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ABSTRACT 
 

 

Driving has become essential in transporting people from one place to another. However, 
prolonged driving could cause muscle fatigue, leading to drowsiness and microsleep. 
Electromyography is an important type of electro-psychological signal that is used to 
measure electrical activity in muscles. This work classifies and predicts muscle fatigue 
from trapezius muscle of 10 healthy subjects. The EMG signals and the time when 
muscle fatigue was experienced by the subjects were recorded. The mean frequency and 
median frequency of the EMG signals were extracted. For classification of muscle fatigue 
in non-fatigue and fatigue condition, six machine learning models were used: Logistic 
Regression, Support Vector Machine, Naïve Bayes, k-nearest Neighbour, Decision Tree 
and Random Forest. From the value of median frequency and slope coefficient of median 
frequency, mathematical model was developed with respect to driver’s physical factors. 
The results show that both the median and mean frequency are lower when fatigue 
conditions exist. In term of the classification performance, the highest accuracy for 
classifying muscle fatigue due to prolonged driving was obtained by the Random Forest 
classifier with 85.00%, using both the median and mean frequency of the EMG signals. 
This method of using the mean and median frequency will be useful in classifying 
driver’s non-fatigue and fatigue conditions and predict muscle fatigue during prolonged 
driving. The significant factor influencing muscle fatigue of the driver was BMI. This 
study successfully developed mathematical model of second order polynomial of muscle 
fatigue and BMI (p<0.05 and the R2 = 0.85). The model was successfully validated where 
the residual errors compared between predicted values and actual values were less than 
10%.  
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 ملخص  البحث
 

 

ن القيادة لفترات طويلة قد آخر، إلا أ في نقل الأشخاص من مكان إلى    المركبات امراً ضرور�ً  أصبحت قيادة
 (EMG) يعد تخطيط كهربية العضل  القصيرة. الغفوة  او  تسبب تعبًا في العضلات مما يؤدي إلى النعاس  

مهمًا   المستخدمة  للإنوعًا  الكهربائية  النفسية  العضلات. تصنف هذه في  شارة  الكهربائي في  النشاط  قياس 
أشخاص أصحاء. تم تسجيل إشارات تخطيط  عشرة  ل   منحرفة   عضلة من عضلات شبه الدراسة وتتنبأ بجُهد  

   التردد  متوسط  استخراجالعضلي، و الذي عانى فيه الأشخاص من التعب    والوقت (EMG) كهربية العضل
للإشارات التردد  العضل  ووسيط  ولتصنيف (EMG)  تخطيط كهربية  عدم   .  حالة  في  العضلات  تعب 

نماذج  استخدام  تم    والتعب الإرهاق   ال ستة   Logistic اللوجستي الانحدار  وهي:  لآلي  لتعلم 
Regression ،    الداعمةالمتجهات  وآلة Support Vector Machine،   وبيز ساذجNaïve 

Bayes  ـ والجار الأقرب لنقطة الاختبارKNN    القرارات الغابة   مصنفو   Decision Treeوشجرة 
قيم متوسط التردد ومعامل الانحدار لمتوسط التردد تم تطوير نموذج   . من Random Forest  ةالعشوائي
  التردد ووسيط التردد يكونوا أقل   متوسط  من   كلاً   أن   النتائج  أظهرتبالعوامل الفيز�ئية للسائق.  متعلق    ر�ضي

تصنيف التعب العضلي في  داء التصنيف، تم الحصول على أعلى دقة  ومن حيث أ.  التعب   حالات  وجود  عند 
و   التردد  ونتائج متوسط   Random Forestنموذج    % ذلك بواسطة85الطويلة بنسبه  بسبب القيادة  

لإشارات الطريقة  (EMG) العضلتخطيط كهربية    الوسيط  هذه  أن  تكون.   تصنيف   في  مفيدة  سوف 
في هذه  لفترات طويلة. لقيادة ا  أثناء   العضلات   بإجهاد  وتعبه، وستمكن من التنبؤ السائق  إرهاق   عدم  حالات 
نجحت   السائق.  عضلات   يؤثر على تعب  الذي   (BMI)الجسم  مؤشر كتلة  هو    المهم   عامل ال كان  الدراسة  

الجسم لإرهاق العضلات ومؤشر كتلة  متعدد الحدود  هذه الدراسة في تطوير نموذج الر�ضي من الدرجة الثانية  
الخطأ   عامل محيث كان  التحقق من صحة النموذج بنجاح    تم ).2R 0.85 =(و  )  P 0.05>(  سبمقيا

 .٪10من  اقل    مقارنة بين القيم المتوقعة والقيم الفعلية  المتبقي
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CHAPTER ONE 

INTRODUCTION 

 

 

1.1 BACKGROUND 

 

Road transportation is one of the major modes of transportation used by Malaysians. 

Driving has become more important because it a is fast, cheap, and practical way of 

moving people from one place to another (Kamat et al. 2020). According to a Ministry of 

Transport Malaysia (MOTM) report, the number of register vehicle recorded in 2020 was 

32.28 million. In 2021, the number had increased to 33.57. In addition, car have been 

recorded as the type of vehicle used most frequently by Malaysian with a rate of 47.10% 

followed by motorcycle at a rate of 46.19 in 2021 (MOTM 2022).  

 

As a developing country, Malaysia gains income from greater productivity, and at 

the same time requires people to move faster and further (Sanjaya, Lee, and Katsuura 

2016). Therefore, the transportation system of roads and highways should be greatly 

improved, which will enable Malaysians to experience better infrastructure, facilities and 

comfort. Although the increase in driving activity offers major benefits, it also has 

negative effects due to the increasing number of road accidents (Ani, Kamat, and Husin 

2017). Malaysia has one of the highest rates of road accidents worldwide in relation to its 

population. Since 2012 to 2018, Malaysia has been ranked as the seventh-highest country 

in the world for the overall number of traffic accident. Additionally, Malaysia has had the 

greatest global mortality per 100,00 people since 1995 (Wan Husin et al. 2021). 

 

In 2019, the Road Safety Department of Malaysia recorded 5764 cases of fatal 

accidents (Mahat, Jamil, and Sarah Raseli 2020). The three main causes of traffic 

accidents are human, environmental, and technical factors (Hawa Harith and Mahmud 
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2018). According to Malaysian Institute of Road Safety Research (MIROS) reported that 

the main contributor to road accident is human factor as much as 80% (Shariff et al. 

2022). Mahat et al. (2020) categorized human factor into subfactor and according to their 

finding, the first ranking is drunk driving while drowsiness or microsleep rank as second 

factor contributing to road accident (Mahat et al. 2020). Fatigue is one of the factors 

leading to microsleep or drowsiness of the drivers besides prolonged driving, road 

condition, environment and health (Zaleha et al. 2021). 

 

Research defines fatigue as a lack of ability to exert additional force or power (Al-

Mulla, Sepulveda, and Colley 2011). Fatigue detection is important in many areas such as 

the health sector to monitor health and welfare of the patients. For example, 

electromyography (EMG) is implemented in the use of prosthetic control devices. Muscle 

tiredness detection and classification are also crucial in the fields of human-computer 

interactions, sports injuries and performance, and ergonomics. Muscle tiredness is one of 

the most common causes of injuries in athletes, and it is usually identified after the 

muscle has already been injured. (Freitas 2008). When muscular exhaustion is not 

diagnosed early enough, it can cause pain and also financial hardship. In addition, the 

most expensive therapy in this world according to Tlili et al., (2021) is spinal therapy 

(Tlili et al. 2021). As a result, detecting muscular exhaustion before it becomes obvious is 

critical. 

 

Driving on the highway involves a monotonous driving environment because of 

the wide and flat pavement, fewer spatial references and high volume of traffic (Fu, 

Wang, and Zhao 2016). Prolonged driving in this type of environment requires drivers to 

sustain attention over long a period which decreases their alertness performance and lead 

to fatigue. 

An important measure in the ergonomics of car seats during driving is the 

selection of the seat inclination angle to increase the driver’s comfort, reduce fatigue, and 

avoid musculoskeletal disorders (Ferrari and Croft 2001). Selection of seat inclination 
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angle will affect the spine posture of the driver especially during prolonged driving. The 

weight distribution supported by the seat-pan and backrest, as well as the boundary 

condition of upper body vibration and the spine’s curvature, are expected to change when 

sitting with an inclined backrest (Liu and Qiu 2021).  

 

This study classifies EMG signal of non-fatigue and fatigue condition of the driver 

during prolonged driving using Machine Learning technique. In addition this work also 

develops a mathematical model to find the relationship between driver’s physical factors 

and muscle fatigue during prolonged driving. According to J. Barbosa (2003), the 

definition of a mathematical model is the behavior of real devices and objects is 

represented mathematically. Modeling a device or system is essential for both engineers 

and scientists. The mathematical model developed needs to be validated to ensure that the 

model is accepted. 

 

This study is significant in detecting and predicting muscle fatigue. In addition, 

this study will also reveal the relationship between physical factor of the driver and 

muscle fatigue so that drowsiness and microsleep can be prevented. This study focuses to 

monitor the muscle activity of the subject using EMG signal which it aimed to prevent 

musculoskeletal disorder in a longer time. In directly, the risk and number of accidents 

associated with driving fatigue can be minimized. In addition, this study will also reveal 

the relationship between physical factor of the driver and muscle fatigue.  
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1.2 PROBLEM STATEMENT 

 

In the recent year, several advanced signal processing algorithms and machine learning 

methods have been used in the researches (Karthick, Ghosh, and Ramakrishnan 2018). 

For the classification of non-fatigue and fatigue condition of the driver, several methods 

had been proposed previously using different classification techniques and different 

psychophysical signal (Bhardwaj, Natrajan, and Balasubramanian 2018). To date, 

Machine Learning classification of muscle fatigue using EMG has mainly focused on the 

areas of rehabilitation, sports science, human-computer interaction and medical research. 

However limited research had been conducted in the field of driving.  

 

 In addition, it is important to relate the physical factor affecting muscle fatigue of 

the driver during prolonged driving in order to prevent musculoskeletal injury and 

accident due to fatigue. Ani et al., (2017) developed and validated a mathematical model 

of driver fatigue using driving duration, road type, gender, the relation between gender 

and road type, as well as the relation between driving duration and road type as the input 

parameters (Ani et al. 2017). Meanwhile Fu et al. (2016) developed a mathematical model 

based on the Hidden Markov Model (HMM) that used EMG, Electroencephalograms 

(EEG), and respiration signals, as well as contextual information such as the driver’s 

sleep quality, driving conditions, and circadian rhythm (Fu et al. 2016). Lastly, Wang et 

al. (2017) developed a model for driver fatigue based on ECG and EMG data using non-

contact sensors (Wang, Wang, and Jiang 2017). Currently, less research has been 

undertaken to develop a mathematical model based on the physical factors of body mass 

index (BMI), age, and years of driving (YOD) to determine muscle fatigue during 

driving. 
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1.3 OBJECTIVE OF THE RESEARCH 

 

The objectives of this research are: 

1. To classify non-fatigue and fatigue conditions of the driver during prolonged 

driving using electromyography (EMG) signal.  

2. To identify significant physical factors (body mass index (BMI), age, and years of 

driving) related to muscle fatigue of the driver during prolonged driving. 

3. To formulate and validate the mathematical model of muscle fatigue with respect 

to the driver’s physical information. 

 

  

1.4 SIGNIFICANCE OF THE RESEARCH 

 

To date, muscle fatigue classification has mainly focused on the areas of rehabilitation, 

sports science, human-computer interaction and medical research. However, limited 

research on muscle fatigue classification has been conducted in the field of driving using 

EMG and Machine Learning. This is an important topic as driving fatigue leads to 

accidents and loss of life. In terms of modeling muscle fatigue, less research is done on 

modeling muscle fatigue with respect to driver’s physical factors. This research is able to 

classify the muscle fatigue during prolonged driving. This research has also developed 

and validated the mathematical model of muscle fatigue and drivers’ physical factors 

during prolonged driving. 
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1.5 SCOPE OF THE RESEARCH 

 

This research is divided into two parts: experimental and mathematical modeling. In the 

experimental part, an EMG sensor was used in this research to study the muscle activity 

of the driver. The EMG signal was measured using BITalino biosignal acquisition board. 

The EMG signal was further pre-processed using MATLAB software. The targeted 

muscle was the trapezius (shoulder) muscle. Ten healthy subjects with age between 20 

and 40 years old were recruited. The subjects needed to drive a car for 2 hours using a 

highway route. The road condition is monotonous and the experiment took place at the 

East Coast Expressway Phase 2, Malaysia. The type of car used in this experiment was 

Perodua Axia with automatic transmission. The seat inclination angle was set to 10°. All 

subjects needed to maintain a driving speed of 90km/h during the experiment.  

 

  The EMG signal was used to classify non-fatigue and fatigue condition of the 

driver using six Machine Learning algorithms namely: Logistic Regression, Support 

Vector Machine, Naïve Bayes, k-nearest Neighbour, Decision Tree and Random Forest. 

In the mathematical modeling part, the classification of muscle fatigue was carried out 

using Analysis of Variance (ANOVA) analysis. The most significant parameter was 

identified and the mathematical model developed was validated by calculating the 

residual error. 
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1.6 CONTRIBUTION OF THE RESEARCH 

 

This research successfully classified the muscle fatigue condition of the trapezius 

(shoulder) muscle during prolonged driving. The relationship between muscle fatigue and 

the parameters was analyzed. Based on the results, the BMI of the subject contributed the 

most to muscle fatigue. A mathematical model of second-order polynomial using BMI 

and muscle fatigue of the driver during prolonged driving was successfully developed. 

The model was validated by calculating the residual error. Two sets of journal articles 

were successfully published throughout this work. First, a journal article entitled 

“Mathematical Model of Physical Factor for Driver Fatigue during Prolonged Driving” 

was published by Journal of Engineering and Technology (JET). Secondly, a journal 

article entitled “Classification of Muscle Fatigue during Prolonged Driving” was 

published by ELEKTRIKA, Journal of Electrical Engineering.   

 

 

1.7 ORGANIZATION OF THE THESIS 

 

This thesis consists of five main chapters.  

 

 Chapter 1 explains the background of this research, problem statement, objectives, 

and scope of the research. This chapter also explains the significance of this research and 

the publications that have been produces so far.  

 

 Chapter 2 presents the literature review of previous research to obtain important 

technical and scientific knowledge related to this research.  
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 Chapter 3 explains the methodology of this research in detail which consists of 

participants, experimental procedure, data processing, classification and regression with 

the aid of a flowchart.  

 

 Chapter 4 presents and discusses all results of EMG data processing, classification 

of non-fatigue and fatigue conditions of the drivers and regression to develop a 

mathematical model based on the significant physical parameter of the drivers. All 

findings of this research are highlighted in this chapter.  

 

 Chapter 5 presents the conclusion of the research and recommendations for future 

work.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

 
2.1 INTRODUCTION 

 

This chapter presents the extensive literature review of the optimum seat inclination angle 

of the driver, driving duration for muscle fatigue, the study on electromyography (EMG) 

sensors, EMG sensor placement on targeted muscle during prolonged driving, EMG 

signal pre-processing and the study of muscle fatigue. In addition, this chapter explains 

the classification of fatigue in machine learning and development and validation of 

mathematical model of muscle fatigue based on the previous research. 

  

 

2.2 OPTIMUM SEAT INCLINATION ANGLE 

 

An important feature in an ergonomics study of the driver is the selection of seat 

inclination angle. According to Ferrari & Croft (2001), previous study stated that ideal 

backrest angle is 120° as Figure 1. However, this angle will cause head flexion and neck 

pain. This is because drivers need to see through the windshield within their eye level. 

Thus, the optimal seat back angle needed is suggested to be at 100˚ (10˚ with respect to 

the vertical axis).  
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Figure 1 Backrest of 120˚ will cause abnormal 30˚ head flexion (Ferrari and Croft 2001) 

  

Majid et al. (2013) investigated the driver’s optimal seat adjustment using a rigid-

body model. The model analyzed various seat-pan and backrest inclinations. The result 

proposed that the optimal adjustment for the car seat is 10˚ for seat inclination angle and 

0˚ degree to 5˚ for the seat-pan inclination (Majid et al. 2013).  

 

 

Figure 2 Model of a seated human by Majid et al. (2013) 
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Li, Zhang and Lv (2015) conducted a study to determine the effects of backrest 

inclination and vibration frequency on muscle activity using a full-body musculoskeletal 

system of a seated person in an adjustable car seat. Ten subjects were exposed to whole-

body vibration with different backrest inclination angle of 5˚ to 30˚ with increment of 5˚. 

In this study, muscle oxygenation was measured using near-infrared spectroscopy. This 

study concludes that vibration frequency significantly influenced the muscle activity of 

the lumbar area. In addition, they suggested that a small backward of the backrest’s 

inclination angle (approximately 10˚) may lessen the driver’s muscle fatigue. 

 

 

Figure 3 Experimental setup by Li et al. (2015) 

 

 

 In summary, the best seat inclination angle for a driver during driving is 10˚ 

as concluded in previous research. Therefore, in this research, the seat inclination angle is 

set to 10˚ throughout the experiment. 
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2.3 ELECTROMYOGRAPHY (EMG) 

 

EMG stands for electromyography which is a sensor that measure the response of 

electrical activity of the muscle in response to the muscle’s nerve stimulation 

(Elamvazuthi et al. 2015). EMG is an experimental practice for generating, recording, and 

analyzing myoelectric signals. The physiological difference in the condition of muscle 

fiber membranes produces myoelectric signals (Konard 2012). EMG is widely used 

especially in medical research, rehabilitation, ergonomics and sports science.  

  

 

2.3.1 EMG SENSORS 

 

There are two types of EMG muscle sensors available in the market namely intramuscular 

EMG and surface EMG (Kiswanto et al. 2018). Intramuscular EMG is also called an 

invasive electrode which uses a needle to penetrate the skin. This type of EMG is not 

preferable to be used by researchers because only certified personnel is able to perform 

this, test and this type of EMG will make the subject feel uncomfortable.  

 

On the other hand, surface EMG uses a non-invasive electrode for measuring 

muscle electrical activity on the skin’s surface of the subject. Surface EMG signal 

measures electrical activities. Two electrodes or more are needed for this type of EMG to 

measure the difference in potential (voltage) between them. The electrode is affordable 

and can be placed in any muscle for any purposes (Al-Mulla et al. 2011).   
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Table 1 Different types of EMG sensors 

 

 

INTRAMUSCULAR EMG SURFACE EMG 

  

 

 

2.3.2 SURFACE ELECTRODE PLACEMENT 

 

The position and orientation of EMG electrodes plays vital role for accuracy and 

repeatability of EMG signal amplitude(Toro et al. 2019). In order to avoid strength and 

quality reduction of EMG signal, the electrode needs to be placed in the middle of the 

muscle and parallel with the muscle fiber’s orientation (Technologies 2015). As 

mentioned earlier, non-invasive EMG needs two electrodes. Thus, the placement of these 

electrodes should be based on the Surface EMG for Non-Invasive Assessment of Muscles 

(SENIAM) standard. This standard  aims to standardize the placement procedure of EMG 

sensors for 27 different muscles, the processing of the EMG signals and the modeling of 

EMG signals (Stegeman and Hermens 2007)(Toro et al. 2019). Figure 1 shows the 

orientation of the electrode pair in ratio to muscle fiber direction as suggested by 

SENIAM (Konard 2012). In this work, the targeted muscle was trapezius muscle and the 

location of EMG electrode is marked with green circle in Figure 4. Another electrode 

besides two electrodes is needed for measuring muscle electrical activity. This electrode 
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is called a reference electrode and is placed at the unaffected muscle area such as the 

bony area and joint but close to the targeted measuring muscle. In this research, the 

trapezius muscle is selected as the targeted muscle.  

 

 

Figure 4 Anatomical position of invasive (fine wire sites) and non-invasive (surface sites) 

of EMG electrodes as suggested by SENIAM (Konard 2012) 
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2.3.3 EMG FREQUENCY SAMPLING AND FILTERING 

 

For the EMG signal, the sampling frequency value must be greater than or equal to 1000 

Hz to avoid the loss of the signal (Konard 2012). In addition, Chang (2012) also 

suggested that the sampling frequency of surface EMG measurement should be more than 

1,000Hz. 

 

The EMG signal needs to be filtered in order to remove unwanted components or 

features of the signal and remove noise. A suitable filter configuration will boost the 

visibility of a faulty signal greatly. (Tengku Zawawi et al. 2018). Table 2 shows the list of 

the sampling frequency, type of filter and bandwidth frequencies from previous research. 

From the table, most of the previous research used a sampling frequency of 1,000Hz - 

2,000Hz. 

 

 

Table 2 List of sampling frequency, type of filter and bandwidth used in previous 

research 

 

 

References Sampling 

Frequency (Hz) 

Type of 

Filter 

Bandwidth (Hz) 

Karthick, Ghosh, & 

Ramakrishnan, (2018) 

10,000 Band pass 

 Notch  

10-400 

50Hz 

Venugopal, 

Navaneethakrishna, & 

Ramakrishnan, (2014) 

10,000 Band pass 

Notch 

20-400 

50 
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Khairul Amri Kamarudin 

et al., (2018) and 

Khairuddin et al.,(2021) 

1,200 Band pass 5-500 

Papakostas, Kanal, 

Abujelala, Tsiakas, & 

Makedon, (2019) 

1,926 Median 

filtering 

technique 

Not mention 

Lejun Wang et al., (2018) 1,000 Forth order 

band pass 

5-500 

Lin Wang, Wang, & Jiang, 

(2017) 

1,000 Notch 50 

Menotti et al., (2015) 1,000 Band pass 10 - 400 

(Balasubramanian & 

Adalarasu, (2007) 

1,000 6th Order 

Band pass 

15 - 500 

Katsis, Ntouvas, Bafas, & 

Fotiadis, (2004) 

800 Band pass 100 - 200 

 

 

In the work, the frequency sampling was set to 1000Hz as suggested by previous 

research. Then, the raw EMG signal recorded was filtered using band pass filter with a 

range of 20-500Hz to remove noise at the high-end cut-off and motion artefacts at the 

low-end cut-off.  
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2.4 SELECTION OF MUSCLE 

 

Balasubramanian & Adalarasu, (2007) conducted an experiment to analyze muscle 

activity changes in the shoulder and neck muscles while gaming in an automobile 

simulator. According to their study, the muscles in the upper part of the body, including 

the trapezius muscle, are the predominant muscles to be studied while driving. The EMG 

electrodes were placed at the right splenius capitius (neck area), right trapezius and right 

medial deltoid. There were two groups of participants: non-professional drivers and 

professional drivers. Figure 5 shows the experimental setup of their study. According to 

their findings, both groups showed a statistically significant (p<0.05) change in all muscle 

activity during a brief (15 min) gaming session. (Balasubramanian and Adalarasu 2007). 

 

 

Figure 5 Experimental setup by Balasubramaniam et al. (2007) 
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 Another study by Hostens et al. (2005) measured the trapezius and deltoid 

muscles of the driver during different driving conditions. Work that is physically boring 

(monotonous) or repetitive is linked to an increase in the low back, shoulder, and neck 

pain. The result of the study stated that for 1 hour of driving, signs of fatigue were present 

in both muscles (Hostens and Ramon 2005).  Lee et al. (2017) stated that the trapezius 

muscle has a high amount of muscular activation when in stress conditions (Boon-Leng, 

Dae-Seok, and Boon-Giin 2016). Their study concluded that muscle activity is one of the 

reliable indicators to differentiate emotion (relaxation, fatigue, stress).  

 

 Trapezius muscle has also been studied in office syndrome where a worker needs 

to sit in one position for a long duration of time. Pratummas et al. (2022) conducted an 

experiment to classify the muscle activity of a worker in non-fatigue and fatigue 

conditions. Another research by Mork et al. (2007) aimed to find the effect of arm posture 

and movement of the trapezius muscle for computer workers who work a full day (Mork 

and Westgaard 2007).   

 

 Based on previous studies about muscle fatigue of the driver during driving and 

office worker stated earlier, the trapezius muscle is the type of muscle normally studied 

by the research. Thus, in this study, the trapezius muscle was selected as the tested muscle 

for the driver in the experiment.  

 

 

2.5 MUSCLE FATIGUE  

  

Monitoring muscle fatigue is essential in all fields because it can prevent injury in a long 

term. An EMG sensor measures electrical activity over the surface of the skin and is 

widely used to study muscle fatigue. Muscle fatigue is defined as a condition where the 

muscle is unable to produce the force needed (Karthick et al. 2018).  



 

19 
 

 Muscle fatigue can occur due to the contraction of muscle. There are two types of 

muscle contraction namely isotonic contraction and isometric contraction (Chang, Liu, 

and Wu 2012). The isometric contraction is also known as dynamic contraction. During 

isometric contraction (dynamic contraction), muscle contract and relax rhythmically in 

order to maintain the same force (Tanvi Khurana & Suman Singh 2017). However, for 

isometric contraction, muscle remains contract in same state for a long period to 

maintains the same position. Even with low contraction, isometric contraction will result 

in muscle fatigue in a long period of time(Bhardwaj, Parameswaran, and 

Balasubramanian 2018). 

  

 During prolonged driving, the driver needs to maintain the position for controlling 

the steering wheel and pedal and to keep looking at the road and surrounding 

environment. Therefore, to maintain the position, the muscle need to maintain the neck, 

upper and lower limb position and stabilize the trunk (Lecocq et al. 2020)(Jung et al. 

2021). This situation is an example of isometric (static) contraction where the posture is 

maintained without any movement. The same situation (isometric contraction) is 

explained by other researchers for isometric contraction during prolonged sitting in office 

work (Jia 2020)(Kett, Milani, and Sichting 2021).  

 

In previous research, the median frequency (MDF) and mean frequency (MNF), 

based on the Fourier Transform of EMG signals have been used for muscle fatigue 

assessment (Hostens and Ramon 2005)(Sonmezocak and Kurt 2021). Nowadays there are 

many other advanced features of EMG signal can be computed to analyze muscle fatigue 

for example Normalized Spectral Moment, Spectral Entropy(Karthick et al. 2018)(Wang 

et al. 2017), multifractal detrended moving average algorithm (Marri and Swaminathan 

2016) and Spectral Flux, Zero Crossing Rate, Willson Amplitude (Papakostas et al. 

2019). However, in this work, only MDF and MNF were used to analyze muscle fatigue 

because MDF and MNF value were easier to compute, served as fundamental of muscle 

fatigue index and still widely used in the research(Yousif et al. 2019)(Ramos et al. 

2020)(Zhao et al. 2022).  
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When muscle fatigue occurs, the blood flow to the muscle decreases because the 

muscles contract intensely, reducing the blood flow and thus the availability of oxygen. 

Otherwise, the muscle is working so hard that there is not enough oxygen to keep up with 

the demand (Ani et al. 2017). Energy reserves (sugar and phosphorus) are depleted, lactic 

acid and carbon dioxide levels rise, and muscle tissue becomes acidic (Lal and Craig 

2001). As a result, the conduction velocity of the motor action potential on the muscle 

membrane slows down(Toro et al. 2019). Thus, the power spectrum of the EMG signals 

recorded from the muscle shifts towards lower frequencies when the muscles are in a 

fatigue condition. Consequently, both MDF and MNF values in non-fatigue conditions 

are higher than those obtained in fatigue conditions (Venugopal et al. 2014).   

 

 The regression coefficient of the MDF or MNF slope towards lower frequencies 

can be used as a non-invasive fatigue index for the investigated muscle. Moreover, the 

slope coefficient of the linear regression analysis of MDF is an important index of muscle 

fatigue (Candotti et al. 2009). The negative amplitude of the slope coefficient shows a 

higher level of fatigue (Chang et al. 2012).  
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Figure 6 Illustration of frequency shifting to low frequency during fatigue by Konard et 

al. (2012) 

 

 

2.6 CLASSIFICATION OF MUSCLE FATIGUE 

 

 As mentioned before, muscle fatigue detection is important in many fields. One of 

the common fields to detect muscle fatigue is sports science. The early detection of 

muscle fatigue is important to evaluate the performance of athletes and to avoid any 

injury. Papakostas, Kanal, Abujelala, Tsiakas, & Makedon (2019) studied physical 

fatigue due to muscle exhaustion based on objective EMG measurement and identify the 

presence of physical fatigue based on subjective user-report (Papakostas et al. 2019). In 



 

22 
 

this research, the subjects were asked to hold and move the end-effectors of the robotic 

arm while performing exercises. During this process, the robotic arm would provide 

resistive forces to the subject. The EMG data were recorded from the deltoid and triceps 

of the subject. When the subject felt fatigued, they would inform the researcher who 

would mark the time point. The classification of muscle fatigue was done using machine 

learning algorithm.  

 

 

Figure 7 Experimental setup by Papakostas et al. (2019) 

 

 

 Karthick et al. (2018) successfully classified non-fatigue and fatigue conditions of 

52 healthy subjects using Machine Learning algorithm by performing biceps curl exercise 

continuously.  The dataset used in the machine learning training and testing was MDF 

and MNF (Karthick et al. 2018). The most accurate classifier was the Support Vector 

Machine (SVM) with 91% accuracy. Venugopal et al. (2014) conducted research to 

differentiate the EMG signals recorded from the biceps brachii of 50 subjects in non-

fatigue and fatigue conditions. The EMG signal demonstrated a spectral shift towards the 

low-frequency area using MDF and MNF from the fatigued muscle. The most accurate 

classifier was the k-Nearest Neighbor (kNN) classifier with 93% accuracy (Venugopal et 

al. 2014).  
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Figure 8 Classification of median frequency of non-fatigue and fatigue conditions by 

Karthick et al. (2018) 

 

 

 Marri et al. (2015) employed machine learning algorithm to classify muscle 

fatigue of 26 healthy subjects. The EMG signals were recorded from the biceps brachii 

(Marri and Swaminathan 2016). The EMG signal were preprocessed and segmented into 

six sections. The first section was selected as the non-fatigue condition while the sixth 

section was selected as the fatigue condition. The EMG signal were successfully 

classified using Logistic Regression and kNN classifiers.  

 

 Based on the literature review, the research on muscle fatigue classification 

mainly focuses on the area of rehabilitation, sports science, human-computer interaction 

and medical research. However, less research has been done in the field of driving. 

Classification of muscle fatigue during driving is also important as driving fatigue will 

lead to accidents and loss of life.  
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2.7 MATHEMATICAL MODEL OF DRIVER FATIGUE 

 

A mathematical model can be described as a representation of how actual equipment or 

object will behave in mathematical equations. Ani, Kamat and Husin (2017) performed a 

study to develop mathematical model of psychophysical factors for driver’s fatigue, that 

can predict the relationship between the process input parameters and output response. 

The EMG signals were recorded from the trapezius and biceps of the subject during 

driving. The mathematical model was developed to find the relationship between the 

input process parameters (exposure time, type of road, and gender) and muscle fatigue. 

The modeling process used Response Surface Methodology (RSM) and Design Expert 

8.0.6 software. The mathematical model developed was successfully validated by 

computing residual errors (Ani et al. 2017). 

 

 

Figure 9 Experimental setup by Ani et al. (2017) 
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 Fu et al. (2016) developed a mathematical model using Hidden Markov Model 

(HMM). Twelve professional bus drivers participated in this research and they needed to 

drive real highway in 3.5 hours. This research recorded EMG, Electroencephalogram 

(EEG), respiration signals and also contextual information, such as sleep quality, driving 

conditions and circadian rhythm of the driver to estimate the fatigue of the driver (Fu et 

al. 2016).  

 

Wang et al. (2016) established a new method using non-contact sensors to develop 

a mathematical model to detect driver fatigue. The sensors used were EMG and 

electrocardiogram (ECG) sensors located inside the cushion of the driver’s seat. Twelve 

subjects were selected and they were requested to continuously drive for two hours using 

a driving simulator, as shown in Figure 10. The result showed that the model was 

successfully developed with the model accuracy of 91% using ten-fold cross validation 

and state validation techniques (Wang et al. 2017).  

 

Figure 10 Driving simulator and portable non-contact sensors by Wang et al. (2017) 
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In summary, mathematical model of muscle fatigue during driving have been 

investigated previously. However, to date, no research has been undertaken to develop a 

mathematical model based on the physical factors of body mass index (BMI), age, and 

years of driving (YOD) to determine muscle fatigue during driving. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

To achieve the stated objectives of this research, non-invasive EMG was used to measure 

the muscle activity of the driver during driving. The sensor used in this study is a 

BITalino biosignal acquisition board. This board is inexpensive and multipurpose 

hardware designed to build any projects by anyone using physiological sensors (Da Silva 

et al. 2014). A BITalino board consists of seven sensors which are electromyography 

(EMG), electrocardiography (ECG), electrodermal activity (EDA), 

electroencephalography (EEG), accelerometer (ACC), push button (BTN) and light 

sensor (LUX). As compared to other low-cost EMG sensors, BITalino is easier to use 

because the board is embedded with processors. Hence, users can collect data easily 

without any programming needed. Moreover, the data are transmitted via Bluetooth 

directly to the computer. Therefore, it can eliminate the noise coming from the wiring. In 

addition, an MPU6050 accelerometer and gyroscope sensor were used to set the driver’s 

seat inclination angle. 

 

 

Figure 11 BITalino Biosignal Acquisition board  
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 For the detection of muscle fatigue, six machine learning algorithms were used in 

this research. The recorded EMG data during the experiment was filtered and the values 

for mean frequency (MNF) and median frequency (MDF) were extracted during non-

fatigue and fatigue conditions based on the subject’s report. Lastly, the relationship 

between driver’s information (BMI, age and years of driving) and muscle fatigue was 

identified and later, mathematical model was developed and validated. 

 

 

3.2 PARTICIPANTS 

 

Ten healthy subjects (five males, five females; age: 30.8±5.77 years old; height: 

164.4±6.06 cm, mass: 64.2±12.70 kg) with no record of sleep-related problems 

volunteered in this experiment. The age of the subjects is between 20 and 40 years old. 

All volunteers should have at least 2 years of driving experience. The subjects were 

prohibited from drinking coffee, tea and other energy drink. The nature of the study and 

the procedure of the experiment were fully explained to the subjects. The study was 

approved by the Ethics Committee of the International Islamic University Malaysia (ID 

No: IREC 2020-069) and a written consent form was obtained from all subjects before the 

onset of the experimental procedures.  

 

Before starting the experiment, all subjects needed to fill up the consent form 

(Appendix I) and provide their information in the questionnaire to evaluate the initial 

condition of the driver.  The information asked were gender, age, height, weight and years 

of driving. After getting all the information, Body Mass Index (BMI) was calculated by 

dividing the weight (in kilograms) by square of the height (in meters) of the subject 

(Golmohammadishouraki 2022). The subjects also need to provide their years of active 

driving. Table 3 provides the summary of the subjects’ information.  

 



 

29 
 

Table 3 Information about the subjects participated in the experiment 

 

 

Subject 

No 
Gender 

Age 

(year) 

Height 

(cm) 

Weight 

(kg) 
BMI 

Years of 

Driving 

001 Female 27 152 43 18.61 9 

002 Female 30 168 56 19.84 12 

003 Male 23 171 60 20.51 6 

004 Male 35 166 70 25.40 18 

005 Female 35 158 62 24.84 12 

006 Female 32 165 82 30.12 7 

007 Female 22 160 49 19.14 4 

008 Male 30 170 65 22.49 12 

009 Male 38 170 85 29.41 20 

010 Male 27 167 65 23.31 12 

Mean  30.8 164.4 64.2 23.37 11.4 

Standard 

Deviation 
 5.77 6.06 12.70 4.09 5.34 

 

 

3.3 EXPERIMENTAL PROCEDURES 

 

3.3.1 ACCELEROMETER SENSOR READING 

 

 In this work, MPU 6050 is the sensor used to measure the driver’s seat inclination 

angle. MPU6050 is an integrated board embedded with 3-axis accelerometer and 3-axis 

gyroscope (Albaghdadi and Ali 2019). MPU6050 selected because the size is small, easy 

to use, precise and affordable (Al-Hussein et al. 2021).  This sensor is widely use 
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nowadays for many applications such as to stabilize the position of Unmanned Arial 

Vehicle (UAV), self-balancing robot, detecting elderly fall and detecting human 

posture(Albaghdadi and Ali 2019)(Jian 2017)(Zhang et al. 2020).  

 

In the previous research, Zhang et al., (2020) developed a wearable system to 

monitor fatigue for neck bending experiment. The MPU6050 is used to detect the tilt 

angle of the subject’s head (Zhang et al. 2020). Albagdadi et al., (2019) used MPU6050 

to stabilize the Unmanned Arial Vehicle by measuring and optimizing the roll, yaw and 

pitch angle of the UAV. According to them, the angles assumed to be zero degrees when 

the UAV is on the ground and once the UAV takes off, the angle measured change over 

time accordingly (Albaghdadi and Ali 2019).  Al-Hussein et al., conduct research to 

investigate the social and cultural factor affecting Malaysia’s driver. The MPU6050 is 

used to measure the steering angle of the car during driving and the result stated that male 

drivers drive aggressively as compared to female drivers during steering maneuvers.   

 

Tlili et al., studied the bad posture in real time in order to prevent spinal pains. 

According to them, remain prolonged slouching during working or playing with tablet 

and phone is the common cause of the back pain. The MPU6050 is used to measure the 

inclination angle of the object in different axes (Tlili et al. 2021). Figure 12 below shows 

the angle measurement by MPU6050 according to X, Y and Z axis.  
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Figure 12 The angle measured by MPU6050 for detecting bad posture of the 

subject (Tlili et al. 2021) 

 

 

The MPU6050 accelerometer and gyroscope sensor is able to measure the pitch, 

roll, and yaw angles of the sensor. The direction and orientation of pitch, roll and yaw are 

shown in the Figure 13. 

 

 

Figure 13 Pitch, roll and yaw of MPU6050 sensor 

 

 

For this study, the seat angle was set to 10° with respect to y-axis which is 

suggested as discussed in the literature review chapter as the optimum angle for the 
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driver’s comfort (Ferrari and Croft 2001) (Majid et al. 2013)(Li et al. 2015). Initially, the 

MPU6050 need to be calibrated before starting the experiment. The sensor was placed on 

a flat surface and the angle was calibrated to zero degree for roll angle. Figure 14 (a) 

shows the result for the pitch and roll angles of MPU6050 on a flat surface. It can be seen 

that on flat surface the pitch and roll angles are zero. When the MPU6050 is tilted in the 

roll angle (Figure 14(b)), the value of the roll angle changes respectively. Meanwhile, 

when the MPU6050 is tilted in the pitch angle (Figure 14(c)), the value of the pitch angle 

also changes. In this research, only roll angle was measured as it represents the seat 

inclination angle of the driver’s seat.  

 

 

                        (a)           (b)          (c) 

Figure 14 Measurement of pitch and roll angles of MPU6050 

 

 

Before starting the experiment, the MPU6050 sensor was placed at the upper part 

of the driver’s seat, as shown in the Figure 15 and the set inclination angle was set to 

zero.  After that, the seat was adjusted to 10° with respect to y-axis as shown in the Figure 

16. The seat angle was set for every subject and it was done once only before starting the 

experiment.  The seat inclination angle reading was shown in Arduino IDE using serial 

monitor. 
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Figure 15 The 0° setting of the seat inclination angle  

 

 

   

Figure 16 The 10° setting for the seat inclination angle  

 

MPU6050 

10° 
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 This sensor was connected to Arduino Uno as the microcontroller. The circuit of 

the MPU6050 accelerometer sensor was constructed in Figure 17. The SCL and SDA pin 

of accelerometer sensor were connected to the SCL and SDA pins of Arduino 

respectively. In addition, the VCC and GND of accelerometer were also connected to the 

5V and GND pins of Arduino respectively.  

 

 

Figure 17 Circuit for Arduino and MPU6050 sensor  

 

 

3.3.2 EMG SENSOR READING 

 

The EMG sensor used in this study is the BITalino biosignal acquisition board with a 

sampling rate of 1,000Hz. Before the EMG electrodes were placed over the muscle, the 

skin surface needs to be cleaned to remove dried skin and dirt by applying alcohol swab 

(Isopropyl alcohol, approximately 70%). The electrodes were placed on the left trapezius 

muscle of the driver and the location and configuration of the electrodes conformed with 

the SENIAM recommendation. The reference electrode was placed on the bony surface of 

the C7 vertebra as shown in Figure 18.  
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Figure 18 The location of EMG electrodes during experiment 

 

 

 All subjects were suggested to minimize the movement and refrain to use any in-

car devices to reduce artefacts during EMG data reading (Fu et al. 2016) and to avoid 

false EMG reading due to huge movement of the hand. As discussed in Chapter 2, the 

driver will experience muscle fatigue even in low levels of muscle contraction (isometric 

contraction) during prolonged driving because the muscle were forced to maintain the 

same position in longer time. Controlling steering wheel and pedal, observing 

surrounding and road, needs the driver to maintain the neck position, stabilize the trunk 

and balancing the lower and upper limb which will result in muscle fatigue (Lecocq et al. 

2020)(Tanvi Khurana & Suman Singh 2017).  

 

The EMG data read by the BITalino biosignal acquisition board were transferred 

to a computer via Bluetooth. The data can be observed using OpenSignal software and 

can be downloaded to text files. The data were then processed using MATLAB software.  

EMG 
electrodes 

Reference 
electrode 
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Figure 19 OpenSignal software interface 

 

 

The subjects needed to drive for 2 hours using the same highway route on the East 

Coast Expressway Phase 2, Malaysia. The driving duration was chosen for 2 hours based 

on the pilot study by El Falou et al., (2003) where the subjects reported experiencing 

muscle pain after two hours in sitting position (El Falou et al. 2003). In addition, Baker et 

al., (2018) also concluded that discomfort increases after 90 to 120 minutes during 

prolonged sitting (Baker et al. 2018). The highway route is a monotonous environment 

with the straight feature but also with some slanted ramps, unexpected downhill and 

bumpy features. The same car model, Perodua Axia with automatic transmission was 

used as the test vehicle. All the subjects needed to maintain a driving speed of 90km/h. 

Before starting the experiment, the subjects were given a 5 min test drive for them to 

familiarize themselves with the car and the road.  
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When driving, the researcher verbally asked questions from a questionnaire 

(Appendix II) every 5 minutes if they feel drowsy, sleepy or experience any muscle pain. 

Wang et al., (2017) asked a 10 minutes interval questionnaire to the subject during the 

simulation driving to minimize the fluctuation and difference between subject (Wang et 

al. 2017). In this work, it is assumed that 5 minutes interval is more accurate to detect 

muscle fatigue perceived by the subjects. The muscle fatigue perceived by the driver is 

known as a subjective measure and the time of muscle fatigue occurred was recorded. 

Five EMG signals before and another five EMG signal after the time of the subjective 

muscle fatigue were extracted and were considered as non-fatigue and fatigue conditions, 

respectively. The flowchart of this research is provided in Figure 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Start 

Place EMG electrode at muscle area (trapezius muscle) 
and MPU6050 sensor at the car seat 

Set the seat inclination angle to 10° 

Participant drives for 2 hours (5 min test 
drive) – EMG signals were recorded 

Participants fill up consent form and 
questionnaire  

Questionnaire were asked every 5 minutes 
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Figure 20 Overall flowchart of the experiment 
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3.4 DATA PROCESSING 

 

The next step is to process the collected data from the EMG sensor. The data were filtered 

to remove noise and motion artefacts using a fourth-order Butterworth band pass filter 

with a range of 20 - 500 Hz to remove noise at the high-end cut-off and motion artefacts 

at the low-end cut-off. According to Nyquist’s theory, the sampling frequency must be 

twice as high as the maximum signal frequency (Chang et al. 2012). The filtered EMG 

data of the trapezius muscle were then further processed to calculate MNF and MDF 

using the sliding window technique. An EMG signal consists of hidden useful 

information but the signal itself is very complex and consists of noise. Thus, the sliding 

window technique as suggested by Thongpanja et al. (2013) is the best technique to 

eliminate noise and inference while extracting important features. Figure 21 shows the 

concept of the sliding window technique.  

 

 

Figure 21 Sliding window concept with (L) is the window size and (I) is the increment of 

the window by Thongpanja et al. (2013) 
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A total of nth window segment of MNF and MDF is calculated by: 

 

𝑛𝑛 =  �𝑁𝑁−𝐿𝐿
𝐼𝐼
�+ 1     (1) 

 

where N is the total number of EMG signal recorded throughout the experiment, L is the 

window size and I is the increment. In this work, a window size of 250 samples and an 

increments of 125 samples, as suggested by Thongpanja et al. (2013) as the optimum 

value for window size and increment (Sirinee Thongpanja et al. 2013). For every window, 

MDF and MNF value were calculated. The MDF is the frequency value at which the 

EMG spectrum is divided into two region equally (Qassim et al. 2022). The equation for 

MDF is as follow: 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ 𝑃𝑃𝑗𝑗 = ∑ 𝑃𝑃𝑗𝑗 = 1
2
∑ 𝑃𝑃𝑗𝑗𝑀𝑀
𝑗𝑗=1

𝑀𝑀
𝑗𝑗=𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀
𝑗𝑗=1    (2) 

 

 The MNF which is defined as the sum of the product of the EMG power spectrum 

and frequency, then divided by the total sum of the power spectrum. MNF is also defined 

as the average frequency value. The equation for MNF is as follow: 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ 𝑓𝑓𝑗𝑗𝑃𝑃𝑗𝑗𝑀𝑀
𝑗𝑗=1

∑ 𝑃𝑃𝑗𝑗𝑀𝑀
𝑗𝑗=1

     (3) 

 

where Pj is the EMG power spectrum at frequency bin j and M is the length of frequency 

bin. In this work, the length of frequency bin was calculated using sliding window. Thus, 

in every window divided by sliding window technique, the MDF and MNF value were 

calculated. As stated in the literature review, MNF and MDF are normally used as 

features to identify muscle fatigue. In addition, the slope of linear regression for MNF and 
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MDF is computed using regression analysis is also used as the index of muscle fatigue 

(Chang et al. 2012).  

 

3.5 CLASSIFICATION 

 

Based on the time of the subjective muscle fatigue for every subject, the MNF and MDF 

were extracted before and after the fatigue time. The reason of extracting five signal 

before and another five data after subjective fatigue is because of great variability 

between self-report and actual measurement between the subjects and situations based on 

subject endurance limit and mental state (Marri and Swaminathan 2016; Papakostas et al. 

2019). In addition, according to Sahayadhas et al. (2013), subjective measures and 

physiological measures do not exactly occur at the same time (Sahayadhas, Sundaraj, and 

Murugappan 2013). The values before the time of subjective muscle fatigue were 

considered non-fatigue conditions, whereas the values after the time of subjective muscle 

fatigue were considered fatigue conditions. Hence, for every subject, ten values consisting 

of five values for non-fatigue data and another five values for fatigue data were collected.  

 

According to Venugopal et al., (2014), the dataset need to be normalized so that 

the differences in data range between the subjects will be eliminated (Venugopal et al. 

2014). Normalizing is done by dividing the EMG signal with the Maximum Voluntary 

Contraction (MVC) of each subject and multiply with 100 to make the normalized value 

to percentage. Buchanan et al., (2004) suggested that the MVC value for particular 

subject is the maximum EMG value recorded during the subject’s experimental procedure 

(Buchanan et al. 2004).  In this work, both MDF and MNF were normalized and were 

used as the muscle fatigue features throughout this research. 
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 The normalized MNF and MDF values were used as the features dataset for 

classification. The data were divided accordingly, where twenty-five percent were used as 

the test set, while the remaining data were used as the training set. Six machine learning 

classifiers (Logistic Regression, Support Vector Machine, Naïve Bayes, k-nearest 

Neighbours, Decision Tree and Random Forest) were used to classify non-fatigue and 

fatigue conditions.  

 

Lastly, a ten-fold cross validation method was implemented to evaluate the 

performance (accuracy) of the classifiers. The acceptable accuracy range for the analysis 

of all classifiers are between 0.80±0.16 and 0.94±0.02 (Golmohammadishouraki 2022). 

The confusion matrix is computed to analyze the performance of the classifier (Bhardwaj, 

Parameswaran, et al. 2018). The confusion matrix is depicted in the Figure 22 below. 

There are four groups of prediction result which are True Positive (TP), True Negative 

(TN), False Positive (FP) and False Negatives (FN). From the confusion matrix, the 

equivalent performance metrics were evaluated (Narudin et al. 2016). The accuracy 

which is the measure of model correctly predict the output and the equation is as follow: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
𝑇𝑇𝑃𝑃𝑃𝑃𝑁𝑁𝑇𝑇 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

   (4) 

 

Precision is the proportion of the true positive value with positively predicted as 

positive by the classifier and the equation is as follow: 

 

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇+𝑀𝑀𝑁𝑁𝑇𝑇𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇

   (5) 
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The Recall is the proportion of the true positive output that is positively predicted 

by the classifier and the equation is as follow: 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇+𝑀𝑀𝑁𝑁𝑇𝑇𝑃𝑃𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇

    (6) 

 

The Specificity which is the proportion of true negative output that is negatively 

predicted by the classifier and the equation is as follow: 

𝑆𝑆𝑆𝑆𝑃𝑃𝐴𝐴𝑃𝑃𝑆𝑆𝑃𝑃𝐴𝐴𝑃𝑃𝑆𝑆𝐴𝐴 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇+𝑀𝑀𝑁𝑁𝑇𝑇𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇

   (7) 

 

Lastly the F1 score which is the harmonic mean between precision and recall and 

good for imbalanced datasets. The equation is as below: 

𝑀𝑀1 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 𝑥𝑥 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑇𝑇𝑃𝑃𝑁𝑁𝑇𝑇𝑇𝑇
𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑇𝑇𝑃𝑃𝑁𝑁𝑇𝑇𝑇𝑇

    (8) 

 

 

Figure 22 Confusion Matrix 
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3.6 REGRESSION  

 

For the development of the mathematical model, the MDF and the slope of MDF were 

used in the regression technique. Based on the MDF value for each subject, the slope 

coefficient of linear regression was computed. The slope coefficient is also known as the 

muscle fatigue index and is used to signify the trend of muscle fatigue (De Santana et al. 

2014). The data of MDF and slope coefficient of MDF were used as the output of the 

regression. The inputs of the regression are the subjects’ BMI, age and YOD. Each input 

variable model was analyzed using Analysis of Variance (ANOVA). The ANOVA 

analysis will calculate the significance F which is defined as the probability of null 

hypothesis proposed will not be rejected. The value of significance F should be less or 

equal than 0.05 for the better performance (Wang et al. 2019).  

 

In this work, the null hypothesis (H0) was set: There is no statistically significant 

difference between each physical factors (BMI, age and YOD) while for alternative 

hypothesis (Ha) as follow: There is statistically significant difference between each 

physical factors. The statistical significance’s threshold (α) was set to 5% which indicate 

the null hypothesis (H0) is rejected when p-value is less and equal to 0.05 and thus 

alternative hypothesis (Ha) is accepted. On the contrary, when p-value is bigger than 0.05, 

the null hypothesis (H0) is accepted (Davidović, Pešić, and Antić 2018). The model of 

input variables with a p-value less than 0.05 indicates that the model is significant to the 

output and is acceptable.  

 

Another test that is normally used for evaluating a model is the coefficient of 

determination (R squared, R2).  The range of R2 is between 0 to 1 where value of R2=1 

shows better prediction (Das C, Lucia MS et al. 2017). The R2 value must be higher than 

or equal to 0.6 for the model to be accepted (De Santana et al. 2014). From the result of 

ANOVA and R2., significant input variable was selected as the mathematical model of the 

muscle fatigue of the driver.  Figure 23 shows the block diagram of the mathematical 
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model developed in this research. A mathematical model is a model used to represent the 

physical behavior of an actual system.  

 

 

Figure 23 Block diagram of the mathematical model 

 

 

3.7 VALIDATION OF MATHEMATICAL MODEL 

  

Model Validation is an essential step in accepting a model. The definition of validation is 

a process of confirming that the model is an accurate representation of real world by 

comparing the prediction from the model with the value from the real world (Mayer and 

Butler 1993). In this research, validation was carried out by calculating the residual error. 

The residual error was calculated as the difference in the predicted value derived from the 

developed model and the actual data (Ani et al. 2017). The formula of the percentage of 

residual error is shown in Equation 1.  

 

% 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅 𝐸𝐸𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴 =  𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 −  𝐴𝐴𝑃𝑃𝑃𝑃𝑇𝑇𝑁𝑁𝑇𝑇 𝑃𝑃𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇
𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇

𝑥𝑥 100                          (9) 
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 The residual error computed should be less than 10% for the model to be 

considered suitable for its intended use.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

4.1 DATA PRE-PROCESSING 

 

The EMG signals recorded from the trapezius muscle of the driver were transferred to 

MATLAB software for pre-processing. The original EMG signal was filtered with the 

fourth-order band pass filter with a range of 20-500 Hz to remove noise and motion 

artefacts. The raw EMG signal is shown in Figure 24 and the filtered EMG signal is 

shown in Figure 25.  

 

 

Figure 24 Raw EMG signal for a representative subject. 

 

 

 

Figure 25 Filtered EMG signal for a representative subject. 
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 Figure 24 and 25 above show the EMG signal for the representative subject. 

According to the subjective muscle fatigue which had been recorded by verbally 

questioning the subject during experiment, the time that the subject felt fatigue was in the 

45th minutes of driving which is after 2,700 second. From the graph, it can be seen that 

after 2,700 second, the amplitude of EMG starting to increase and fluctuate. This is in line 

with the literature that stated that during fatigue, the amplitude of EMG signal will 

increase (Baker et al. 2018) (Toro et al. 2019).   

 

 Next, the Median Frequency (MDF) (Figure 26) and Mean Frequency (MNF) 

(Figure 27) were computed using the sliding window technique as explained in Chapter 3. 

From these graphs, after 21,599 window which is equivalent to 2,700 second, the MDF 

and MNF starting to fluctuate and decreasing. The decreasing of MDF and MNF indicate 

that the subject experienced fatigue due to the reduction in the propagation velocity of the 

muscle’s action potential (Karthick et al. 2018).  

 

 
Figure 26 Graph of MDF for representative subject. 

 

 

 
Figure 27 Graph of MNF for representative subject. 
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Based on the subjective fatigue and fatigue measured by EMG signal shown in the 

graphs, it can be concluded that both occurred around the same time. However, the exact 

time of fatigue occurrence of subjective do not fully coincide with physiological measure 

(EMG signal)(Sahayadhas et al. 2013). Thus, in this work, the subjective fatigue will be 

the baseline time of subject’s fatigue and five values of MDF and MNF value were 

extracted before and after subjective fatigue for every subject. The MDF and MNF values 

before the time of subjective fatigue were considered non-fatigue conditions, whereas the 

values after the time of subjective fatigue were considered as fatigue condition. A total of 

50 non-fatigue and fatigue datasets obtained from the 10 subjects and later will be used as 

the dataset in machine learning classification. All the data were normalized to eliminate 

differences in the subjects’ EMG signal value range (Venugopal et al. 2014).  

  

 

 

4.2 CLASSIFICATION OF MUSCLE FATIGUE 

 

 The normalized MDF and MNF computed were plotted in Figures 28 and 29 

below. Based on the graphs, the normalized MDF and MNF values were higher in non-

fatigue conditions which in agreement with literature discussed in Chapter 2 

(Sonmezocak and Kurt 2021). The results indicate that the MDF and MNF could be used 

for the study of muscle fatigue.  
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Figure 28 MDF for all subjects during non-fatigue and fatigue conditions 

 

 

 
Figure 29 MNF for all subjects during non-fatigue and fatigue conditions 
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  Next, the normalized MDF and MNF datasets were used as the features of the 

Machine Learning model. In this work, six Machine Learning models, namely Logistic 

Regression, Support Vector Machine, Naïve Bayes, k-nearest Neighbors, Decision Tree 

and Random Forest were used for classification.  

 

Lastly, the performance of the classification of non-fatigue and fatigue conditions 

was evaluated using ten-fold cross-validation. The results of 10-fold Cross Validation are 

summarized in Table 4. The best validation accuracy for the normalized MDF dataset was 

obtained using the Random Forest classifier with 81.96%. On the other hand, when only 

using the normalized MNF dataset, the best accuracy was obtained by the Logistic 

Regression classifier with 77.68%. Lastly, when both the normalized MDF and MNF 

were used as the features in the Machine Learning model, the Random Forest classifier 

was the most accurate classifier, improving the accuracy to 85.00%.  

 

 

Table 4 Cross-validation accuracy results for MDF and MNF 

 
 

Classifier MDF 

Accuracy (%) 

MNF 

Accuracy (%) 

MDF and MNF 

Accuracy (%) 

SVM 80.36 76.25 77.86 

Random Forest 81.96 73.57 85.00 

Naïve Bayes 79.29 76.25 76.43 

Logistic Regression 79.11 77.68 79.11 

k-Nearest Neighbors 79.46 73.21 81.25 

Decision Tree 79.46 74.64 83.75 
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 From the classification accuracy results, it can be concluded that using more 

features yields more accurate classification in most of the classifier. Combining more 

than one features will improve performance accuracy in muscle fatigue classification   

(Pratummas and Khemapatpapan 2021) (Yousif et al. 2019). For example, the accuracy of 

the Random Forest classifier when using MDF dataset was only 81.96%, while using the 

MNF dataset only produced the rate of 73.57%. However, when both the MDF and MNF 

were used as the dataset of the model, the accuracy improved to 85.00%. In this situation, 

the accuracy also improved for the Logistic Regression, k-nearest Neighbor and Decision 

Tree classifiers. Figure 30 below shows the confusion matrix for all classifier.  
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Figure 30 Confusion Matrix for all classifier 

  

 

 Based on the result from the confusion matrix, the performance matrices were 

computed and summarized in the Table 5 below. For the accuracy matrix, Random Forest 

produced highest true fatigued and true non-fatigued prediction over entire prediction as 

compared to another classifier with 0.85. The Precision which the proportion of correctly 

predicted fatigued over entire positive prediction is highest for Random Forest and 

Decision Tree. As for Recall, the highest value was produced by Random Forest with 

0.86. The recall represents the proportion of the subject was correctly predicted fatigue by 

the classifier. Specificity depicted how good the classifier classifies non fatigue condition. 

Random Forest, Naïve Bayes and Decision Tree produced the highest specificity among 

another classifier. Lastly, Random Forest performed the best for F1 score where the 

precision and recall is considered regarding the true positive prediction.  
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Table 5 Summary of Confusion Matrix Measure 

 
 

 

 

 In a nutshell, the most accurate form of muscle fatigue classification for prolonged 

driving was obtained by the Random Forest classifier using both the normalized MDF 

and MNF values of EMG signals. Random forest classifier is a very well-known and 

powerful classifier because of the stability and robustness of the data, which features only 

slight variation. This classifier is constructed using multiple distinct decision trees and the 

final decision is predicted by most of the trees. Each decision tree is trained with different 

subsets of the training data using random sample from the original training set (Karthick 

et al. 2018). 

 

The second highest accuracy in this work was obtained using the Decision Tree 

classifier, which yielded 83.75%. This classifier performs well with an enormous volume 

of information, while unrelated features do not influence its results. However, the 

drawback is over-fitting as it is sensitive to information(Pratummas and Khemapatpapan 

2021). This is because when the result will extremely change to huge degree when the 

information changes. 

 

Classifier Accuracy Precision Recall Specificity F1 score 

SVM 0.77 0.79 0.73 0.82 0.76 

Random Forest 0.85 0.84 0.86 0.84 0.85 

Naïve Bayes 0.76 0.81 0.68 0.84 0.74 

Logistic Regression 0.79 0.80 0.76 0.82 0.76 

k-Nearest Neighbors 0.81 0.81 0.81 0.81 0.81 

Decision Tree 0.84 0.84 0.84 0.84 0.84 
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Lastly, the k-Nearest Neighbours classifier produced an accuracy rate of 81.25%, 

making it the third-best classifier. With training data, the k-Nearest Neighbours algorithm 

sets a group of k objects closest to the test object. It then assigns a class to the test object 

based on the neighbours. The three main stages of the k-Nearest Neighbours algorithm are 

initializing dataset and k-Nearest Neighbours, computing the distance between neighbors, 

and classifying the  test data based on the majority of the neighbouring class data 

(Venugopal et al. 2014). The value of k was iterated and set as five in this study based on 

the highest classification accuracy obtained when tested with MDF classification. The 

result is shown in Table 6 below where k=5 produces the highest classification accuracy. 

The usage of k=5 also been used in the research by Marri et al. (2016) in classifying 

muscle fatigue (Marri and Swaminathan 2016).  

 

  

 

Table 6 Selection of k value for kNN classifier 

 

 

 k-Nearest Neighbours classifier 

 k=3 k=4 k=5 k=6 k=7 

Classifier Accuracy 
(%) 79.29 75.54 79.46 74.46 73.04 

 

 

 

For the selection of k-value for k-fold cross validation, the same method applied 

as the selection of k value for kNN classifier. The accuracy result for ten-fold cross 

validation is highest as compared to other value. Table 7 below summarized the result of 

different k-fold cross validation tested. The ten-fold cross validation was also used by 



 

56 
 

previous researcher to classify muscle fatigue (Zhao et al. 2022) (Pratummas and 

Khemapatpapan 2021)(Zhang et al. 2020). 

 

 

Table 7 Selection of k value for k-fold cross validation 

 

 k-fold cross validation value 

 k=3 k=5 k=10 k=15 

Classifier 
Accuracy (%) 73.33 77.33 79.46 78.67 

  

 

 

4.3 REGRESSION OF MUSCLE FATIGUE 

 

Based on the literature discussed in Chapter 2, muscle fatigue can be evaluated using 

MDF and slope coefficient from linear regression of MDF (S. Thongpanja et al. 

2013)(Ostojić et al. 2018). Thus, by using the same normalized MDF from the experiment 

conducted before, further analysis was done to study the effect of physical factors of the 

driver (body mass index (BMI), age and years of driving (YOD)) on the MDF and slope 

coefficient. As mentioned before, the slope coefficient of MDF represents the rate of 

muscle fatigue occurrence for the driver.  

 

 The slope coefficient of MDF for all subjects was obtained using linear 

regression. Figure 31 shows the result of the linear regression of MDF for subject number 

one. Based on the result from the graph, it was confirmed that muscle fatigue happened 

because the slope coefficient value is negative which represents the decrease of power in 

the muscle.  
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Figure 31 Normalized MDF linear regression for subject number one (female) 

 

 

  The result of the slope coefficient for all subjects is shown in Figure 32 and 

summarized in Table 8 below. Based on the result, the slope coefficient for all subjects 

was negative, indicating that all subjects experienced muscle fatigue during prolonged 

driving. 
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Figure 32 Regression result for all subjects 
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Table 8 Summary of slope coefficient results for all subjects 

 

Subject No Gender Age BMI YOD Slope Coefficient 

001 Female 27 18.61 9 -0.477 

002 Female 30 19.84 12 -0.404 

003 Male 23 20.51 6 -0.263 

004 Male 35 25.40 18 -0.180 

005 Female 35 24.84 12 -0.111 

006 Female 32 30.12 7 -0.128 

007 Female 22 19.14 4 -0.520 

008 Male 30 22.49 12 -0.208 

009 Male 38 29.41 20 -0.195 

010 Male 27 23.31 12 -0.108 

 

 

 Next, the slope coefficient for every subject was analyzed, and the result shows 

the difference in slope coefficients between genders. Figure 26 shows the slope 

coefficient result from subject number one which is a female subject. Meanwhile, Figure 

33 shows the linear regression result for a male subject. The slope coefficient for the male 

subject is less negative compared to the female subject. According to Chang et al. (2012), 

the more negative value of the slope coefficient shows that the person has high muscle 

fatigue conditions (Chang et al. 2012). Thus, the result concludes that the female subject 

tends to experience faster muscle fatigue as compared to the male subject.  
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Figure 33 Normalized MDF linear regression for subject number nine (male) 

 

 

Figure 34 summarizes the result of the slope coefficient between genders. Most of 

the male subjects produce a lower negative value of slope coefficient as compared to 

female subjects which in line with the finding from previous research (Chang et al. 

2012)(Carneiro et al. 2010). From the graph, it is concluded that the majority of female 

subjects produce a lower negative value of slope coefficient, which indicates that female 

subjects experienced muscle fatigue faster. Although many studies have been done in 

comparing muscle fatigue between gender, other factors such as BMI, age and YOD 

should not be neglected.  
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Figure 34 Difference of slope coefficients between genders 

 

 

 The second objective of this research is to identify the physical factors of the 

driver related to muscle fatigue. The physical factors selected are BMI, age, and YOD. 

Before the experiment was conducted, the subjects needed to provide these three 

parameters through the questionnaire. By using Analysis of Variance (ANOVA), the 

significant physical factor was analyzed and determined by polynomial regression. The 

model with a p-value less than 0.05 and a coefficient of determination (R2) greater than 

0.6 will be selected as the significant model for the driver during prolonged driving. For 

the regression analysis, eight subject’s data will be used for ANOVA analysis while 

another two subject’s data will be used for the validation step randomly. The following 

subsection will discuss the results of regression analysis using MDF and the slope 

coefficient of MDF.  
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4.3.1 REGRESSION ANALYSIS OF MDF 

 

From the normalized MDF computed in the classification step before, the same values 

were used in this step which is regression analysis to develop a mathematical model. The 

normalized MDF values were considered as the output of the regression while BMI, age 

and YOD served as the input parameters. Each input parameter was analyzed using 

ANOVA using second-order polynomial and third-order polynomial regression.  

 

As mention before, in order for the physical factor to be accepted and suitable for 

intended use, the ANOVA analysis result for p-value (Significance F) should be less or 

equal than 0.05 and the coefficient of determination R2 should be higher than 0.6. Figure 

35 shows the result of ANOVA and R2 value of second-order polynomial regression for 

every physical factor using MDF. Meanwhile, Figure 36 shows the result of ANOVA and 

R2 value of third-order polynomial for every physical factor using MDF. 
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Figure 35 Second-order polynomial analysis for MDF 
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Figure 36 Third-order polynomial analysis for MDF 

 

 

 Table 9 summarizes the ANOVA result of MDF. From the results, it can be 

concluded that none of the physical factors have a statistically significant relation with 

MDF. This is because the p-value for all input parameters exceeds 0.05 and indicating 

that no sufficient evidence at the 95% confidence level that a significant linear 

relationship exist between dependent variable (MDF) and independent variable (BMI, age 

and YOD). Even though the value of R2 for the input parameters age (3rd order 

polynomial) and YOD (2nd order polynomial and 3rd order polynomial) are greater than 

0.6, the models were not accepted as the p-value is greater than 0.05. 

 

 

Table 9 ANOVA of MDF and the physical factors for muscle fatigue. 

  

 

 2nd Order Polynomial 3rd Order Polynomial 

Physical Factor R2 p-value MSE R2 p-value MSE 

BMI 0.0004 0.9991 568.67 0.1540 0.8629 601.60 

Age 0.5661 0.1241 246.89 0.7423 0.1132 183.23 

YOD 0.6642 0.0653 191.06 0.6659 0.1843 237.56 
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4.3.2 REGRESSION ANALYSIS OF THE SLOPE COEFFICIENT OF MDF 

 

As mentioned earlier, the slope coefficient represents important features in muscle fatigue 

assessment. The slope coefficient indicates how fast muscle fatigue will happen and it can 

represent a person’s endurance to muscle fatigue (Ostojić et al. 2018). The input 

parameters to analyze were BMI, age and YOD of the driver. The slope coefficients of 

MDF for all subjects were used as the output response of the polynomial regression of 

second-order and third-order polynomial. Each physical factors were analyzed using 

ANOVA. Figure 37 shows the result of ANOVA and R2 value of second-order 

polynomial regression for every physical factor using MDF slope coefficient. Meanwhile, 

Figure 38 shows the result of ANOVA and R2 value of third-order polynomial for every 

physical factor using MDF slope coefficient. 
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Figure 37 Second-order polynomial analysis for MDF slope coefficient 

 

 

 

 

 

Figure 38 Third-order polynomial analysis for MDF slope coefficient 
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Table 10 summarizes the ANOVA result using MDF slope coefficients. From the 

results, age and YOD were found not statistically related to the slope coefficient of MDF 

because the p-value is greater than 0.05. On the other hand, the p-value for BMI is less 

than 0.05 and the R2 value is greater than 0.6 for both second-order and third-order 

polynomial. This concludes that there is a relationship between BMI and the rate of 

muscle fatigue using MDF.  

 

 For the second-order polynomial regression graph for the BMI versus MDF slope, 

the R2 value is 0.85 which indicates that 85% of dependent variable can be explained by 

the independent variable. Meanwhile, the significance F, which is also known as the p-

value is less than 0.05 which indicate that 95% confidence that there is a significant linear 

relationship between independent variable (BMI) and dependent variable (MDF slope). 

The p-value for individual input variables (BMI and BMI2) is also less than 0.05 which 

explains that the quadratic coefficient is significant. For the third-order polynomial 

regression of BMI versus MDF slope, the R2 value and p-value also show a good fit of 

data (p-value = 0.001 and R2=0.92). Based on the ANOVA result for individual input 

variables (BMI, BMI2, BMI3), it is shows that the third-order coefficient is significant 

because the p-value is less than 0.05.  

 

 

Table 10 MDF slope ANOVA analysis of the physical factors for muscle fatigue 

 

 2nd Order Polynomial 3rd Order Polynomial 

Physical Factor R2 p-value MSE R2 p-value MSE 

BMI 0.85 0.0081 0.0046 0.92 0.0011 0.0029 

Age 0.41 0.2690 0.0187 0.45 0.4548 0.0218 

YOD 0.35 0.3453 0.0207 0.54 0.3353 0.0184 
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 In conclusion, only BMI is found to be a statistically significant physical factor 

that affect muscle fatigue of the driver during prolonged driving. Therefore, the 

mathematical model of the second-order and third-order polynomial were successfully 

develop using ANOVA analysis where both the p-value was less than 0.05 and the R2 

value is higher than 0.6. In addition, based on the regression result, it is shown that the 

higher the BMI value, the faster muscle fatigue occurrence to the driver during prolonged 

driving.  

 

 

4.4 VALIDATION OF THE MATHEMATICAL MODEL  

 

The last step in developing a mathematical model is the validation of the model. Model 

validation refers to the process of confirming that the model is accurate representation of 

the real world from the perspective of its intended use. This is done by comparing other 

actual data from the experiment conducted with the data predicted by the model 

developed (Ani et al. 2017). The model is considered validated and suitable for its 

intended use when the residual error is less than 10%. This step is important to examine 

the model’s accuracy in the real world.  

 

Based on the ANOVA result, both second order and third-order polynomial 

models of BMI were statistically significant and the mathematical model was successfully 

developed as shown in Figure 39 below.  
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Figure 39 The mathematical models developed based on ANOVA analysis 

 

 

Next, validation test needs to be done in order to allow the model to be accepted.  

As mention before, eight subject’s data were chosen randomly for mathematical model 

development step while another two subject’s data were used as the validation step. The 

residual errors were calculated based on Equation 6. Table 11 and Table 12 show the 

results of model validation and the residual error for second-order and third-order 

polynomial respectively.  

 

 

Table 11 Validation result of the mathematical model developed using second-order 

polynomial 

  

 

BMI Prediction  Actual Residual Error (%) 
18.61 -0.516 -0.477 0.039 7.55 
22.49 -0.204 -0.208 0.004 1.96 
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Table 12 Validation result of the mathematical model developed using third-order 

polynomial 

 

 

BMI Prediction Actual Residual Error (%) 
18.61 -0.671 -0.477 0.194 28.91 
22.49 -0.107 -0.208 0.101 94.39 

 

 

 Based on the results, the residual error for the second-order polynomial model is 

less than 10% and it can be concluded that the model developed was successfully 

validated whereby the model is suitable for its intended purpose. However, the third-order 

polynomial model is not successfully validated because the residual error is greater than 

10%. In a conclusion, for the physical factors of the driver, only BMI is related to muscle 

fatigue. Furthermore, the mathematical model of the driver during prolonged driving can 

be developed using second-order polynomial regression and the equation is as follows:   

 

         𝑅𝑅𝐴𝐴𝑆𝑆𝑃𝑃 𝑃𝑃𝑆𝑆 𝑀𝑀𝐴𝐴𝑃𝑃𝐴𝐴𝑅𝑅𝑃𝑃 𝑀𝑀𝐴𝐴𝑆𝑆𝑃𝑃𝐹𝐹𝐴𝐴𝑃𝑃 =  −4.8390 + 0.3578𝐵𝐵𝑀𝑀𝐵𝐵 −  0.00675𝐵𝐵𝑀𝑀𝐵𝐵2                  (10) 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

 
 
5.1 CONCLUSION 

 

Due to the increasing use of road transportation and accident rates in Malaysia, this study 

focused on the classification of non-fatigue and fatigue conditions and predicting the rate 

of muscle fatigue of the drivers during prolonged driving using Electromyography (EMG) 

signal. Three main steps were taken to achieve the goals. The first goal is to classify non-

fatigue and fatigue condition of the driver during prolonged driving. Secondly, to identify 

significant physical factor (Body Mass Index (BMI), age and year of driving (YOD)). 

Lastly is to develop and validate the mathematical model with respect to the driver’s 

physical factor.   

 

The EMG signals from the trapezius muscle were recorded and the mean 

frequency (MNF) and median frequency (MDF) were computed. For muscle fatigue 

classification, the MNF and MDF dataset were trained and tested using six machine 

learning models: Logistic Regression, Support Vector Machine, Naïve Bayes, k-nearest 

Neighbors, Decision Tree and Random Forest classifiers. The result shows that both MNF 

and MDF values were lower in fatigue conditions compared to non-fatigue conditions. In 

addition, by combining MNF and MDF data to the classifier dataset, the accuracy was 

improved as compared to a single dataset. Yousif et al. (2019) also stated that combining 

features is advisable in order to obtain more information and avoid losing information 

(Yousif et al. 2019). Pratummas et al. (2022) also combined features for the dataset of 

machine learning classification in their research (Pratummas and Khemapatpapan 2022). 

In this work, the non-fatigue and fatigue condition was successfully classified and the 

Random Forest classifier produced 85% of accuracy by using MNF and MDF as the 

dataset.  
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 The second objective of this work is to identify physical factors related to muscle 

fatigue. The physical factors are body mass index (BMI), age and years of driving 

(YOD). The most significant factor was determined using ANOVA analysis. The MDF 

was further analyzed to find the slope coefficient of the linear regression for MDF. The 

slope of MDF is normally used as a fatigue index. From the slope coefficient results, all 

subjects produced a negative value of the slope coefficient, indicating that all subjects 

experienced muscle fatigue during prolonged driving. Based on the result of the slope 

coefficient, female subjects tend to feel muscle fatigue faster than male subjects. By using 

the MDF value and the slope coefficient of MDF, the relation between physical factor 

(BMI, age and YOD) was studied. Based on ANOVA analysis, there is no statistically 

significant relation between MDF and all of the physical factors. The models were not 

accepted as the p-value>0.05 thus accepting the null hypothesis mentioned before which 

was: There is no statistically significant difference between each physical factors (BMI, 

age and YOD).  

 

  As for the regression analysis results using the slope coefficient of MDF, it is 

shown that only BMI is significantly related to muscle fatigue. This is due to the p-value 

for both second-order and third-order polynomial of BMI analyzed by ANOVA produce a 

value less than 0.05 which rejected the null hypothesis (H0) and accepted the alternative 

hypothesis (Ha) which was: There is statistically significant difference between physical 

factors (BMI). The R2 value for both second-order and third-order polynomial of BMI 

produced values higher than 0.6 which indicate the good fit of data.  Based on the 

regression trend, it is concluded that the higher the BMI, the faster muscle fatigue 

occurrence to the driver during prolonged driving. Other physical factors which were age 

and YOD was not statistically significance as the p-value is greater than 0.05 thus 

accepting the null hypothesis (H0). Moreover, the R2 value calculated for age and YOD 

was less than 0.6 indicating that the model does not fit the actual data. Based on the 

results, age and YOD do not affect muscle fatigue rate of occurrence.  
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For the last objective of this research, two sets of mathematical models of second-

order polynomial and third-order polynomial using BMI were successfully developed 

using ANOVA. The final step of development of mathematical model is to validate the 

model. In this work, the models were validated by calculating the residual error of 

predicted value and actual value (Ani et al. 2017).  Based on the result, the residual error 

calculated was less than 10% indicating the model was accurately able to predict the 

muscle fatigue occurrence of the driver during prolonged driving with respect to the BMI 

value.  

 

From the result of this study, the following conclusions were achieved: 

• The amplitude of EMG signal was increasing with the increasing of muscle 

fatigue. 

• Median frequency and Mean Frequency value of EMG signal were decreasing 

during muscle fatigue condition. 

• Random Forest classifier successfully classify non-fatigue and fatigue condition 

using EMG signal with accuracy of 85%. 

• Using more features as the input dataset in Machine Learning classifier improved 

the classifier’s performance analysis. 

• The negative value of the slope coefficient of MDF indicate that the subjects 

experienced fatigued during prolonged driving 

• The slope coefficient value for female subjects were more negative value 

compared to male thus concluded that female subject tends to experience fatigue 

faster than male subjects. 

• Only BMI affect the muscle fatigue of the driver during prolong driving. The 

regression trend shows that the higher the BMI value, the higher the rate of 

muscle fatigue.  

• The mathematical model of second-order polynomial was successfully developed 

and validated using ANOVA analysis with respect to BMI and muscle fatigue. 
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5.2 RECOMMENDATION 

 

Further research is suggested to be conducted on classifying and predicting muscle 

fatigue during prolonged driving. For the classification of muscle fatigue, it is suggested 

to include other psychophysical signals like electrocardiogram (ECG), electromyogram 

(EMG), electrooculogram (EoG) and electroencephalogram (EEG) signals to improve the 

classification accuracy. Moreover, it is hoped that more studies on muscle fatigue 

classification are carried out in the field of driving. To date, muscle fatigue classification 

mainly focuses on the area of rehabilitation, sport science, human-computer interaction 

and medical research. 

 

 For mathematical model development, it is suggested that the sample size should 

be bigger for better accuracy and effectiveness. In addition, a broader range of age, YOD 

and BMI is suggested for the population of the subject. In this research, the physical 

factors of the driver are only limited to BMI, age and YOD. There are other factors 

affecting muscle fatigue of the driver such as the type of road, driving environment, 

health condition, driving time and type of car need to be studied. In this study only 

trapezius muscle was under study. For future, it is suggested to study other muscle in the 

body and examine which muscle is the most fatigue.  

 

 The outcomes of this work forms important guidelines that can be used when 

studying driver’s muscle fatigue to reduce fatigue, avoid musculoskeletal disorders and 

prevent accidents. Indirectly, the number of lives lost due to road accidents can be 

reduced.  
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APPENDIX I – CONSENT FORM 

 

Department of Mechatronics Engineering 
Kulliyah of Engineering 

International Islamic University Malaysia 
53100, Gombak 

Selangor 
Version 1, 20 May 2020  
 Subject Identification Number for this trial: __________________ 
 

CONSENT FORM 

MATHEMATICAL MODELING FOR THE ERGONOMIC ANALYSIS OF 
DRIVER DURING PROLONGED DRIVING 

 
Investigators: Dr. Nur Liyana Azmi, Dr. Khairul Affendy Md Nor, Dr Nor Hidayati Diyana 
Nordin, Noor Azlyn Ab Ghafar  

z 

1 I confirm that I have read and understand the Participant Information Sheet dated 
20/05/2020 for the above study and have had the opportunity to ask questions. 

 

2 I understand that my participation is voluntary and that I am free to withdraw at any 
time without giving any reason, and without my medical care, education or legal rights 
being affected. 

 

3 I agree to my anonymised data.  
4 I agree to take part in the above study.  
5 I would like to be provided with a summary report of our findings at the end of the 

study, at my request 
 

 

________________________________________          _________________      
Name of the subject      Date    

 Signature 
 

________________________________________          _________________       
Name of the person taking consent    Date    

 Signature 
______________________________________________________________________________ 
Consent form    Version 1.0                       20/05/2020 
 

Please initial 
the boxes 
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APPENDIX II – QUESTIONNAIRE FORM 

 

Questionnaire 

Subject ID  Age  
Weight                 kg Height               cm Gender F   /   M 
Years of Driving  

 

Instruction: Please tick √ if the driver feels drowsy, sleepy or experiences any muscle 
pain during experiment is conducted. 

Location of EMG sensor 

 

Minutes Fatigue  Minutes Fatigue 
0 (start)   65  
5   70  
10   75  
15   80  
20   85  
25   90  
30   95  
35   100  
40   105  
45   110  
50   115  
55   120  
60   125 (end)  
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APPENDIX III – MPU6050 PROGRAMMING CODE 
 

#include "Wire.h" 

 #include <MPU6050_light.h> 

 MPU6050 mpu(Wire); 

 unsigned long timer = 0; 

 void setup() { 

   Serial.begin(9600); 

   Wire.begin(); 

 byte status = mpu.begin(); 

   Serial.print(F("MPU6050 status: ")); 

   Serial.println(status); 

   while (status != 0) { } // stop everything if could not connect to MPU6050 

 Serial.println(F("Calculating offsets, do not move MPU6050")); 

   delay(1000); 

   mpu.calcOffsets(); // gyro and accelero 

   Serial.println("Done!\n"); 

 } 

 void loop() { 

   mpu.update(); 

 if ((millis() - timer) > 10) { // print data every 10ms 

     Serial.print("X : "); 

     Serial.print(mpu.getAngleX()); 

     Serial.print("\tY : "); 

     Serial.print(mpu.getAngleY()); 

     Serial.print("\tZ : "); 

     Serial.println(mpu.getAngleZ()); 

     timer = millis(); 

   } 

 } 
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APPENDIX IV – CLASSIFICATION CODE 

 

 

 




