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ABSTRACT

In the case of amputees, the development of cybernetic hands that closely resemble the
functions of real hands is essential for comfort and functionality purposes. Controlled by
intrinsic and extrinsic muscles, the human thumb plays a major role in differentiating hand
gestures. For those who have lost their intrinsic hand muscles, any information about
muscle activities that can be obtained from the extrinsic muscles is essential to control the
thumb. Thus, focusing on transradial amputees, this research investigates the relationship
between extrinsic muscles to characterise thumb posture. A High-Density surface
Electromyogram (HD-sEMG) device and a portable thumb force measurement system were
used to collect forearm HD-sEMG signals from a total of 17 subjects. For the flexion
motion, the subjects were asked to repetitively place their thumb at rest before exerting
30% of their individual maximum voluntary contraction (MVC) on a load cell by following
a designated trajectory presented on a developed graphical user interface (GUI). The
measurement system was set to four different postures namely zero degrees, thirty degrees,
sixty degrees, and ninety degrees. Feature extraction was then performed by extracting the
absolute rectified value (ARV), root mean square (RMS), mean frequency (MNF) and
median frequency (MDF) values of the forearm HD-sEMG signals before being classified
using four different classifiers namely linear discriminant analysis (LDA), support vector
machine (SVM), k-Nearest Neighbour (KNN), and TREE-based classifier. The results
revealed that the LDA classified RMS and ARV-RMS features, which were extracted from
both posterior and anterior hand sides successfully achieved the highest correctly classified
percentage of 99.7%. The findings of the study are significant for the development of a
dedicated model-based control framework for prosthesis hand development to be used by
transradial amputees in the near future.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

The human hand is an important body part that is used to control and handle daily activities
such as grasping, pinching, and gripping (Yan Li, 2019). For normal people, the hand has
five digits which consist of four fingers and a thumb. According to WHO (World Health
Organization, 2004), 0.5% of the population in a developing country has a disability that
necessitates the use of a prosthesis or orthosis. This prediction suggests that approximately
160,000 of Malaysia's current population of 32 million require prosthetic or orthotic
devices. In additional, based on a record, there are approximately 1.6 million individuals
living with limb loss in the United States, and it is estimated that the number will double
by 2050 (Ziegler-graham et al., 2008). The common loss of limbs is due to accidents, wars,
and diseases. There are also congenital cases where a person is born without a fully

functional hand. These groups of people are known as amputees.

There are two categories of amputees, namely transradial and transcarpal. As
demonstrated in Figure 1.1, transradial amputation occurs in the forearm area, in which the
incisions are typically made on a ratio of 1 to 1 of the form length. It may cause the loss of
interconnection between two main types of muscles, namely the intrinsic and extrinsic
muscles. Meanwhile, transcarpal amputation is a common type of amputation that occurs
for a variety of reasons such as diabetes and accidents, which in some cases will eventually
result in amputation (removal through surgery). In general, more hand muscle activity data
can be extracted from transcarpal amputees than transradial amputees since the flexion and

extension of the wrist are still preserved. As such, transcarpal amputees can achieve higher



recovery of overall hand function compared to transradial amputees (Maduri & Akhondi,

2020).

ain

Figure 1.1: Transradial and Transcarpal

Research findings in neurophysiology and neuroscience have been utilised in the
latest surgical procedures to incorporate prosthetic elements such as hand prostheses,
osseointegration and myo-controllers (Kanitz et al., 2018). Over the last decade, earlier
researches have achieved significant progress in the field of prosthetic hand development
that utilises Electromyogram (EMG) measurements (Sadnchez-velasco et al., 2019), which
have given huge benefits to amputees in assisting in their daily activities to resemble normal
limb functions. Based on one study (Cordella et al., 2016), hand prostheses are typically
controlled by the sampling features taken from surface Electromyography (sSEMG) signals
obtained from the amputee’s limb residual muscles. There are two types of EMG, namely
invasive and non-invasive. Non-invasive sEMG is more common in prosthesis
development (Chowdhury et al., 2013) and clinical usage, such as in physiology (Enoka,

2019), as this technique is painless and easily reproducible.



The thumb is the first digit of the human hand which is also known as pollex in its
scientific term. Since the thumb is the only opposable digit to the other four fingers, it plays
a critical role in hand function. Controlling this finger is vital for the realisation of different
hand grip attitudes. Also, the contribution of the thumb towards hand functions and
movements is inherently indispensable since the thumb is the only opposable digit that
controls grip formation. Injury or loss of function of the thumb can severely limit overall

hand function and movement (Xu et al., 2018).

To control and maximise the attitude and force of this digit, the thumb demands a
combination activation of all the connected muscles (Drake et al, 2015; Wohlman &
Murray, 2013). Critically, the thumb cannot be simulated accurately via individual intrinsic
muscle contribution (Wohlman & Murray, 2013). The technique to record the SEMG signal
to replicate thumb gestures is centred on the thumb musculature by measuring the activities
of the intrinsic muscle in the palm area as demonstrated in Figure 1.2. The other extrinsic
muscles governing the thumb lie on the forearm as shown in Figure 1.3. This interplay
between extrinsic and intrinsic muscles is mostly reduced or lost for transcarpal and
transradial amputees. Yet, the remaining residual forearm muscles (the extrinsic muscles)
are still accessible for both types of amputees and could be useful to control a myoelectric-

based prosthetic hand.

Figure 1.2: Positions of the electrodes; (1) AP, (2) FPB, (3) APB, (4) FDI (Sidek etal., 2018)
3



Anterior Musculature of Extrinsic Muscles Posterior Musculature of Extrinsic Muscles

Deep superficial

Deep superficial

Figure 1.3: (Left) Muscles in the anterior compartment of extrinsic muscles (flexor
muscles of the forearm). The muscles of the anterior compartment of the forearm are

depicted in this image from the deepest layer (left) to the most superficial one (right)

(Right) Muscles in the posterior compartment of extrinsic muscles (extensor muscles of
the forearm). The muscles of the posterior compartment of the forearm are depicted in
this image moving from the deepest to the most superficial layer (Aranceta-Garza and

Conway, 2019)

The biomechanics of the skeleton, thumb joint, and muscle-tendon action of the
extrinsic muscle are the factors that influence thumb activities. Due to the lack of detailed
studies on other factors influencing thumb characteristics, biomechanical prosthetics have
limitations in function and performance (Wohlman & Murray, 2013; Xu et al., 2018). These
limitations of prosthetics can cause phantom or telescoped sensations on the amputees’
remaining hand limb. Phantom is a situation in which the proximal limb has shrunk, where

in some cases, the amputees feel as if the limb is still present (Wijk & Carlsson, 2015).

There are continuous developments in cybernetic hands that can help create
improved hand prostheses for transradial and transcarpal amputees (Wijk & Carlsson,

2015). As it is a crucial need for disabled individuals, opportunities for research and

4



development on these cybernetic hands are still open for further improvements. With a
newer EMG technology called the High-Density surface Electromyogram (HD-sEMG),
existing technologies can be further improved. The HD-sEMG uses multiple electrodes that
are arranged in a specific array. Previous studies (Amma et al., 2015; Stegeman et al., 2012)
have shown that the effect of electrode numbers on recognition performance improves

recognition accuracy.

1.2 PROBLEM STATEMENT

There are millions of hand amputees around the world, and unfortunately, these numbers
increase each year. Hand prosthetics provide some functionalities of the human hand for
amputees. However, current prosthetic hands lack accuracy in replicating hand gestures
due to the lack of information that can be extracted from the muscles. Centring on the
thumb, there are still gaps in research that focus on the synergy of targeted muscles on

thumb movements.

Additionally, the limited information obtained from the placement of conventional
SEMG electrode results in insufficient representations of overall muscle activity (Garcia
and Vieira, 2011). As a result, smooth movements especially for prosthetic hand

applications are hard to achieve due to the missing data from the targeted muscles.

Importantly, the main muscles that control the thumb attitude are the five intrinsic
muscles that have easy access to the thumb. The other four extrinsic muscles that govern
the thumb are located in the deep compartment of the forearm and contribute indirectly to
thumb attitude. Despite the loss of access to the intrinsic muscles, any information from the

extrinsic muscles is non-negotiable for transradial amputees.

5



Previous studies have focused on specific thumb attitudes, especially on abduction
(Aranceta-Garza and Conway, 2019). However, different attitudes such as flexion and

extension as presented in this work have not yet been covered.

1.3 RESEARCH OBJECTIVE

The main objective of this research, therefore, is to investigate (and establish) the
relationship between the synergy of the HD-sEMG signal from extrinsic musculature and

the thumb postures to be replicated on prosthetic hands for transradial amputees.

The main objective can be divided into four sub-objectives as follows:

1) To upgrade an existing portable thumb muscles platform and establish a standard
SEMG recording setup for the HD-sEMG patch for consistent measurement of
signals from the forearm musculature.

2) To determine the optimised feature extraction method and the best selection of
features for the HD-sEMG data collected.

3) To determine the best classifier and validate the performance of the developed

system by classifying HD-sEMG data collected.



1.4 RESEARCH METHODOLOGY

The execution plan for the research has been divided into five phases. An overview of the

methodology, including the methods and materials of the experimental design, is described

as follows and is summarised in Figure 1.4;

1.4.1 Phase-I

1.

2.

Conduct a comprehensive review of the existing literature on the
development, design, control, implementation, and application of prosthetic
limbs (particularly hand and thumb prostheses).

Study the related thumb muscles and finalise the targeted muscles.

Request for ethical clearance from the IIUM Research Ethics Committee

(ID no: IREC 2020-080).

1.4.2 Phase-I1

1.

2.

Upgrade the existing thumb measurement system to accommodate different
thumb postures, specifically for flexion activities. Set four different postures
for the study: zero-degree, thirty-degree, sixty-degree, and ninety-degree
angles.

Finalise the experimental protocol needed for the collection of raw data sets
of HD-sEMG signals. The protocol includes data collection procedures,

electrode placement, and the number of records for each subject.



3. Test the system on pilot subjects (members of BioMechatronics Lab).
Improve the necessary study protocol besides analysing and evaluating the
results.

4.  Purposively sample and select 17 subjects among I[ITUM students with no
huge accident history and disease on the targeted hand that may affect the

result.

1.4.3 Phase-III

1. Finalise the set up for the thumb measurement system and the experimental
procedure to collect HD-sEMG data from the subjects’ forearm musculature
at different thumb postures.

2. Perform feature extraction in terms of time domain and frequency domain
analysis, followed by selecting the features that yield the highest correctly
classified instances using several classifiers.

3. Apply classification techniques to establish the relationship between HD-
sEMG signal features and various thumb angles (flexion activities). Finalise
an appropriate classifier based on the highest percentage of correctly

classified data to classify the collected data.

1.4.4 Phase-1V

1. Formulate the conclusions of the study and recommendations for future
works.

2. Write a final thesis and publish several journal and conference papers.



Literature Review

'

Identification the target muscles and location for
Phase-1 electrode placement

|

Ethical clearance

_______________________________ l_ .

Upgrade the thumb measurement system to
accommodate various thumb postures N

|

Design the experimental protocol required for the
collection of raw data of HD-sEMG
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Figure 1.4: Flowchart of the methodology



1.5 SCOPE OF RESEARCH

The scope of the study is as follows:

1.

This study to investigate the synergy of EMG signal from forearm with
thumb attitude begins with upgrading the portable thumb training system
platform to replicate four different thumb attitudes for flexion activities and
the methods finalised for HD-sEMG data collection procedures by the
forearm of the healthy subject targeting on the right hand.

Recruiting 17 subjects from the ITUM students with good health and no
accident history and/or diseases on the targeted hand and each participant
will be completed the collecting data procedure

Examining the features for time domain (TD) and frequency domain (FD)
analyses (root mean square (RMS), mean absolute value (MAV), mean
frequency (MNF) and median frequency (MDF)) and evaluating the results
based on selected classifiers only (linear discriminant analysis (LDA),
support vector machine (SVM), k-Nearest Neighbour (KNN), and TREE-
based classifier). Then the collected data are analysed with classifying
different thumb attitudes using machine and deep learning, and

classification learner app in Matlab R2020.

1.6 THESIS ORGANISATION

The thesis is divided into five chapters:

Chapter 1: Describes the overview of the research by discussing the problem

statements, research objective, methodology, and scope of the research.
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Chapter 2: Presents a literature review related to several studies on the muscles
(intrinsic and extrinsic) that contribute to controlling the thumb and steps for

data analyses including feature extraction and selection of classifiers.
Chapter 3: Elaborates on the research methodology used in the study.

Chapter 4: Discusses the outcomes from the analyses of HD-sEMG signals for

several selected features and classifiers.

Chapter 5: Details the achievement of the objectives, limitations of the study,

and recommendations for future works.

1.7 THESIS CONTRIBUTION

The current thesis contributes to the knowledge of HD-sEMG signals’ patterns in
replicating thumb attitude specifically for flexion activity in designing advanced hand
prostheses. The previous study show limitation on the selected methods and effected on the
accuracy of the classifier result and gap on the attitude of the thumb study. In this thesis,
we provide an elaborate account of how the procedure was conducted. The work includes
electrode placement and data collection procedures for flexion activity, feature extraction
and classification. This thesis discussed with details on the result leads to the best selection
features and classifier for the collected data. In short, the research contributes to the study
of HD-sEMG signals in classifying different thumb attitudes, specifically on flexion

activity for contract and relax activities.
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CHAPTER TWO

LITERATURE REVIEW

2.1 INTRODUCTION

The thumb is the only opposable digit of the human hand and it is primarily important to
perform any hand gestures. The digits are controlled by a combination of different muscles
located within the forearm and hands. sSEMG-related technology has been previously used
to analyse both the thumb and other digit muscle activities. In this chapter, earlier works
on prosthetic technology, gesture control by EMG, and further details of EMG technology,
are discussed. Signal processing steps including feature extraction from the captured HD-
SEMG electrodes (the raw data) and the classification process is also elaborated
accordingly. At the end of the chapter, a summary of the key highlights to be used

throughout the research is provided.

2.2 ANATOMY OF MUSCLES

Individual fingers move biomechanically using muscles that have different anatomical
compartments and separate tendons. When combined with other digits, standard handgrip
activities are achieved. The thumb is the only opposable digit responsible for the majority
of hand functions (Xu et al., 2018). The thumb muscles can be divided into two parts,

namely intrinsic (hand) and extrinsic (forearm) muscles.
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2.2.1 Intrinsic Muscles

The thumb has a distinct feature from other digits, where for the four other digits, the main
movements are bidirectional, namely flexion and extension. Meanwhile, the thumb has at
least four movements, namely adduction, abduction, flexion, and extension (Adewuyi et
al., 2016). The majority of the main muscles of the thumb are located in the hand (palm)
and are also known as intrinsic muscles. The activation of the intrinsic thumb muscles
located close to the skin’s surface of the hand determines both the grip strength and thumb
attitude (Xu et al., 2018). Each of these intrinsic muscles serves an individual purpose as
presented in Table 2.1, while the combination of these intrinsic muscles play a major role
in carrying out daily activities. Figure 2.1 depicts a diagram of hand anatomy which consists
of five intrinsic muscles, namely Abductor Pollicis, Flexor Pollicis Brevis, Abductor
Pollicis Brevis, Opponens Pollicis and First Dorsal Interosseous (Aranceta-Garza and
Conway, 2019; Drake et al, 2015). Since these muscles are the main muscles used in
controlling thumb attitude, classification of muscle activations, thumb attitude, and strength

is required from these muscles.

Table 2.1: Intrinsic muscles description

Muscles name Contribution
Abductor Pollicis Thumb adduction
Flexor Pollicis Brevis Thumb flexion

Abductor Pollicis Brevis Thumb adduction
Opponens Pollicis Thumb opposition

First Dorsal Interosseous | Thumb flexion and extension
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1. Abductor Pollicis
2. Flexor Pollicis Brevis
3. Abductor Pollicis Brevis
4. Opponens Pollicis

5. First Dorsal Interosseous

Figure 2.1: Intrinsic Muscles

2.2.2 Extrinsic Muscles

Hand functions and finger movements are predominantly controlled by the extrinsic
muscles located in the forearm. Extrinsic muscles consist of several muscles that perform
various functions as summarised in Table 2.2. For amputees, information from extrinsic
muscles can be used to replicate the thumb attitude and potentially be used for conventional
myoelectric prosthesis control (Adewuyi et al., 2016). The extrinsic muscles which directly

contribute to thumb attitude are illustrated in Figure 2.2.

The Flexor Pollicis Longus, which is located in the deepest layer of the muscles, is
the target muscle that controls the thumb digit on the anterior side. On top of this muscle,
there are two layers of muscles which consist of five other muscles (Flexor Carpi Ulnaris,
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Palmaris Longus; Flexor Carpi Radialis, Pronator Teres) (Aranceta-Garza and Conway,
2019; Xu et al., 2018). These muscles contribute to the activity of thumb flexion. Notably,
there is only one muscle that contributes to the different thumb attitudes on the anterior
side. Meanwhile, there are three muscles that are connected to the thumb on the posterior
side, namely the Abductor Pollicis Longus, Extensor Pollicis Brevis, and Extensor Pollicis
Longus. All of these muscles are located next to the other three muscles in the deepest layer
of the posterior forearm. The Abductor Pollicis Longus contributes to the abduction and
extension of the thumb (Abductor Pollicis Longus - Physiopedia, n.d.), the Extensor
Pollicis Brevis controls thumb abduction (Jabir et al., 2013), and the Extensor Pollicis
Longus contributes to the extension of the interphalangeal joint of the thumb (Extensor
Pollicis Longus - Physiopedia, n.d.). Above these muscles, two more layers of muscles
contribute to different finger functions and this creates challenges in capturing the targeted

muscle signal for both sides of the hand (anterior and posterior sides).

Table 2.2: Extrinsic muscles description

Muscles name Contribution

Flexor Pollicis Longus Thumb flexion
Abductor Pollicis Longus = Thumb abduction and extension
Extensor Pollicis Longus = Thumb extension

Extensor Pollicis Brevis Thumb extension
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1. Flexor Pollicis Longus 3. Extensor Pollicis Longus
2. Abductor Pollicis Longus 4. Extensor Pollicis Brevis

Figure 2.2: Extrinsic muscles

2.3 ELECTROMYOGRAPHY (EMG)

EMG is a type of bio-signal that represents neuromuscular activities by measuring the
electrical current generated in the muscles (Li et al., 2015) during muscle activity. When
the thumb exerts a certain amount of force, the EMG signals from related muscles can be
captured. Before amplification, the amplitude range of the raw EMG signal varies between
0 tol0mV (£5mV) and these voltage values are directly proportional to the force applied
(Mohideen & Sidek, 2011); (Arnold et al., 2013). Studies have shown that ion flow through
muscle fibres has a significant influence on the force exerted and is directly reflected in the
EMG data collected (Arnold et al., 2013; Dai & Hu, 2019; Ghaderi & Marateb, 2017). Even
though myoelectric prosthetics have increased flexibility and anthropomorphism of the
thumb, the control mechanism for this digit through sSEMG has remained unchanged over

the last four decades (Mastinu et al., 2019).
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2.3.1 High-Density Surface EMG (HD-SEMG)

One of the highlighted advantages of SEMG over intramuscular EMG (or known as needle
EMGQ) is that it is widely reproducible in follow-up studies due to its non-invasiveness and
relative ease in collecting spatial distributions of data. Continuous research and
development have revealed limitations in the analysis of SEMG, such as limited information
from the placement of the electrodes, which results in insufficient representations of the
overall activity of the muscles (Garcia and Vieira, 2011). These limitations have led to an
improved technology known as the HD-sEMG (Stegeman et al., 2012). HD-sEMG has
many similarities to ordinary sSEMG measurements, the main difference being that smaller
electrodes are densely arranged in a grid position along the region of interest, which enables
more information to be obtained from the region of muscles under investigation. Multiple
electrodes used to sample EMG activity from a single muscle are expected to provide
valuable insights into muscle physiology and anatomy (Vieira & Botter, 2021). Thus, HD-
sEMG does not limit access in case more data are required to be captured from multiple

targeted muscles (Garcia and Vieira, 2011) at one time.

A study conducted by Garcia and Vieira (2011) highlighted some advantages of
using HD-sEMG compared to normal surface EMG. The first advantage is based on the
myoelectric activity detected and further physiological indications that can be obtained
when multiple electrodes are used at the location of tendons and end-plates, as well as the
length of muscle fibres. Also, by using HD-sEMG, the actual position of the muscles can
be detected more accurately than SEMG. Thus, the problem of placement mismatch for a
single SEMG can be overcome. In addition, when an array of surface electrodes is placed
on the skin parallel to the path of the muscle fibres, each electrode will report a delayed
representation of the Motor Unit Action Potentials. Therefore, the conduction velocity of
action potentials propagated along the muscle fibres can only be measured afterwards.
Interestingly, this delay can be minimised or omitted using HD-sEMG technology
(Ghaderi & Marateb, 2017).
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The HD-sEMG uses multiple electrodes arranged in a specific array. Previous
studies (Amma et al., 2015; Stegeman et al., 2012) have shown the effect of electrode
numbers on recognition accuracy. The array is used to measure the propagating potential
at various spatial positions along the course of the muscle fibres. As a result, more
comprehensive muscular activity data can be obtained using HD-sEMG as compared to
conventional SEMG. Furthermore, the usage of HD-sEMG can address the placement
mismatch of electrodes that occurs in conventional SEMG (Garcia and Vieira, 2011). HD-
sEMG also enables high-accuracy estimation of the innervation zone location, as well as
an estimation of muscle fibres conduction velocity, length, and orientation (Ghaderi &

Marateb, 2017).

Using HD-sEMG, electrical activities present on the skin’s surface can be recorded
using the bi-dimension technique in developing a map (Nait-ali et al., 2019) as illustrated
in Figure 2.3. The map is an image in which each pixel represents each electrode for HD-
sEMG. The data or signal extracted from these muscle activity maps is required to identify
active areas during the movements of targeted muscles. The segmentation is beneficial for
clinical neurophysiology in monitoring muscle activities. Also, it is instrumental in the
usage of robotic-assisted therapies and prosthetic hands (Amma et al., 2015; Nait-ali et al.,
2019). As shown in Figure 2.3, interpolation maps are commonly used when displaying

muscle activation as spatial resolution increases.
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Figure 2.3: RGB colour replicated different amplitude EMG signals captured by HD-
sEMG electrode in the form of a bi-dimension picture representing four different
positions corresponding to 4 digits: secundus digitus manus, digitus medius,digitus

annularis, and digitus minimus manus, respectively (Aranceta-Garza and Conway, 2019).

2.3.2 Electrode Placement

EMG signals are subjected to noise from various sources. Cables connected to the
electrodes may pick up noise from the main electricity supply. Motion artefacts may also
contaminate the EMG signals. Careful electrode placement can mitigate the effects of
noise. The EMG amplitude signal depends highly on the location of the electrode placement
(Bao et al., 2018; Xu et al., 2018). The standard placement of the electrode used by
(Aranceta-Garza and Conway, 2019) is proximally 25% from the ulnar head and the
olecranon for the posterior view and the ulnar head to the elbow crease for the anterior view
as shown in Figure 2.4. The electrode used is a 13-by-5 electrode grid (with an

approximately 13cm-by-5cm coverage area of the signal reception).
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Anterior Musculature Posterior Musculature

Olecranon
(ECG electrode as reference)

Figure 2.4: Placement electrode used by Aranceta-Garza and Conway, (2019)

Bao et al., (2018) focused on the placement of an electrode on the forearm to
stimulate finger extension or flexion. The focus of the research was to compare electrode
positions and forearm rotation which affect the activation threshold. The study also
developed a theoretical model of electrode placement for the selective activation (extension
or flexion) of individual fingers. As a result, the activation of the thumb during the
extension or flexion is accumulated at the middle of the forearm to the side of the radius
bone approximately 4cm from the wrist as shown in Figure 2.5. In conclusion, the electrode
placement used by Aranceta-Garza and Conway, (2019) agrees with the outcomes by Bao

etal., (2018).
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Figure 2.5: (Top) Active points in the anterior compartment. (Bottom) Active points in
the posterior compartment. The active points vary when the position of the hand changes

from supination to neutral on the anterior compartment and pronation.

2.4 FEATURE EXTRACTION

The collected signal from the targeted area is in the raw data. To extract valuable
information from raw data, there is a step called feature extraction, where the most
significant features are fed to a classifier to form classes for the dataset (Inam et al., 2021;
Toledo-Pérez et al., 2019). Features can be extracted using TD, FD, and combined time-
frequency domains. Due to its mathematical simplicity and good performance, TD features
are commonly used (Hakonen et al., 2015; Inam et al., 2021). TD features are determined
based on the amplitude of the signals and do not require any extensive computations.
Commonly used TD features are RMS (Aranceta-Garza and Conway, 2019; Higashi et al.,
2019) and MAYV (Bi et al., 2020; Turgunov et al., 2020). FD characteristics are based on
the frequency range and are calculated using Fourier transformations. Commonly used FD
features are MNF (M. M. Alam et al., 2020; Dupan et al., 2018) and MDF (Alam et al.,
2020; Goubault et al., 2021). The results of the study conducted by Siddiqi & Sidek, (2016)

showed that TD analysis produces higher accuracy to differentiate different finger attitudes
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than FD, which is better in classifying muscles’ fatigue status. Also, TD is preferable to be
used in the study of different hand attitudes’ EMG-based signals.

2.5 CLASSIFIER

Data classification is essential for developing a control algorithm for the cybernetic
prosthesis. It is a useful technique to describe the behaviour of complex nonlinear processes

in the presence of conventional mathematical models (Inam et al., 2021; Khan et al., 2020).

Classification algorithms are classified into three types: supervised learning,
unsupervised learning, and reinforcement learning (Ghazali et al., 2015; Khan et al., 2020).
In supervised learning, the algorithm has access to or is provided with the data it is
attempting to predict. A classic example of supervised learning is the classification of
animals, namely cats and fish. After collecting the features’ information such as the
presence of fur, scale, and ears on the animals’ bodies, the data are fed into a classifier, for
example, KNN, while labelling those data according to its classes (whether the specific data
matches that of a cat or a fish). In contrast to supervised learning, there is no target value
in an unsupervised learning task. For example, classification for customer segmentation.
The process of understanding different customer groups to develop marketing or other
business strategies based on customer demands. In contrast to reinforcement learning, this
algorithm creates a system that can learn by interacting with the environment (Vieira et al.,
2019) through reward and punishment concepts. For example, a rescue robot is designed to
autonomously move in a building. As the time needed to escape the building is short, the
robot will be rewarded every time it achieves a new record after trying several routes. In
case the time recorded gets longer, the robot will be punished to show that the chosen route

is wrong.
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HD-sEMG has three specific methods of classification, namely the HD-EMG map
intensity and centre of gravity classification, HD-EMG map intensity classification, and
single differential channel intensity classification. All these techniques use supervised
learning and classification based on the intensity of a single differential channel which is
recommended as the best technique for classifying HD-sEMG data (Jordanic et al., 2016).
Table 2.3 summarises the type of classifier and accuracy achieved in earlier studies in

classifying HD-sEMG signals.

In the table below, various objectives from the previous study are listed. The
selected papers have one thing in common, they all focus on data collected from the forearm
area. The accuracy for the papers is greater than 90% except for the paper by Paul et al.,

(2017), which is a comparison of different classifiers.
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Table 2.3: Classifier and result used in earlier researchers. LDA, Random Forest (RF), SVM, KNN

Author Title Study’s objective Targeted area and Classifier Results
(year) dynamic factor used
(Yuetal., Attenuating the Impact of Limb Position | Investigated the effect of limb position -Forearm area LDA 93.60%
2018) on Surface EMG Pattern Recognition variation on pattern recognition-based motion | -Limb position
Using a Mixed-LDA Classified classification using a linear discrimination
analysis (LDA) classifier
(Celadon et | Proportional estimation of finger Investigated finger force estimation using HD- | -Forearm area LDA 91%
al., 2016) movements from high-density surface SEMG to record the electrical activity of the - Individual fingers
electromyography extrinsic hand muscles during isometric finger | (index, middle, ring
flexion and extension and little)
(Paul et al., | Comparative Analysis between SVM & Comparative analysis. -Forearm kNN, SVM | SVM > kNN
2017) KNN Classifier for EMG Signal -Six basic hand
Classification on Elementary Time movement
Domain Features
(Islam et al., | Forearm Orientation and Muscle Force The proposed feature selection method would | -Forearm area kNN, 91.46% -
2022) Invariant Feature Selection Method for be very beneficial for identifying the least -Three orientation SVM, 93.27%
Myoelectric Pattern Recognition dimensional features and enhancing EMG-PR | forearm LDA
performance.
(M. S. Alam | Real-Time Classification of Multi- The study's objective was to devise techniques | -Forearm area LDA 96.5%
& Arefin, Channel Forearm EMG to Recognize for the quick and real-time classification of -Different hand
2018) Hand Movements using Effective EMG signals obtained from hand movements. | motion
Feature Combination and LDA Classifier
(Dai & Hu, | Extracting and Classifying Spatial The objective of this study is to quantify the - Forearm area LDA, 96.76%
2019) Muscle Activation Patterns in Forearm spatial patterns of forearm flexor muscle - Individual fingers SVM

Flexor Muscles Using High-Density
Electromyogram Recordings

activation during individual finger flexions.

(index, middle, ring
and little)




2.6 SUMMARY

This chapter introduced two types of muscles, namely intrinsic and extrinsic muscles,
which contribute to thumb attitude and force exerted. Focusing on extrinsic muscles, this
study aims to extract information from these muscles to replicate the thumb attitude for
transradial amputees. Aside from that, the chapter discusses the features extracted from
HD-sEMG used in previous studies, namely TD (RMS and ARV) and FD (MNF and MDF)
features. The classifiers were used by previous researchers in the final focus of the literature
review. It can be concluded that LDA, SVM and KNN are the three most used classifiers

to analyse EMG signals in general.
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CHAPTER THREE

RESEARCH METHODOLOGY

3.1 INTRODUCTION

To tackle the limitations of past studies as discussed in the earlier chapters, this study was
designated to investigate the synergy between high-density EMG patterns at the forearm
musculature based on four different thumb attitudes. The study’s goals include forming
standardised data collection procedures on the SEMG signals taken from the forearm for
repeatable purposes and classifying those signals based on their thumb attitudes before
implementing the thumb training system on transradial amputees (the real patients). As
such, this chapter will discuss in detail the developed system, including the experiment
setup, data collection procedure, feature extraction, normalisation, and classifier applied in

categorising the collected SEMG signals.

3.2 SYSTEM DESIGN

As shown in Figure 3.1, the platform used to manipulate the thumb’s angles in this was a
portable thumb training system. The platform was made up of four major components

which were a hand rest, an adjustable wrist position, a potentiometer, and a load cell.
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Potentiometer Load cell

Adjustable

wrist position\

Figure 3.1: Portable Thumb Training System

The hand rest platform was designed to keep the forearm in a resting position, which
was essential. During the collecting procedure, the subject's forearm was placed on the
platform to minimise unnecessary contraction of the muscles. Muscle contraction during
non-exerted force (during relax condition; unwanted contraction) can cause undesired force

exerted by the subject during contract condition.

During the data collection procedure, a potentiometer was used on the platform to
measure the angle of the subjects’ thumbs. Using Simulink (Matlab 2020), Figure 3.2
depicts how the thumb angle’s block diagram was developed. An analogue value
originating from the potentiometer was fed to the ‘Gain 3’ block and was converted into
voltage form using the formula shown in Equation 1. The analogue input was divided by
1024 as the maximum number of analogues before it was multiplied by 5, which indicates

the maximum voltage that the processor (Arduino) can read.
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ARDUINO
fi
Pin: 16 Gain3 = D splay1

4 . - d| MATLAB Function
Analog Input2

Figure 3.2: Angle block diagram

K(digital voltage) = input x 1024 (D

Equation 1: conversion: from analogue to voltage values of load cell signal

After that, the voltage value was passed to Matlab function’s block for calibration
purposes using “Angle Meter” apps to utilise Equation 2. As shown in Figure 3.3, the thumb
attitudes were fixed at zero degrees, thirty degrees, sixty degrees, and ninety degrees and
displayed to the users. On the platform, the load cell was screwed based on the angle

accordingly.

output (anlgle) = input (digital voltage) x 55.641 + 0.6266 (2)

Equation 2: Conversion of voltage to angle

Load Cell

“» '%

W,

4, y/2

-

Zero-degree Thirty-degree Sixty-degree Ninety-degree

Figure 3.3: Thumb attitudes
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A load cell was used to capture the force exerted by the subjects. The forces exerted
were constant variables in this experiment and it was controlled by contraction muscles.
The contraction muscles to achieve the desired force generated a biopotential signal and
the signal was analysed in this experiment to see whether the signal successfully classified
the different thumb attitudes. Calibrations of the load cell were conducted using known

metal calibration weights which acted as forces applied by the subjects in the real system.

3.3 TRAJECTORY

A dedicated trajectory was designed to guide the subjects in applying dedicated amounts
of force on the load cell for the data collection procedure. The trajectory is necessary to

standardise the duration and the force applied during the experiments.

Previous researchers used three levels of Maximum Voluntary Contraction (MVC)
which are 10%, 30%, and 50% (Jordani¢ et al., 2017; Rojas-martinez et al., 2012) to study
the reactions of different MVCs that affected muscles fatigue. MVC is the maximum
contraction that muscles can exert, where the power generated by the activities depends on
its amount (Dahlqvist et al., 2018). A study conducted by Rozand et al., (2014) found that
the higher the MVC percentage exerted, the faster muscles become fatigued as it takes a
longer period for ion in muscle levels to recover. In this case, the highest MV C that can be
considered to be applied by the participant is 50% of the maximum force. In contrast, the
disadvantage of using lower MVC is that has a low ion value, which results in low
amplitude captured by sensors, thus causing readings to be too difficult to be analysed
(Barru et al., 2018). It is reflected by 10% MVC. As such, in line with the suggestion by
Aranceta-Garza and Conway, (2019), the fixed force to be exerted by the subjects in this
study is 30% MVC.
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The contraction duration (with the exertion of force) was set to five seconds and
eight seconds for relaxation (no force exerted). Relax duration was set to be 1.5 times more
than the contract duration in line with an earlier study (Aranceta-Garza and Conway, 2019).
The time provided was believed to be enough for muscles to recover the ion lost during the
previous contraction procedure before the muscle is ready again for the next contraction
procedure. Also, one second was set as a transition time for the subjects to change from
relaxing to contracting mode and vice versa. The conditions (contract and relax) were
repeated three times in one record to ensure that there was enough sample to be analysed
in the next process, and this took approximately 50 seconds per record. The trajectory

sample is illustrated in Figure 3.4.

T
e Targeted Force
e A ctual Force

Force (N)

" Time (gec)

Figure 3.4: Trajectory interface

A Simulink block diagram for developing the dedicated trajectory is shown in
Figure 3.5. The block diagram was split into three sections. The first section was the block

diagram to capture the analogue signal from the Arduino and convert it into a force unit.
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This component included ‘Analog Input 1°, which was set to pin 0 and a display on the
block that showed ‘Arduino Pin 14’ as well as two ‘Gain’ blocks labelled ‘Gain 1’ and
‘Gain 2°.

Part 2

I
(=u

d oSk . .Il—l Part 3

Pin: 14
_ -—cl double

Part 1 O

Figure 3.5: Force block diagram

Equation 1 was installed in ‘Gain 1’ as the conversion of the analogue read to a 5V
maximum value. The value was then supplied to the ‘Gain 2’ block as the conversion to the
value of force (N) using equation 3. In this equation, the input was multiplied by 20, which
was the value of ‘m’ (gradient) in the straight-line equation (also known as a straight line’s
slope). The value of 20 was fixed based on the output of the calculation straight-line slope
during the load cell calibration process. The numbers were then multiplied by 9.80665
which indicated the conversion value from gram to newton before being divided by 5,
indicating the maximum voltage value. As a result, the output of the ‘Gain 2’ block was a

force with SI units of Newton (N).
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9.80665
5

output (force exerted(N)) = input(digital voltage) x 20 x

Equation 3: conversion voltage to force (N)

Part 2 and Part 3 were dedicated to measuring 30% of the MVC applied by the
subjects using several blocks such as ‘Max of element’, ‘Memory’, ‘Gain’, and ‘Display’.
The force value originated from Part 1 and was fed into a block known as ‘Max of Elements
1. Using the ‘Memory’ block, the current force value (while imagining the system is
running) was compared with an earlier maximum force value saved from the same dataset.
The current subject’s maximum force was shown in the ‘Display 2’ block. At the same
time, the highest force exerted was the input for the ‘Gain 3’ block. The block (Gain 3)
calculated 30% of the maximum force and the result was displayed in the ‘Display 1’ block.
The 30% MVC value was set in part three to be used in the actual trajectory during the data

collection procedure manually.

Part 3 contains several blocks for generating a trajectory to be used in the data
collection procedure. This part includes two ‘Rate Transition’ blocks, one ‘Data Type
Conversion’ block, one ‘Repeating Sequence’ block, one ‘Mux’ block and one ‘Scope’
block to display the generated trajectory. The desired graph was created using the
‘Repeating Sequence 2’ block as demonstrated in Figure 3.6. The time intervals were set
to 0,2, 7,9, and 15. The contraction period began in sec 2 until sec 7 (5 seconds), and then
the relaxed period began from sec 7 until sec 15 (8 seconds). This ratio was used in earlier
research (Aranceta-Garza and Conway, 2019). The output values began with 0 N at 0 sec,
then sec 2 and 7, and the output set differed at this point depending on the 30% MVC. The
signal then passed through the ‘Rate Transition 2’ block with an output port sample time
of 1/200 together with the current force values from the load cell at the same rate. The

selection of this sample time was after trying multiple sample rates. The ‘Rate Transition’

32



block was necessary to ensure that the transfer rate for both signals was the same to avoid
the lagging trajectory displayed in ‘Scope 1°. The output from the ‘Rate Transition 1’ block
was then passed to the ‘Data Type Conversion’ block so that the value can be converted
into a readable value. ‘Mux’ block was used to combine both live data and generated

repeating sequence trajectory for comparison purposes (with double as the data type).

‘Display 3’ then showed the subjects' real-time force exerted.

\2} Block Parameters: Repeating Sequence X
Repeating table (mask) (link)

Output a repeating sequence of numbers specified in a table of time-value
pairs. Values of time should be monotonically increasing.

Parameters

Time values:

[[027915] I

Output values:
[[0222200] [z

‘) Cancel Help Apply
Figure 3.6: Desired graph parameter

3.4 DATA COLLECTION PROCEDURE

Figure 3.7 represents the flowchart for the data collection process. This research was
approved by the International Islamic University Malaysia (IITUM) Research Ethics
Committee (Approval ID: 2020-080) (see Appendix I). The subjects were provided with a
consent form (see Appendix II) before the procedure began. The subject's forearm length

was then measured using the 25% rule as shown in Figure 3.8 according to a standard
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procedure from a previous study by (Aranceta-Garza and Conway, 2019) before proceeding

with placement of an HD-sEMG electrodes pad on the subject’s forearm.

Fill up the consent form

|

Measure 25% of forearm length from the elbow

'

Place HD-sEMG sensors on anterior side

|

Ask the subject to sit on the chair comfortably and
rest right hand on the platform

'

Record 30% MVC of each attitude

Run the experiment for anterior compartment

'

Rest 3 minutes

|

Place HD-sEMG sensors on posterior side

A

Run the experiment for posterior compartment

Figure 3.7: Procedures for data collection
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ulnar head and elbow

Figure 3.8: Electrode placement standard

The procedure began with the anterior side. First, the electrode was placed on the
measured forearm. Then, the subject was asked to sit on a chair facing a dedicated computer
screen, while the experimenter adjusted the subject’s forearm position on the portable

thumb training system as shown in Figure 3.9.

Graphic  User

Participant Interface (GUI) T

Sessantaquattro_——

_ Load C{y '

Figure 3.9: Experiment setup to collect the HD-sEMG signals recording
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The manipulated thumb attitudes were the thumb angles, namely zero degrees,
thirty degrees, sixty degrees, and ninety degrees. The experiment began with the MVC of
individual subjects measured using a load cell. The subject was asked to exert his or her
maximum thumb force on the load cell before the Simulink automatically calculated 30%
of his or her MVC. The 30% MVC again was set by Simulink as the targeted force before
being shown through a graphical user interface (GUI) in trajectory form. For repeatability

purposes, the subject was asked to apply 30% MVC three times during the procedure.

Subjects were then required to repeat the same procedures three times (three
records) for each angle for a total of 12 records for each subject across all angles on one
hand side. After completing the anterior side’s procedures, the subject rested for three
minutes before the posterior side’s procedures began. The same rules were applied for the
posterior side in which the preparation of the experiment began by placing an electrode at
the posterior side of 25% from the ulnar head and elbow. In total, 12 records were collected

for the subjects' posterior sides.

3.5 HD-sEMG RECORDING SETUP

A portable biomedical signal amplifier (Model Name: Sessantaquattro) manufactured by
OT-Bioelettronica illustrated in Figure 3.10 was used to capture 64 channels of monopolar

HD-sEMG signals.
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Figure 3.10: Sessantaquattro by OT-Bioelettronica

Data collected from the HD-sEMG patch can be transmitted from an amplifier via
Wi-Fi to PCs, tablets, or smartphones or stored on an SD card for long-term acquisition.
Different adapters allow the Sessantaquattro connection of electrode matrixes, electrode
arrays, or bipolar electrodes. Sessantaquattro can also act as a 64 channel data logger that

stores data on a MicroSD card.

The electrode used in this experiment was the GROSMM 1305, which is an HD-sEMG
electrode pad that has 13 rows and 5 columns grids with an 8 mm inter-electrode distance
as illustrated in Figure 3.11. The pad was placed on both sides of the subject's forearm. The
electrode required foam to ensure that it could adhere to the forearm. Also, the specific
foam used together with this electrode was the KITOSMM 1305 (as shown in Figure 3.12),
and a special cream known as conductive cream (CC1) was utilised to fill up spaces inside

the foam to ensure that the biosignal can be captured by the electrode with minimal noise.

37



Figure 3.11: HD-sEMG electrode
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Figure 3.12: HD-sEMG electrode foam

To acquire or process the signals in real-time, a custom application for
Sessantaquattro was developed. Alternatively, a freeware software OT BioLab was used to
display real-time signals and acquire the Sessantaquattro signals used in this experiment.
Before the data acquisition process started, the software settings had to be updated. Figure
3.13 depicts the software setup for this study. Using the GUI of the software, the device
was set to Sessantaquattro, and the adapter option was set to AD1x64SE. The adapter option
selected (AD1x64SE) was compatible with the plugging of the GROSMM1305 electrode.
All the configurations were set under sensor settings. The frequency system was also set to
EMG (2000Hz) for the HD-EMG signal as fixed by the manufacturer in the user manual

(Manual, n.d.). After everything was set, the data collection procedure could then begin.
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n IN 1: 64 channels adapter monopolar acqu
| AUX 1

m AUX 2

Figure 3.13: HD-sEMG software setting

3.6 FEATURE EXTRACTION

In this experiment, there were four features extracted with two from the TD, namely the
RMS and MAYV or known as Absolute Rectified Value (ARV). These two features are well-
known optimal methods to extract signal amplitude (Phinyomark et al., 2013). Despite the
previous study’s result that the TD has better features in classifying thumb attitude, two FD
features were also included in this study, namely MNF and MDF. These two features are

the most basic and commonly used in for FD.
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The RMS was obtained by calculating the mean value of the EMG signal using
Equation 4.

Equation 4: RMS equation

The ARV feature is an average absolute value of the EMG signal amplitude in

segmentation as shown in Equation 5.

N
1
ARV = Nz X (5)

k=1

Equation 5: MAV/ARV equation

in which:

* ‘N’ is the number of samples per window.

» Xk’ is the amplitude of the signal at the input of the amplifier in mV.

MNF is the average frequency of the signal. It is also known as the central frequency

(Fc). It is expressed as shown in Equation 6.

YN, 6P
MNF = 5= (6)

i=1 i

Equation 6: MNF equation
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MDF is the frequency at which the power spectrum density is split into two halves; in

other words, MDF is half of the total power as expressed in Equation 7.

1 M
MDF = - Z P (7)
i=1

Equation 7: MDF equation

in which:

* f; is the frequency of the spectrum at frequency i.
» P; is the power spectrum at frequency i.

* M is the length of the frequency bin.

3.7 SOFTWARE INTERFACE AND DATA EXTRACTION

Software provided by OT BioLab was used to do the pre-processing steps. An example of
an offline GUI of the software is shown in Figure 3.14. As demonstrated in the figure, the
software is equipped with a ‘Channel List” column on the left side, next to the signal display
known as ‘Tab 1-RawData’. The ‘Tabl-RawData’ displays the pattern of the collected HD-
sEMG signal in the loop. This channel was used to visualise and analyse the captured signal

to determine whether it is acceptable or not.
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24 OTBioLabs : Version 1.5.4 [C:\Users\ib i deta from th+] - o x

POOC

Channel List Tab1-RawData X

= Tab 1-RawData
m GROSMM1305

Set Interspace
©.5mV)

Figure 3.14: OTBioLab data interface

By zooming in on the ‘Tabl-RawData’ graph, Figure 3.15 represents the electrode
arrangement of all 64 electrodes (labelled as 1). The amplitude interspace (labelled as 2)
was determined by the subject signals, which means that different subjects had different
interspaces. In case the differences between the set conditions (contract and relax) were too
small, the interspaces were smaller and vice versa. As a result of adjusting the interfaces,
the contact (labelled as 3) and the relax (labelled as 4) can now be clearly seen. Based on
the trajectory shown in Figure 3.14, as the participants were required to apply force three
times in each record for the contact condition, these signals are portrayed in the resulting

sample in Figure 3.15.
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GRO8MM1305  |I-

Set Interspace |-
(0.5mv)

Figure 3.15: Signal interface details

OT BioLab software also was used to extract the dedicated features. Figure 3.16 depicts
the offline processing features selection. As a note, all of the features selected to be
analysed in this study were ready to be calculated automatically by the software. These
features were labelled as 1 (ARV), 2 (MNF), 3 (MDF), and 4 (RMS).
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Mezn Firing Rate

Mean Frequency ‘\
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O
Q
Q
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Show Accessory Ramp Channel

Signal to Noise Ratio

Figure 3.16: Offline processing direction (feature extraction)

Once the interesting feature was selected by the user, a new row of signals will
appear below the raw signals as shown in Figure 3.17. The example of a selected feature

depicted in the figure is ARV.
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Figure 3.17: Feature extracted interface

Then, the extracted feature can be exported into a variety of file formats, including
.mat, .csv, binary, and .wav depending on the demand of the users. While the export data
records the entire duration of the data collection process, the data can be filtered to a
specific period as shown in Figure 3.18. In the case of this study, the only data of interest
to be analysed was during the contract and relax conditions. As such, the rest of the data
were ignored. These selected data were later exported into a file for the following

processing steps.
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Figure 3.18: Feature extracted interface details and export direction

3.8 NORMALISATION DATA

Since the HD-sEMG signals recorded from each subject were unique and there were also
variations of the 30% MVC value recorded among subjects, there was a need for the data
to be normalised in the next pre-processing steps. Normalisation is important due to inter-
day and inter-subject variations of the HD-sEMG signals (Bashford et al., 2020).

Mathematically, the normalisation of the HD-sEMG can be expressed as shown in Equation

3).
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n
=x100% (8)

Equation 8: Normalisation equation
where:
‘x’ is the average of all normalised data values

‘n’ is the data from the n™ electrode out of 64 electrodes

To normalise the data, first, the average of each feature data set of all electrodes was
calculated (x). Then, the RMS or ARV value of the specific electrode (n) was divided by

the x before being multiplied by 100 to scale up the normalised values.

3.9 CLASSIFIER

Classification is an important step in identifying patterns of HD-sEMG signals that
correspond to specific thumb muscle force exertion magnitudes and postures. In this study,
the pre-processed data were classified using machine and deep learning classification

learner app in Matlab R2020 (The Mathworks, Natick, MA).

Using trial and error method, the cross-validation value was set as five folds after a
few attempts at different settings from 1 up to 10. This implies that all input data from the
HD-sEMG signal were divided into five groups automatically using a ratio of 1:4 (e.g.,
Group 1 for testing and four other groups, Group 2 to 5, for training). After the first
classification iteration, the testing group was rotated (Group 2 was now meant for testing
while Group 1 and Group 3 to 5 were used for training). The whole classification process
took five times, indicating the five folds, and all five groups were used for testing. The
result displayed is the mean of the overall five classification results (Frank et al., 2010).

The training and testing data sets were randomly selected by the app.
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The classifiers selected in this study were LDA, SVM, and KNN, in addition to one
random classifier, which was the TREE-based classifier. For the KNN classifier, the value
of the variable K which indicated the count of the nearest neighbours can be manipulated
based on the data. In this study, the K value was set to 1 because it produced the highest
correctly classified instances after comparing to other K values between 1 to 10. The
selection of these three classifiers namely LDA, SVM, and KNN was because there were
commonly used classifiers in a previous study that focused on replicating hand posture in
a prosthetic hand study that produced a highly accurate result. The premier study of this
research used the Weka machine learning algorithm, and the TREE-based classifier

produced high accuracy; thus, the TREE-based classifier was included in the actual study.

Machine learning classification was carried out such that the inputs to the machine
learning algorithm were HD-sEMG data that were collected from the 64 electrodes placed
on the forearm anterior and posterior muscles and the outputs were the corresponding
thumb postures at zero degrees (at rest and contract), thirty degrees (at rest and contract),
sixty degrees (at rest and contract) and ninety degrees (at rest and contract), which were

denoted as class A, B, C, D, E, F and H respectively as shown in Table 3.1.

Table 3.1 Denotation of Thumb Posture Classes

Q
=
)
2]
7

Thumb Posture
Zero Degrees (contract)

Thirty Degrees (contract)

Sixty Degrees (contract)

Ninety Degrees (contract)

Zero Degrees (at rest)
Thirty Degrees (at rest)
Sixty Degrees (at rest)
Ninety Degrees (at rest)

TiQlmmgia| | >
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Figure 3.19 depicts the classifier's basic configuration. In this experiment, the
response option must be set to angle, which was the targeted class. There were eight distinct
classes, each with four angles (zero degrees, thirty degrees, sixty degrees, and ninety
degrees) and two different conditions (contract and relax). Data that did not include

predictors were unmarked, as condition, sub, and trial data were excluded in this study.

4 New Session - (] X
Data set Validation
Data Set Variable -, =
(® Cross-Validation
normakzed 960x68 table ~ | Protects against overw partitioning the data set
into folds and estimating acduracy on each fold.
Response
angle V\ categorical 8 unique v Cross-validation folds: S folds
Predictors 3 | I j
Name Type Range
[J condtion categorical 2 unique N
0 O Holdout Validation
[ sup double 3.15 Recommended for large data sets.
O trial double 101..303 \
& electt double -137.563 .. 132.598
M elect2 double -113.172.. 120.515 . [ , |
M elect3 double -250.839 .. 222.094
] elects double -138.408 .. 140.276
M elects double -180.065 .. 118.774
[ elects double -186.183 .. 173.763 (O No Validation
M elect7 double -124.111 .. 128.039 O PRI Ronkm ics Biles
M elects double -112.239 .. 112.145
electd double -155.915 .. 156.165 v
Add Al Remove All
How to prepare data Read about validation
Start Session Cancel

Figure 3.19: Classifier setting
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3.10 SUMMARY

To sum, this chapter presented the experimental set ups for data collection and data analysis
processes. Four different attitudes were fixed in collecting dedicated HD-sEMG signals
from extrinsic muscles at zero degrees, thirty degrees, sixty degrees, and ninety degrees
using a developed thumb training platform. Two features from the TD family (RMS and
ARYV) and two from the FD (MNF and MDF) were chosen to be extracted. Using Matlab
R2020, there were four chosen classifiers selected, namely LDA, SVM, and KNN, as well
as one random TREE-based, to classify the collected data. The outcomes of the study are

discussed in the following chapter.
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CHAPTER FOUR

RESULT AND DISCUSSION

4.1 INTRODUCTION

In this chapter, the entire results starting from the data collection process up to the
classification process are discussed. The first result to be elaborated is the amount of force
exerted by the subjects, followed by the comparison between RAW and normalised data
based on the selected features and classifiers. These are the two features from TD (ARV
and RMS) and FD (mean and median) using four different classifiers namely LDA, SVM,
KNN, and TREE-based. After that, the outcomes from the best feature and classifier (with
the highest accuracy) applied to both hand sides (anterior and posterior) are discussed in

finalising the study results.

4.2 PARTICIPANT

A total of 17 subjects (12 males, 5 females; age 26.5 + 3.5 years) took part in this
experiment and were purposely selected among International Islamic University Malaysia
students with no history of hand injury. Thirty percent of MVC force of each attitude

(angle) was recorded as tabulated in Table 4.1.
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Table 4.1: Result of 30% MVC force

Subject ID Gender Age 20% MVE (D
Zero degrees | Thirty degrees | Sixty degrees | Ninety degrees

1 Male 26 11.84 11.49 10.57 18.1

2 Male 26 8.56 9.538 12.35 19.31
3 Male 30 8.15 10.24 14.48 18.44
4 Male 27 7.97 12.28 12.17 14.87
5 Male 25 7.68 11.02 14.7 16.99
6 Male 24 8.26 9.24 10.9 13.78
7 Male 25 7.89 11.23 12.5 17.56
8 Male 26 6.98 8.21 10.35 11.68
9 Male 26 7.84 7.98 9.84 10.96
10 Male 25 8.45 9.42 12.82 12.35
11 Male 28 7.87 7.98 9.93 10.67
12 Male 27 7.46 8.38 11.87 12.91
13 Female 25 7.05 6.71 6.01 16.02
14 Female 30 2.39 5.1 5.559 6.996
15 Female 25 6.42 6.43 6.938 8.547
16 Female 27 5.48 5.89 6.53 7.03

17 Female 26 6.67 6.86 7.54 7.81

It is clear from these findings that the magnitude of thumb force exerted by the
subjects varied significantly. The 30% MVC varied depending on the angular position of
the thumb, which was also observed. For example, the value of 30% MVC at the ninety-
degree position was generally higher than the value of 30% MVC at the zero-degree

position (see Figure 4.1).
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Figure 4.1: Average force applied at 30% MVC in each posture

4.3 STATISTICAL ANALYSIS

Statistical analysis was run using Statistical Package for the Social Sciences (SPSS)!
software to test (i) correlation between the electrodes and (ii) interaction effect of hand
sides, features, conditions, and angle of the thumbs on the HD-sEMG (force) data captured
by the electrodes.

4.3.1 CORRELATION ANALYSIS

A 2-tailed Pearson product-moment correlation was run to determine the relationship
between the HD-sEMG electrode readings (electrode 1 to electrode 64). As results, there
were strong positive correlations within the electrodes, which were statistically significant,

(r>0.859, n = 3840, p < 0.01)

! https://www.ibm.com/products/spss-statistics
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4.3.2 INTERACTION EFFECT

A Multivariate Analysis of Variance (MANOVA) was run to test the interaction effect of
hand sides (anterior vs posterior), features (ARV vs RMS), conditions (contract vs relax),
and angle of the thumbs (zero degrees vs thirty degrees vs sixty degrees vs ninety degrees)
on the HD-sEMG readings. The result indicated a significant interaction effect of the
independent variables on the dependent variables with Wilks’ A = 0.930, F(192,11229) =
1.427, p < 0.010, partial #° = 0.024. The hand sides, features, conditions, and angle of the
thumbs contributed to the force readings captured by the HD-sEMG.

4.4 HD-sEMG MAP

The collected signals from the patch can be visualised based on colour using a map. At the
sampling rate of 2000 Hz, HD-sEMG activation maps were generated based on RMS and
ARYV features which were extracted from the 64 channels of HD-sEMG. Figure 4.2 displays
the HD-sEMG activation maps for each posture obtained from one of the subjects

(randomly chosen: Subject 6).

The HD-sEMG activation maps indicate regions of muscles that had high levels of
biopotential activations during a specific thumb force exertion and the regions of muscles
that have lower biopotential activations. Regions that had higher levels of muscle
activations are represented by a dark red colour whereas regions that have lower levels of
muscle activations are represented by light blue and dark blue colours. It can be observed
from Figure 4.2 that the variation in the colours presented on the HD-sEMG activation map
depends on both the feature extraction method used (ARV or RMS) and the thumb posture

(zero degrees, thirty degrees, sixty degrees and ninety degrees).
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Figure 4.2: HD
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it can be observed that the amplitude of both RMS and ARV values of

As aresult,

side for all the postures based on colour density. For the posterior side, the amplitude of
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both the RMS and ARV became lower as the angle of the thumb increased. On the other
hand, on the anterior side, the RMS and ARV amplitudes became higher as the angle of the
thumb increased. It was also observed that the RMS feature generated higher amplitudes as

compared to the ARV feature in general and this was observed in the EMG activation maps.

4.5 THE BEST FEATURES AND CLASSIFIERS

The focus of this chapter is to analyse and discuss the result of different features and
classifiers. The best feature and classifier are finalised toward the end of this chapter and
were used as the main feature and classifier of the experiment. It is important to mention
here that the result discussed in this part comprises the features and classifier using the
anterior hand side data only. The reasoned selection of the data from this part of the forearm
is because the muscle (Flexor Pollicis longus) is one of the preserved muscles for the
transradial amputee and the signal is used to control the prosthetic hand (Pierrie et al.,

2019).

The data in Table 4.2. displays the classification results for two sets of data. The
RAW data as well as normalised data are included in the table. The features for each set
were MNF, MDF, ARV, and RMS. In comparison, the normalised process improved the

classification result for various classifiers of different features.
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Table 4.2: Classification result for RAW and normalised data for each classifier

Classifier
LDA SVM KNN TREE
) Correctly | Correctly | Correctly | Correctly
Data Domain | Feature
classified | classified | classified | classified
instances instances instances instances
(%) (%) (%) (%)
MNF 72.5 69.2 74.8 56.9
Frequency
MDF 47.6 60.8 69 60.1
RAW
ARV 30.3 71.7 83.8 70.1
Time
RMS 88.2 73.2 82.4 70.1
MNF 80.2 77.5 81.8 73.6
Frequency
MDF 56.8 62.4 78.8 70.1
Normalized
ARV 97.1 85.7 94.0 86.1
Time
RMS 96.4 87.8 95.0 86.3

The highest increment correctly classified instances were from the ARV feature

classified using the LDA classifier from 30.3% up to 97.1%. The increment made it the

highest correctly classified instance followed by the result of the RMS feature using the

same classifier (LDA) with 96.4%. Meanwhile, the lowest correctly classified instances for

TD of normalised data was the result for ARV feature classified using the SVM classifier

with 85.7%.

For the FD, the MNF data classified using the KNN classifier classified the highest

accuracy with 81.8% accuracy followed by data of the same feature (MNF) classified using

the LDA classifier with 80.2% accuracy. The lowest accuracy was the result for MDF data

feature classified using the LDA classifier, with 56.8% correctly classified instances and
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followed by the same data classified using the SVM classifier with 62.4% correctly
classified instances. These two data sets’ results were the only results with less than 70%

correctly classified instances of all the results.

Further analysis was done to obtain the accuracy of classification depending on the

domain and classifier used on the normalised data.

Table 4.3: Average correctly classified classification for each domain and classifier for
normalised data (%)
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The average classification result from each
domain and classifier The
LDA SVM KNN TREE average
Domain | Feature | Correctly | Correctly | Correctly | Correctly percentage
classified | classified | classified | classified for each
instances | instances | instances | instances domain
(%) (%) (%) (%)
MNF
Frequency 68.5 70.0 80.3 71.9 72.7%
MDF
_ ARV
Time 96.8 86.8 94.5 86.2 91.1%
RMS
Average percentage
' 82.6% 78.4% 87.4% 79.0%
for each classifier




Table 4.3 depicts the average of the results for each classifier and domain. KNN
recorded the highest average correctly classified instances with 87.4% followed by the
LDA classifier with 82.6% correctly classified instances. The percentages for SVM and
TREE were less than 80%. As such, it can be deduced that the best classifiers to be used as

a preliminary option were the LDA and KNN classifiers.

Additionally, based on the dataset domain, the average TD result of 91.1% correctly
classified instances was 18.4% higher than the average FD result of 72.7% correctly
classified instances. This percentage demonstrates that TD has a better data set for
classification than the FD. The result is also in line with the study conducted by Siddiqi and
Sidek (Siddiqi & Sidek, 2016), which concluded that TD analysis yielded higher accuracy

in distinguishing different finger postures compared to FD analysis.

TD features and two classifiers namely LDA and KNN had the highest percentage
of correctly classified, and the next analysis focuses on these setups. The same setup was

applied to the posterior side data, and both results are constructed in Table 4.4.
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Table 4.4: Both hand side results for classifier LDA and KNN

KNN scored the highest classification accuracy for the posterior side on average
(98%), but for the anterior side, this classifier had lower average accuracy (94.5%).
Interestingly, the LDA classifier showed a consistent result for both sides with the highest
accuracy recorded from the anterior side for ARV feature with 97.1% and the lowest

correctly classified instances on the same hand side (anterior) for RMS feature with 96.4%.

Based on the classifier, on average, LDA had higher correctly classified instances

with 96.7% than KNN (with 96.3%). As such, the final decision was to use these TD

each classifier

Classifier
Hand side Feature LDA kNN
Accuracy (%)
ARV 97.1 94.0
Anterior
RMS 96.4 95.0
ARV 96.6 98.2
Posterior
RMS 96.5 97.8
Average accuracy for
96.7% 96.3%

features (ARV and RMS) with LDA as the classifier for further analysis.
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4.6 DETAILS OF THE BEST CLASSIFICATION RESULT

Focusing on LDA, inputs for the classifier consisted of TD features (ARV and RMS) and
a combination (ARV-RMS) from both hand sides (anterior and posterior); their
combination (anterior-posterior) was further analyzed using a confusion matrix. Figure 4.3
demonstrates the percentage of correctly classified instances for each set of data via a bar

chart for comparison purposes.

Correctly Classified Instances

100% 99.7% 99.7%
4 99.2%
o
g 9%
2
= 98%
o 97.1% 97.2%
fg 97% 96.6% 96.4% 96.5% 96.7%
©
S 96%
=
[S]
Y 95%
S

94%

ARV RMS ARV-RMS

B Anterior ® Posterior m Anterior-Posterior

Figure 4.3 Summary of correctly classified instances for ARV, RMS and their

combinations based on hand sides

Overall, features extracted from the HD-sEMG yielded more than 96% correctly
classified instances for each data set. Using the RMS values, the forearm posterior side
(orange bar with label RMS) recorded 96.5% correctly classified instances while the
forearm anterior side (the blue bar with label RMS) yielded 96.4% correctly classified

instances. The result showed that the data from the forearm posterior had a better-classified

61



percentage compared to the forearm anterior. These findings coincide with results from a
previous study that used the same feature. The study by Aranceta-Garza and Conway,
(2019) show result of 94.85% for anterior and 97.00% for posterior which reveals that data
from the forearm posterior side resulted in a higher number of correctly classified instances
compared to the forearm anterior side for the classification of thumb postures. However, a
different pattern was seen in the result for the ARV feature, where the anterior had a better

percentage with 97.1% and 96.6% for the forearm posterior.

Classification using a combination of data collected from both the forearm anterior
and posterior sides was also carried out. The combination of data from both hand sides
utilised 64 electrodes on the forearm anterior and 64 electrodes on the forearm posterior,
resulting in a total data collected from 128 electrodes. The results of this combined
approach showed a higher percentage of correctly classified instances compared to using
data obtained from either the forearm anterior or forearm posterior only. In this combined
approach, using the ARV feature results yielded a percentage of 99.2% correctly classified
instances whereas using the RMS feature resulted in a slightly higher percentage of 99.7%
correctly classified instances. The result shows that the RMS feature had better data in
classifying different classes (thumb posture and condition) compared to ARV when both

hand-side data are combined.

An additional analysis was also carried out which combined both the ARV and
RMS features collected from both the HD-sEMG from the forearm anterior and forearm
posterior. This was motivated by a previous study by Siddiqi and Sidek (Siddiqi & Sidek,
2016), which revealed that the percentage of correctly classified instances had increased
significantly. The combination of ARV and RMS features together with both forearm
anterior and forearm posterior data resulted in a high percentage of correctly classified
instances of 99.7%, the same result as using the RMS for both forearm anterior and forearm

posterior data. The next discussion will focus on these two data set results which combines
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ARV and RMS features of both forearm anterior and forearm posterior with the RMS for

both forearm anterior and forearm posterior data.

4.7 CONFUSION MATRIX AND AVERAGE EACH CONDITION

The next analysis was done to investigate the characteristics of the two highest correctly
classified instances (RMS and combination feature: ARV-RMS as the features and anterior-
posterior as the hand side) found earlier in Figure 4.3. Table 4.5 and Table 4.6 show the
confusion matrices for the features respectively. In Table 4.5, the extracted feature was
RMS while in Table 4.6, a combination of both the ARV and RMS features was extracted

and used as inputs for the classification.

Table 4.5: Confusion matrix for RMS data from the anterior and posterior hand sides.

lass A B C D E F G H Accuracy (%)
A=zero_relax 119 1 99.2
B=zero_ contract 119 1 99.2

C=thirty_relax 120

D=thirty contract 119 1

E=sixty relax 120

F=sixty contract 120

G=ninety relax 120

H=ninety contract 120

Precision (%) 99.2 | 99.2 99.2
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Table 4.6: Confusion matrix for ARV-RMS data from the anterior and posterior sides.

Class A B C D E F G H Accuracy(%)

A=zero_relax 240
B=zero_ contract 240
C=thirty relax 240
D=thirty contract 239 1 99.6
E=sixty relax 239 1 99.6
F=sixty contract 1 238 1 99.2
G=ninety relax 240
H=ninety contract 1 239 99.6

Precision (%) 99.2199.6 [ 99.6

Table 4.5 is the result of the RMS data feature of both hand sides (anterior-
posterior). Most of the classes were successfully classified except for three classes namely
A, B, and D. Misclassification occurred during the classification of zero-degree classes (A
and B) with one incorrectly classified as class thirty degrees accordingly (class C and D).

Meanwhile, class D had one data incorrectly classified as class F.

In Table 4.6, the number of classified data in this confusion matrix was doubled and
enlarged the data up to 240 data via a combination feature where there were 120 data for
each feature. There were four classes with an accuracy of 100% (240 data correctly
classified), namely class A, B, C, and G. The lowest accuracy with 99.2% was class F with
238 data correctly classified and there were two data incorrectly classified as class D and
H each. The other three classes, namely D, E, and H, had 239 data correctly classified with

one incorrectly classified.

64



From both the confusion matrices presented in Table 4.5 and Table 4.6, it can be
observed that overall, regardless of the features used, the algorithm accurately classified all
the data as their actual class for two classes (C and G) for 100% accuracy and three classes
(A, B, and E) for 100% precision. Also, in Table 4.5, it can be seen that there were three
incorrectly classified instances out of 960 (99.7%) whereas in Table 4.6, there were five

incorrectly classified instances out of 1920 (99.7%).

Table 4.7 summarises the percentages of the two highest accuracy data. Both were
the result of a combination of both hand side data with different features (RMS and ARV-
RMS).

Table 4.7: Classification results for anterior-posterior hand sides

Feature Class Accuracy (%) | Precision (%)
A=zero_relax 99.2
B=zero_ contract 99.2
C=thirty_relax 99.2
D=thirty contract 99.2 99.2
RMS

E=sixty relax

F=sixty contract 99.2

G=ninety relax

H=ninety contract

A=zero_relax

B=zero_contract

C=thirty_relax

D=thirty contract 99.6 99.6
ARV- RMS

E=sixty relax 99.6

F=sixty contract 99.2 99.2

H=ninety contract 99.6 99.6
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The RMS feature had five classes with 100% correctly classified instances, which were E,
F, G, H, and C compared to four classes for the ARV-RMS feature, namely A, B, C, and
G. Additionally, five of the classes were classified as 100% precise for RMS feature and
four classes for ARV-RMS features. Overall, the RMS feature had 100% accuracy and
higher precision than ARV-RMS.

Table 4.8 summarises the average result of conditions (contract and relax) and
attitudes (thumb angles) for both features using anterior and posterior hand side data. For
RMS, the average correctly classified for relax condition showed 99.8% accuracy and
99.6% for contract condition. From the manipulated variable perspective which was the
thumb attitudes, sixty-degree and ninety-degree angles scored 100% accuracy. The attitude

of zero degrees resulted in the lowest accuracy with 99.2%.

Moving on to the ARV-RMS feature, the correct classification for the relaxed
condition showed 99.9%, while for the contract condition, it showed 99.6% correct
classification. For the different attitudes, the only one attitude with 100% correct
classification was zero degrees. Other than that, the attitude of sixty degrees was the lowest
correctly classified for this data with 99.4%. Besides that, there were two attitudes with

99.8% correct classification, namely thirty degrees and ninety degrees.
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Table 4.8: Summary of correctly classified instances based on conditions and attitudes

Features Condition Attitudes
Relax Contract Zero Thirty degrees | Sixty degrees Ninety
degrees degrees
99.8 % 99.6 % 99.2 % 99.6 % 100.0 % 100.0 %
RMS
99.7 % 99.7 %
99.9 % 99.6 % 100.0 % 99.8 % 99.4 % 99.8 %
RMS-ARV
99.75 % 99.75 %

4.8 VALIDATION RESULT

For validation, the process focuses on the RMS data set on both sides and implement a 60%
training, 20% testing, and 20% testing ratio. This process employs the trainlm training

function with 3 hidden layers.

Table 4.9 is confusion matrix for training data set. The results show that there is no

misclassification in any of the classes and resultant for 100% for accuracy and precision.

For the testing data set the result shown in Table 4.10. Most of the classes were
successfully classified except for two classes namely B and D. Misclassification occurred
during the classification of zero-degree contract (class B) with one incorrectly classified as
class thirty degrees relax (class C). Meanwhile, class D had one data incorrectly classified

as class C.

The confusion matrix for validation data set is shown in table 4.11. Majority of the

classes successfully classified for each class except for class A. For the class A they are
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one data misclassified as class D and the accuracy for class A is 95.8% and precision class

D down to 96.3%.

Table 4.12 is result for all data set and the number of classified data in this confusion
matrix total 120 each class. There were six classes with an accuracy of 100% (120 data
correctly classified), namely class B, D, E, F, G and H. Two classes do not achieve 100%
with 99.2% and 98.3% for class A and B accordingly. The final accuracy is 99.7% and the

result align with result classified using classifier LDA.

Table 4.9: Confusion matrix for training data set.

Accuracy
Class A B C D E F G H

(%)

A=zero_ relax 73

B=zero_ contract 72

C=thirty relax 76

D=thirty contract 76

E=sixty relax 72

F=sixty contract 69

G=ninety relax 70

H=ninety contract 68
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Table 4.10: Confusion matrix for testing data set.

Accuracy
Class A B C D E F G H

(%0)

A=zero_relax 23

B=zero_ contract 27 1

C=thirty relax 20

D=thirty_ contract 1 18

E=sixty_relax 24

F=sixty _ contract 27

G=ninety _ relax 27

H=ninety contract 24

Precision (%) 89.1

Table 4.11: Confusion matrix for validation data set.

Accuracy

(%)

Class A B C D E F G H

A=zero_ relax 23 1 95.8

B=zero_ contract 21

C=thirty _relax 22

D=thirty_ contract 26

E=sixty relax 24

F=sixty _ contract 24

G=ninety_relax 23

H=ninety contract 28

Precision (%) 96.3
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Table 4.12: Confusion matrix for all data set.

Class

G

Accuracy

(%0)

A=zero_relax

119

B=zero contract

120

C=thirty_ relax

118

D=thirty contract

120

E=sixty relax

120

F=sixty contract

120

G=ninety _relax

120

H=ninety contract

120

4.9 SUMMARY

99.2

Several analyses were done to evaluate the TD and FD features of anterior-posterior hand

sides of HD-sEMG signals using classifiers. In sum, TD features (ARV and RMS) had

higher correctly classified instances scores in classifying eight thumb attitudes compared

to FD (MNF and MDF). Out of four classifiers used, LDA was selected as the best classifier

for categorising the data. Also, the combination of hand sides (anterior-posterior) gave the

highest correctly classified instances compared to the single-hand side. Then, the two

highest correctly classified were further analysed. Details of the classification results using

selected features, hand sides and classifier were further detailed using confusion matrixes.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

The research aims to investigate and establish the relationship between the synergy of the
HD-sEMG signal from forearm musculature and thumb postures. Details of the
accomplishments in achieving the research’s objective are described in the sub-objectives

as follows:

5.1.1 To upgrade an existing portable thumb muscles platform and establish a
standard SEMG recording setup for the HD-sEMG patch for consistent measurement
of signals from the forearm musculature.

To achieve the mentioned objective, an existing portable thumb muscle was upgraded to
achieve the study design in fixing the thumb posture to be at zero degrees, thirty degrees,
sixty degrees, and ninety degrees. Additionally, a trajectory interface was developed as a
guide for the subjects during the data collection process to maintain the contract and relax
conditions. A simple block diagram was used to develop the trajectory such as Analog
input, Gain and Scope. The details were discussed in section 3.3. other than that, a standard
SEMG recording setup was finalised and a standard patch placement for measuring EMG
was set as the length of the forearm using the 25% rule. The details were elaborated
extensively in section 3.4. Also, a portable biomedical signal amplifier called

Sessantaquattro (manufactured by OT-Bioelettronica) was used in this research to capture
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the HD-sEMG signals as elaborated in section 3.5. The force to be exerted by the subject

was 30% MVC for contact condition and 0% for relax condition (at rest).

5.1.2 To Investigate The Signal For The Optimised Extraction Method And The Best
Selection Of Features.

Based on the literature (Huang et al., 2016; Khushaba et al., 2017; Siddiqi & Sidek, 2016),
EMG signals can be differentiated using TD, FD, and a combination of time-and-frequency
domain analyses. To achieve the objective, four features were extracted; two from TD
analysis and another two from FD assessment. For the TD, the selected features were RMS
and ARV, while MNF and MDF were used based on the evaluation of FD features. As TD
features had higher accuracy than FD, these features were combined as ARV-RMS which

was discussed in section 3.6.

5.1.3 To determine the best classifier and validate the performance of the developed
system by classifying HD-sEMG data collected.

There were four classifiers employed in this study, namely LDA, SVM, KNN, and TREE-
based classifiers. The algorithms of each classifier were discussed in section 3.9. As
elaborated in detail in Chapter 4, the outcome showed that the best classifier was LDA and
the best domains were TD features (consisting of ARV and RMS) which had successfully
classified the thumb attitudes with 91.1% accuracy. On the other hand, FD features
achieved 72.7% accuracy. Importantly, the combination of features which was ARV-RMS

with a combination of both hand side data (posterior-anterior) achieved 99.7% accuracy;
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the same as the RMS feature’s record. The result also has been validated using the trainlm

training function with 3 hidden layers.

In conclusion, all sub-objectives were successfully achieved. It can be concluded that
the LDA classifier obtained the highest average of correctly classified instances with 99.7%
using a combination of RMS and ARV features for both anterior and posterior sides.
Overall, relax conditions achieved higher correctly classified instances (99.9%) compared
to contract conditions (99.6%). The average accuracy conditions (contract and relax) and
attitudes (angle) for the ARV-RMS features were equal with a percentage accuracy of
99.75%. Meanwhile, the RMS feature scored 0.05% lower with a percentage of 99.7%.
Even though the difference in accuracy between using ARV-RMS and RMS features seems
small, it will contribute to a huge impact from the medical point of view in developing a

prosthesis hand that can be replicated close to a normal hand.

5.2 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

The limitation of the research that needs to be looked at for future improvements are

described as follows:
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5.2.1 Thumb Attitude

Limitation: The thumb attitude used in this experiment focuses on thumb flexion. The
attitude studied in this experiment does not cover all the thumb attitudes, namely abduction,
adduction, opposition, and reposition. To create a perfect prosthesis hand, all the attitudes

must be covered.

Recommendation: Modify the thumb attitude platform for other attitudes.
As the thumb attitudes in this experiment do not cover all the attitudes listed earlier, further
modification of the current thumb attitude platform is suggested so that a wide range of

thumb motions can be covered.

5.2.2 Hand Position or Posture

Limitation: In this experiment, the position of the forearm was fixed to a neutral position
only. As a note, there are still two different positions that can be included in the study,
namely supination and pronation positions. These two positions are important to be
considered on a hand for daily activities, sports activities such as playing badminton, and
for working activities such as typing on a computer which requires the pronation position.
Since every hand position will affect the position of the targeted muscles which directly
influence the HD-sEMG reading, a new set of data can be collected to enrich the study

results for further development of prosthetic hands for a smooth hand posture.
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Recommendation: Increase the degree of freedom of the thumb attitude platform.

Besides developing a new thumb attitude platform, the current platform shall be modified

by adding the degree of freedom for forearm positions.

5.2.3 Amputee Subjects

Limitation: The findings of this study are limited to health subjects only as no amputee

participants participated for data collection purposes.

Recommendation: Collect data from the amputee subjects.

The study design proposed in the experiment had successfully classified eight thumb
attitudes. Even though the outcomes of the study are valid to be generalised as the EMG
signals from healthy subjects are the same as amputee subjects (Asokan & Y.Saber, 2021),
it would be interesting to compare the SEMG signals from both subjects in the future for

diversity purposes to reduce the risk of accidentally having extreme or biased groups.

5.2.4 HD-sEMG Recording Device

Limitation: The device used in the experiment was limited to collecting data on one forearm
side at a time. As such, the time taken to collect the data for the anterior and the posterior

side would be longer than collecting data simultaneously for both sides.

Recommendation: Explore other HD-sEMG signal recording devices
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It is best to have a device that can record HD-sEMG signals from both hand sides at one
time. Future work may explore other latest recording devices such as Quattrocento
multichannel for time-saving. This simultaneous recording device may also offer better
accuracy than the current device used (Sessantaquattro) and have four channels as the data

collected were recorded at the same time, with the same thumb motions.

5.2.5 Dynamic Grip Transition

Limitation: In this experiment, the thumb attitudes were fixed at zero-degree, thirty-degree,
sixty-degree and ninety-degree angles only. Thus, the study on EMG signal during

transition between different attitudes is still an open problem.

Recommendation: Dynamic grip transitions

It is recommended to add more thumb attitudes such as fifteen degrees (in between zero-
degree and thirty-degree angles) in producing a smooth prosthetic arm in between the
disposition of thumb movements. Other than fixing the thumb attitude, it would be more
interesting to study dynamic grip transitions from one angle to another. Before transradial
amputees can consider real-time active myoelectric control over a prosthetic thumb

component in a device, more research is needed in this area.
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5.3 PUBLICATION

One journal paper and one conference papers have been published as the part of thesis

contribution:

Muhammad Mukhlis Suhaimi, Aimi Shazwani Ghazali, Ahmad Jazlan Haja Mohideen,
and Shahrul Na’im Sidek, “Thumb Attitude Analysis using High Density Surface EMG: A
Preliminary Survey” 2020 IEEE-EMBS Conference on Biomedical Engineering and
Sciences (IECBES), Langkawi Island, Malaysia, 2021,
DOI: 10.1109/IECBES48179.2021.9398767

Muhammad Mukhlis Suhaimi, Ahmad Jazlan Haja Mohideen, Aimi Shazwani Ghazali,
and Shahrul Na’im Sidek, “Analysis of High-Density Surface Electromyogram (HD-
sEMG) Signal for Thumb Posture Classification from Extrinsic Forearm Muscles” OAEN-
Cogent Engineering, 2022, DOI: 10.1080/23311916.2022.2055445

One journal paper and one conference papers as to be published as the part of thesis
contribution:

Muhammad Mukhlis Suhaimi, Aimi Shazwani Ghazali, Ahmad Jazlan Haja Mohideen,
and Shahrul Na’im Sidek, “Explication of Extrinsic Forearm Muscles on the Classification
of Thumb Position Using High-Density Surface Electromyogram.” The International
Journal of Integrated Engineering (IJIE)

Muhammad Hariz Hafizalshah, Muhammad Mukhlis Suhaimi, Aimi Shazwani Ghazali,
Ahmad Jazlan, and Shahrul Na’im sidek “Analysis of Extrinsic Forearm Muscles using
High-Density Surface Electromyogram (HD-sEMG) on Thumb Posture Classification.”
International Conference on Intelligent Systems Design and Engineering Applications
(ISDEA 2022)
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Approval.

b) notify IREC of any change in protocol and obtaining further ethical approval as
appropriate.
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[Informed Consent Form for Healthy Subject]
This informed consent form is for healthy subject.

Name of Principle Investigator: Dr. Aimi Shazwani Binti Ghazali
Name of Organization: Department of Mechatronics Engineering, International Islamic
University Malaysia
Name of Project and Version: Study of Thumb Attitude Relationship to Extrinsic Musculature
Characterizations using High Density Surface Electromyogram
Signals

This Informed Consent Form has two parts:
« Information Sheet (to share information about the study with you)
« Certificate of Consent (for signatures if you choose to participate)

You will be given a copy of the full Informed Consent Form
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Version: 1
Date: 19-6-20

PART I: INFORMATION SHEET
Introduction

I am Dr. Aimi Shazwani binti Ghazali, a lecturer at Kuliyyah of Engineering, Intermational
Islamic University Malaysia (ITUM). Hereby, my research assistant, Br. Mukhlis and I would like
to invite you to participate in a study related to thumb activities.

This study will be conducted at Biomechatronics Research Laboratory, IIUM. You will be asked
to attend only one session which may last approximately 1 hours (including several short breaks
in between the experimental sessions).

Purpose

Clinically, the attitude of the thumb controls by the intrinsic muscles located at palm. However,
the extrinsic muscles located at forearm has information that governing the thumb attitude. The
information at the forearm muscles that indirectly governing the thumb attitude can be extract and
be uses in developing an advance hand prosthesis. We believe that you can help us by
participating in this research. The aim of this research is to study the pattem of active muscle on
the forearm during different thumb attitude.

Participant selection

We are asking you to consider participating in this study because you do not suffer from any
systematic inflammatory, connective tissue disorders, or other medical disorders, and you are not
pregnant. We are inviting a total of 30 people.

Voluntary Participation

You can choose to say no and any services that you and your family receive at this centre will not
change. You can ask as many questions as you like and we will take the time to answer them.
You don't have to decide today. You can think about it and tell us your decision later.

Procedure

A. Once you have decided to take part in this research, our research team will discuss the study
with you and answer any questions you may have. If you are still happy to take part, we will ask
you to sign the consent form.

You will be asked to attend one session, lasting approximately 1 hours. We need to prepare the
experiment for about 10 minutes, and you can have a rest between the experiment sessions.

B. We will ask you to provide us with some information regarding your age, sex, dominant
hand, height, and any history of foot, leg or pelvis pain or injury. The information recorded is
confidential, your name is not being included on the forms, only a number will identify you, and
no one else except the researchers.

You will be asked to sit upright with the hand will put at the experiment platform. To collects the
activity of your muscles, High Density surface EMG will then be attached on the on the skin of
forearm for both side anterior and posterior. You will be asked to push the knob or pressure
sensor on the platform. The position or angle of the knob will be changed accordingly for each
activity.
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There will be eight tests with different positions or angle of the knob for both side of electrode
placement, where:

Test 1: knob at 90° and extract data at anterior side
Test 2: knob at 90° and extract data at posterior side
Test 3: knob at 60° and extract data at anterior side
Test 4: knob at 60° and extract data at posterior side
Test 5: knob at 30° and extract data at anterior side
Test 6: knob at 30° and extract data at posterior side
Test 7: knob at 0° and extract data at anterior side
Test 8: knob at 0° and extract data at posterior side

Duration
Time for a session to complete will take about 1 hours and 15 minutes per participant.

Risks and Discomforts

The adhesive used to attach the electrodes to your skin may cause some redness. If you have any
allergies or skin conditions (e.g. eczema, dermatitis, etc.), please inform the researchers prior to
the placement of the electrodes, as you may be unable to take part. If you notice any irritation
during or immediately following the study, please inform the researcher.

If you experience any muscle or joint pain and/or discomfort during the session please inform the
researcher, and if you need to rest and/or want to stop, you can do so at any time.

Benefits

The information collected from your thumb muscle activities will assist us in understanding and
analysing the pattern activation muscles for different thumb attitudes. This study is significant in
the development of hand prosthesis for those who lost.

Reimbursements
You will be granted with a token of appreciation for the time and effort you spent for this study.

Confidentiality:
‘We will not be sharing personal information about you to anyone outside of the research team.

Neither your name nor any other identifying information will be associated with this study. It will
be completely anonymous and it cannot be traced back to you. Neither your name nor any other
identifying information (such as your voice or picture) will be used in presentations or in written
products resulting from the study without your written consent.

Sharing of Research Findings

Only the research team will be able to view the material and the data collected from you will be
used only for scientific analysis. Also, the information that we collect from this study also will be
used for writing scientific publications and will only be reported at group level. No individual
subject will be identified in any report or presentation arising from the research.

Unfortunately, we are unable to provide you with your individual results; however, you can be
provided with a summary report of our findings at the end of the study, upon your request.
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Right to refuse or withdraw

You do not have to take part in this research if you do not wish to do so, and choosing to
participate will not affect your job or job-related evaluations in any way. You may stop
participating in the experiment at any time that you wish without your job being affected. T will
give you an opportunity at the end of the experiment to review your remarks, and you can ask to
modify or remove portions of those, if you do not agree with my notes or if I did not understand
you correctly.

‘Who to Contact

If you have any questions you may ask them now or later, even after the study has started. If you
wish to ask questions later, you may contact:

Dr. Aimi Shazwani Binti Ghazali Mohammad Mukhlis bin Suhaimi
Phone: 013-2229406 Phone: 010-5778585
aimighazali@iivm.edu.my ibnusuhaimi94@gmail.com

This proposal has been reviewed and approved by IIUM Research Ethics committee (IREC),
which is a committee whose task it is to make sure that research participants are protected from
harm. If you wish to find about more about the IREC, you may visit to this web
http:iium.edu.my/irec

You can ask me any more questions about any part of the research study if you wish to. Do you
have any questions?
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PART II: CERTIFICATE OF CONSENT

Certificate of Consent

I have read the foregoing information related to this study in extracting EMG reading at my
forearm using HD-sEMG with 64 electrode arranged 13-by-5. I have been given the opporfunity
to ask questions about the study and all of the questions have been answered to my satisfaction. I

consent voluntarily to participate in this study.

Name of Participant:

Identity Card (IC)/ Passport Number:

Signature of Participant:

Date:
Day/month/year

I witness the accurate reading of the consent form by the potential participant, and the participant
has been given the opportunity to ask questions. I confirm that the participant has given his/her
consent freely.

Name of witness

Identity Card (IC)/ Passport Number :

Signature of witness

Date:

Day/month/year

Page 5

93




Version: 1
Date: 19-6-20

Statement by the researcher/person taking consent

Ihave accurately read out the information sheet to the potential participant, and to the best of my
ability made sure that the participant understands the research procedures.

I confirm that the participant was given an opportunity to ask questions about the study, and all
the questions asked by the participant have been answered correctly and to the best of my ability.
I confirm that the individual has not been coerced into giving consent, and the consent has been
given freely and voluntarily.

A copy of this ICF has been provided to the participant.

Researcher(s)

1. Dr. Aimi Shazwani Binti Ghazali 2.  Muhammad Mukhlis bin Suhaimi
Signature: Signature:
Date: Date:
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