>Aquilaria subintegra</i> in Nilai, Negeri Sembilan taken on 28 th February 2019. <i>Aquilaria sinenis</i> chip images are graded according to the system adopted by the local trader in Kuala Kangsar, Perak. Images were taken on 4 th March 2020	32
Figure 2.5	Artificial inoculation of agarwood tree in farm located in Nilai, Negeri Sembilan. The process used agarwood inducer, a biologically formulated combination of bacteria and fungi, loaded into the tree trunk using Chemjet. Images were captured on 11 th April 2018.	35
Figure 2.6	Dark region formation in agarwood tree trunk as a result of modern day induction. Images were taken after a few months induction in an agarwood farm in Nilai, Negeri Sembilan on the 10 th and 28 th of February 2019	37
Figure 2.7	Representative images of <i>Aquilaria subintegra</i> trees locally cultivated in Melaka, Malaysia. Images were captured in October 2018	52
Figure 2.8	Common Soxhlet extraction apparatus setup	56

- Figure 2.9 Representative basic chromatographic separation mechanism. 63 Compound elution responded to the type of mobile phase used as well as selection of proper solid/stationary phase.
- Figure 2.10 Assembled CC apparatus used in this study. Cotton ball and 64 acid-washed sand layer are placed at the bottom of the glass column followed by silica gel slurry. The setup is completed by additional layer of acid-washed sand at the top of silica gel slurry added protection to the packed bed column
- Figure 2.11 Catalogued PCR array layout embedded with 84 pathwayspecific by SABiosciences, QIAGEN. Wells H1 through H5 are embedded with a panel of housekeeping genes (HK1-HK5) for normalization purpose. Genomic DNA Control (GDC) primer high sensitivity set that specifically detects non-transcribed, repetitive genomic DNA is placed in well H6. Wells H7 through H9 are embedded with replicate Reverse Transcription Controls (RTC) that verify the RT reaction efficiency. The replicate Positive PCR Controls (PPC) embedded in wells H10 through H12 is for measuring the overall efficiency of the polymerase chain reaction.
- Figure 3.1 Overall flow of work according to objectives lined up for this 80 study

81

- Figure 3.2 Pre-treated agarwood branch sample used in this study. Sample was cleaned, washed, dried and ground prior to extraction process
- Figure 3.3 RT2 Profiler PCR array format C layout. Wells A1 to G12 103 were embedded with different genes for a specific pathway/disease/function. Wells H1 to H5 were embedded with housekeeping genes (ACTB, B2M, HPRT1, GAPDH and RP1P0) for array data normalization. Well H6 was setup as genomic DNA control (GDC), H7 to H9 embedded with replicate reverse transcription controls (RTC), and H10 to H12 embedded with replicate positive PCR controls (PPC). Image was retrieved from RT2 Profiler PCR array handbook available at https://www.qiagen.com/us/resources/resourcedetail?id=f4b1 3eaa-884f-4357-abe6-1a5f9469bc32&lang=en
- Figure 3.4 Representative gravity column chromatography setup for 108 separation, isolation and purification purpose in this study. a) Gravity column bed setup for the study purpose with glass column loaded with silica gel 230-400 mesh (38-63 μm) protected by acid washed sand at both end and cotton wool at the exit of the column. b) Representative image of sample loaded onto the column bed. Note that at all time, the solvent

level must be above the sample or stationary phase to avoid bed cracking

- Figure 3.5 Sample binding/pre-adsorbing process using DCM as the 110 mixing solvent. a) Sample-bound silica was collected from an almost dried mixture and air-dried to complete dryness. b) Completely dried sample-bound silica. c) If mixture was evaporated to a complete dryness by the rotary evaporator, hard crust formation will occur and sample loss cannot be avoided.
- Figure 3.6 Preparative TLC flow conducted for sample/fraction in order 114 to isolate the potential major compound/s. The process includes a) TLC profiling, b) scraping off confirmed location of major compound/s, c) collection of compound-bound silica flake and d) eluting out the isolated compound from the silica flake using selected solvent through a simple glass dropper experimental setup
- Figure 4.2.1 Apoptotic cells analysis using Annexin-V-FITC staining 120 through flow cytometry. Scatter plots correspond to 24, 48 and 72 hours of ABEE16-treated with the 72 hours control MCF-7 cells showing a small increase in apoptotic cells at 72 hours ABEE16 treatment (1.80 %) compared to 72 hours control (0.05 %). Necrotic characterized cells were observed to increase in a time-dependent manner in which 5.50 %, 8.21 %, and 54.48 % cells measured at 24, 48, and 72 hours, respectively
- Figure 4.2.2 Cell viability at 24, 48 and 72 hours of treatment of 8 μ g/ml 123 ABEE16 compared to control (0.1 % DMSO v/v). Highest viability reduction was recorded at 72 hours at 74.35 % compared to control. Results are based on three independent experiments (n = 3 ± s.d.).
- Figure 4.2.3 Representative images of MCF-7 cells population density in 124 this investigation. Control group a) 24 hours, b) 48 hours, and c) 72 hours showed normal cell morphology with increasing cell population density. ABEE16-treated MCF-7 cells showed abnormal morphology in all time point with decreasing cell population density
- Figure 4.2.4Bar chart representing ABEE16-treated DEGs with fold127change normalized against control set with fold regulation
threshold set up at 2 and p-value < 0.05. Highest fold change
analyzed was TRAF2 genes up-regulated by 5.52 fold while
the lowest was NFKB1 down-regulated by 26.704 fold