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ABSTRACT

Emotion Recognition in the Brain and Computer Interface (BCI) field is gaining
popularity, not only in terms of volume or amount of incoming data but the variety of
media used by netizens and the acceleration of increasing information (velocity) as well.
Therefore, the development of techniques and algorithm models with various
approaches is a significant concern to recognize the netizens' emotions through writing.
This study examined the introduction of text-based emotions in the Indonesian language
by taking Twitter data as the dataset. The dataset is processed using two approaches; 1)
Recognizing emotions automatically based on sentiment text, and; 2) In real-time
viewing brain waves using machine learning and Electroencephalogram (EEG) tools by
neuro-physiological approach. The output of these tasks is the accuracy of training data
and testing data score. Knowing the results of the accuracy of the two approaches is
important, as a reference recommendation to see how much emotion affects the writer
and the status of the reader. Furthermore, we conducted preliminary research to obtain
Indonesian words with raw data from Affective Norm English Words (ANEW) and
classify them into four basic emotions: happiness, sadness, anger, and fear. The highest
scored calculation for these four emotions are carried out as keywords in crawling
Twitter data. After that, it processed using the Long Short-Term Memory (LSTM)
model and also using two benchmark models (Random Forest and Support Vector
Machine) at the emotion recognition stage based on sentiment analysis. Next, the
dataset in the form of brain waves are processed using the same models. In the sentiment
analysis approach, the LSTM model has the highest accuracy value than the two
benchmarks. Whereas for data using EEG, Random Forest produces the best accuracy
value. Consequently, this research contributed to a collection of datasets based on
affective Indonesian words. Besides, it provided recommendations for several
algorithm models that match the data and the case. This research's novelty value was to
recognize emotions using brain waves with stimulation of reading text with a sentiment
analysis approach. Future research was still very much needed to get maximum results
to provide knowledge that human emotions can be affected by reading emotional texts.
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CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION

In this digital era, information plays a pivotal role in human daily life. Language is one
of the ways to transfer information as well as it is also a way of communicating views
or messages orally or in written text. Moreover, language is not only used for
communication but also imparts the emotion associated with it. Writing text is a way of
stating the language you want to express, as it was stated by Kaur, written text is one
good source for expressing ideas, emotions, and feelings (Kaur & Saini, 2014).

Man created by God has a brain. The behavior of the human brain is very
complex and this makes it difficult to interpret. Human emotions may come from brain
activity. However, the relationship between the two is still very rarely studied (Liu and
Meng 2016), where human emotion is a complex phenomenon that comes from the
human brain while there is no clear knowledge of its generation mechanism, even-
though human feelings can be easily expressed in the form of writing. The two ways
that become interesting topics in analyzing a person's emotions in a text; 1) is how to
conduct emotional recognition in a sentiment text with the method of machine learning
and 2) by using brain waves.

In addition, one's emotions are so difficult to predict, and has sentiment polarity
is insufficient to convey the precise effectiveness of the writers (Almashraee, 2016),
because this is related to one's experience and knowledge. Especially if these needs will
be carried out by computers, there will be many methods and techniques that must be
done to obtain accurate results. Therefore, machine learning becomes an important

method used by researchers in studying the analysis of emotional texts (Choudhury,



Wang, Carlson, & Khanna, 2019). This is because the behavior of the above methods is
very close to human behavior and there are two distinctive features of machine learning
which are training data and test data. As stated earlier, emotional recognition research
requires a corpus or large dataset to see the accuracy of the classification of emotions
in a text.

On the other hand, the introduction of text-based emotions in the digital era has
become an important part of the branch of NLP, namely computational linguistics (CL).
Emotions can be expressed by a person’s speech, facial expression, and written text,
which is respectively known as speech, facial, and text-based emotion (Choudhury et
al., 2019). A sufficient amount of work has been done regarding speech and facial
emotion recognition but text-based emotion recognition systems are getting to gain the
attention of researchers. Furthermore, human beings have the power to feel different
kinds of emotions because the life of every human being is filled with many emotions,
such as joy, fear, anger, and sadness. In Addition, for using a computer, the
categorization of text in these emotional states in CL is known as sentimental
analysis/emotion detection (Kaur & Saini, 2014). Besides that, emotional words
contained in a sentence will affect the sentiment content of the sentence, and emotional
words will have different meanings based on the culture or language of a country as
well.

Ekman et al. proposed the notion of basic emotions that were universal and
found across cultures (Ekman 1987). They proposed the two-dimensional model in
which emotions were given coordinates denoting the degree of valence (the positive or
negative quality of emotion) and arousal (how responsive or energetic the subject is).
That theory could be the based material of corpus for decision making in several fields

such as the medical and psychology fields (Sianipar, van Groenestijn, & Dijkstra, 2016).



At present, so many researchers in the field of computational linguistics are
studying to classify and recognize emotions and calculate their accuracy. The usage of
machine learning techniques to classify sentiments (Pang 2019), how to classify
emotional models with some technical approaches (Rout et al. 2018; Bruna, Avetisyan,
and Holub 2016), and some benchmarks to detect and calculate the accuracy of
emotions or sentiment (Parupalli, Rao, and Mamidi 2018; Ren, Cheng, and Han 2017)
as well as how to recognize emotions by approaching reading texts directly or by
reading the writings (Dasdemir, Yildirim, and Yildirim 2017; Li, Chao, and Zhang
2019; Geethanjali et al. 2017; Saif M. Mohammad 2015; Yu et al. 2016). Even because
it is so complex in analyzing text, there is now a new method of machine learning that
is deep learning with a neural network approach (Antariksa, Purnomo WP, & Ernawati,
2019; Habimana, Li, Li, Gu, & Yu, 2020; Schmidhuber, 2014).

Furthermore, researchers who examine the recognition of emotions with a
variety of methods and techniques in machine learning aims to find out what emotional
sentences emerge quite often in social media. In addition, some articles also do a lot of
real-time emotional recognition studies with various stimulation media (Handayani,
2017; Turp et al., 2016; Kamaruddin & Abdul Rahman, 2013; T. M. Li, Chao, & Zhang,
2019; Wang, Nie, & Lu, 2014). So, what needs to be done is to do an experiment that
detects emotional words that exist on social media with machine learning techniques,
then it will be examined whether the sentiment of the text affects the reader by taking
data from the reader's brain waves using a brain wave recorder. Also, one of the centers
of activity in the human body when reading aloud is the brain. However, until now,
EEG research that specifically examines reading aloud, especially in Indonesian, has
never been carried out (Nurhadi & Rahma, 2017). Therefore, the contribution of this

research is twofold:



1) Collecting corpus through social media (in this case, using Twitter data) and

2) The corpus will be used as a source of stimulation data in detecting emotions

in real-time captured using EEG.

In Carley et al's article, entitled Twitter Usage in Indonesia, Indonesia is indeed
in the top five user countries and invests in social media in general, and Twitter in
particular. In early 2012 Indonesia's Twitter user population was 29.4 million, the fifth-
largest in the world. In 2013, CNN nicknamed Indonesia "the country of Twitter". In
2014, Indonesia ranked the fifth tweeting country with 29 million Indonesian users, and
Jakarta was responsible for 2.4% of the 10.6 billion Twitter posts made between January
and March 2014 (Carley, Malik, Kowalchuck, Pfeffer, & Landwehr, 2018). Meanwhile,
the corpus of emotions using Indonesian is not yet already available, so in this research,
data from Affective Norm English Words (ANEW) was referred available and the
advancement of that study (Bradley & Lang, 1999; Delatorre, Salguero, Leon, &
Tapscott, 2019).

Previously, we did preliminary research on emotion/sentiment Indonesian
corpus based on ANEW (Hulliyah, Awang Abu Bakar, and Ismail 2018). The study
began by building a set of emotion words as a database and subsequently expanding this
set to validate the correlation with the proposed data set (corpus) above for identification
of sentiment classification (Hirschberg & Manning, 2016). The output obtained is to get
a collection of emotional words as a reference for labeling, then we will classify the
data using several techniques in analyzing sentiments using machine learning and deep
learning method to obtain emotional classifications. The Twitter application is used by
users to express personal opinions or clarification of something (public statement).

Therefore, the text used in writing the Twitter status contains many emotional words as



expressions of their feelings. Also, the status of Twitter is often used as a medium to
influence the people who read it.

To summarize, three main components must be explored in answering the above
questions:

1) The availability of dataset/corpus of emotional words,

2) Finding and analyzing the good modeling of emotion recognition based on

Indonesian sentiment text with Twitter data as the dataset, and
3) Looking for the representative model based on the real-time dataset using

EEG tools.

1.1.1 Affective Norm English Words (ANEW)

The emotion domain has a direct relationship with the identification of relevant pieces
of social cognition and the relevant textual data for understanding sentiment. The
affective norm in English word (ANEW) was introduced by Bradley, et.al, which
provided the standard of emotional data set ratings for a big figure of terms in the
English language, it collects the affective terms in three areas; valence, arousal, and
dominance (Bradley and Lang 1999).

ANEW is a corpus that was created by Bradley in 1999 where he did research
using Self-Assessment Manikin (SAM) sheets. In the questionnaire sheets distributed
to the participants, about 100-150 words were made to experiment to get a rating for
each word in the affective word group and the respondents were divided into several
groups of male and female. The format dimensions are pleasure, arousal, and
dominance. The ANEW corpus aims to provide standardization of the base material for

the researchers who conducted the study of emotion and attention.



The ANEW corpus is in great demand by researchers in psychology and
computer science for understanding the basic emotions classification, as this has
become a reference to find a deeper meaning into human emotions discretely or
dimensionally. The affective ratings of ANEW detected 1024 effective words in
classifying emotions based on the dimensions of valence and arousal with 4 quadrants
of classification (Delatorre et al., 2019).

In this research, we take all the affective words in ANEW, which will then be
translated into the Indonesian language by certified linguists. Then we involved 30
students as participants for the primary data to obtain a group of emotion words based
on valence and arousal (VA) where valence determines the range from negative to
positive of emotions, and arousal denotes the range from calmness to exciting of
emotions. We take the words that have the highest value in every 4 groups of basic
emotions namely: happy, sad, fear, and angry. The results of this preliminary research,
are used as raw data when building corpus sentiment consists of using 2 methods based
on physiology and psychology approaches (Hulliyah, Awang Abu Bakar, and Ismail

2018).

1.1.2 Sentiment Analysis
Emotional recognition research in the last ten years has attracted many researchers, in
line with a large number of microblogging and social media that have emerged along
with the development of internet technology. In the business world and government, the
status or comments of netizens or citizens of a country becomes an important part of the
decision-making process, because from social media we can identify one's

sentiments/emotions. The sentiment analysis technique in the Natural Language



Processing (NLP) field is widely used to find out the emotions or sentiments that occur
whether positive, negative, or neutral.

Sentiment analysis (SA) refers to the use of natural language processing, text
analysis, computational linguistics, and biometrics to identify, extract, measure, and
systematically study affective states and subjective information (Pasayat, 2018). Almost
all aspects of life that involve social media is working on and developing their work.
Furthermore, millions of transaction processes are currently carried out online, which
means that there are millions of data in the form of text. Therefore, understanding text
or words is the center of attention for many institutions to understand the desires or
feelings of consumers. In other words, sentiment analysis determines the feelings or
emotions contained in the text.

However, there are many algorithms offered in the sentiment analysis process.
Choosing the right algorithm, very much depends on the available data and the desired
output needs. Therefore, conducting benchmarks becomes important, to ensure the
results of this research are optimal or not.

In this study, we conducted an analysis of which algorithms are effective in
classifying emotions. We chose Twitter data as a data source based on the emotional

words that we obtained from previous preliminary research.

1.1.3 Machine learning
An important part of the machine learning process is analyzing the algorithm that will
be used. To produce optimal output. The process of training computers to understand
human language words must be done, by taking training data and test data. Furthermore,
the available models need to be compared to get the best results. The three chosen

algorithm models are SVM (with the concept of classification), random forest (using





