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ABSTRACT 

 

 

In the case of amputees, the development of cybernetic hands that closely resemble the 
functions of real hands is essential for comfort and functionality purposes. Controlled by 
intrinsic and extrinsic muscles, the human thumb plays a major role in differentiating hand 
gestures. For those who have lost their intrinsic hand muscles, any information about 
muscle activities that can be obtained from the extrinsic muscles is essential to control the 
thumb. Thus, focusing on transradial amputees, this research investigates the relationship 
between extrinsic muscles to characterise thumb posture. A High-Density surface 
Electromyogram (HD-sEMG) device and a portable thumb force measurement system were 
used to collect forearm HD-sEMG signals from a total of 17 subjects. For the flexion 
motion, the subjects were asked to repetitively place their thumb at rest before exerting 
30% of their individual maximum voluntary contraction (MVC) on a load cell by following 
a designated trajectory presented on a developed graphical user interface (GUI). The 
measurement system was set to four different postures namely zero degrees, thirty degrees, 
sixty degrees, and ninety degrees. Feature extraction was then performed by extracting the 
absolute rectified value (ARV), root mean square (RMS), mean frequency (MNF) and 
median frequency (MDF) values of the forearm HD-sEMG signals before being classified 
using four different classifiers namely linear discriminant analysis (LDA), support vector 
machine (SVM), k-Nearest Neighbour (KNN), and TREE-based classifier. The results 
revealed that the LDA classified RMS and ARV-RMS features, which were extracted from 
both posterior and anterior hand sides successfully achieved the highest correctly classified 
percentage of 99.7%. The findings of the study are significant for the development of a 
dedicated model-based control framework for prosthesis hand development to be used by 
transradial amputees in the near future. 
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 ملخص البحث 
  

أمر مهم  ʪلنسبة للأشخاص   العمل  اليد الحقيقية في  تشبه  التي  اليد الإلكترونية  المبتورين، تطوير 
للراحة والأداء الوظيفي. إن العضلات الداخلية والخارجية تتحكم ʪلإđام ، فيلعب الإđام دوراً 
  رئيسيًا في إنتاج حركات اليد المختلفة. ʪلنسبة لأولئك الذين فقدوا عضلات يدهم الداخلية ، فأي 
معلومات حول أنشطة العضلات التي يمكن الحصول عليها من العضلات الخارجية ستكون ضرورية  
للتحكم في الإđام. يركز هذا البحث على مبتوري المرفق ، فيبحث هذا البحث في العلاقات بين  
تسجيل مخطط كهربية   جهازٌ  استُخدمَ  قد  الحقيقية.  الإđام  وضعية  لتصوير  الخارجية  العضلات 

) ونظامٌ قياس قوة الإđام  HD-sEMGضل السطحي عالي الكثافة أو ما يعرف أيضا ب ( الع
ʪلنسبة لحركة   شخصًا.  17) من إجمالي  EMGلجمع إشارات تخطيط كهرʪئي العضل ( المحمول  

٪ من   30الانثناء ، طلُب من المشاركين وضع إđامهم في حالة الراحة بشكل متكرر قبل ممارسة  
) الفردي على خلية تحميل ʪتباع مسار معين معروض MVCنكماش الطوعي (الحد الأقصى للا

أربعة أوضاع مختلفة وهي    ) معينة.GUIعلى واجهة مستخدم رسومية ( تم ضبط المسار على 
درجة الصفر ، وثلاثين درجة ، وستين درجة ، وتسعين درجة. ثم تم استخراج البياʭت عن طريق  

)، قيمة متوسط التردد  RMS( )، وجذر متوسط مربعARVمة (استخراج المطلقة القيمة المقو 
)MNF( ) وقيم التردد المتوسطMDF   ِلإشارات الساعِد (HD-sEMG    قبل تصنيفها

) ، وشعاع الدعم الآلي ʪLDAستخدام أربعة مصنفات مختلفة وهي التحليل التمييزي الخطي (
)SVM  جار أقرب  وكي   ،  ((KNN)     إلى المستند   TREE based) والمصنف 

classifier) TREE .   تʭبيا أن  النتائج  لمصنفة    ARV-RMSو    RMSأظهرت 
LDA    التي نستخرجها منHD-sEMG   لليد قد حققت   من كلا الجانبين الخلفي والأمامي

٪. تعتبر نتائج البحث مهمة لتطوير إطار  99.7بنجاح أعلى نسبة مصنفة بشكل صحيح بنسبة  
 يد الاصطناعية يستخدمه مبتوري المرفق في المستقبل. تحكم قائم على النموذج لتطوير ال
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CHAPTER ONE 

INTRODUCTION 
 

 

1.1 BACKGROUND OF THE STUDY 

 

The human hand is an important body part that is used to control and handle daily activities 

such as grasping, pinching, and gripping (Yan Li, 2019). For normal people, the hand has 

five digits which consist of four fingers and a thumb. According to WHO (World Health 

Organization, 2004), 0.5% of the population in a developing country has a disability that 

necessitates the use of a prosthesis or orthosis. This prediction suggests that approximately 

160,000 of Malaysia's current population of 32 million require prosthetic or orthotic 

devices. In additional, based on a record, there are approximately 1.6 million individuals 

living with limb loss in the United States, and it is estimated that the number will double 

by 2050 (Ziegler-graham et al., 2008). The common loss of limbs is due to accidents, wars, 

and diseases. There are also congenital cases where a person is born without a fully 

functional hand. These groups of people are known as amputees.  

 

There are two categories of amputees, namely transradial and transcarpal. As 

demonstrated in Figure 1.1, transradial amputation occurs in the forearm area, in which the 

incisions are typically made on a ratio of 1 to 1 of the form length. It may cause the loss of 

interconnection between two main types of muscles, namely the intrinsic and extrinsic 

muscles. Meanwhile, transcarpal amputation is a common type of amputation that occurs 

for a variety of reasons such as diabetes and accidents, which in some cases will eventually 

result in amputation (removal through surgery). In general, more hand muscle activity data 

can be extracted from transcarpal amputees than transradial amputees since the flexion and 

extension of the wrist are still preserved. As such, transcarpal amputees can achieve higher 
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recovery of overall hand function compared to transradial amputees (Maduri & Akhondi, 

2020). 

 

 

Figure 1.1: Transradial and Transcarpal  

 

 

Research findings in neurophysiology and neuroscience have been utilised in the 

latest surgical procedures to incorporate prosthetic elements such as hand prostheses, 

osseointegration and myo-controllers (Kanitz et al., 2018). Over the last decade, earlier 

researches have achieved significant progress in the field of prosthetic hand development 

that utilises Electromyogram (EMG) measurements (Sánchez-velasco et al., 2019), which 

have given huge benefits to amputees in assisting in their daily activities to resemble normal 

limb functions. Based on one study (Cordella et al., 2016), hand prostheses are typically 

controlled by the sampling features taken from surface Electromyography (sEMG) signals 

obtained from the amputee’s limb residual muscles. There are two types of EMG, namely 

invasive and non-invasive. Non-invasive sEMG is more common in prosthesis 

development (Chowdhury et al., 2013) and clinical usage, such as in physiology (Enoka, 

2019), as this technique is painless and easily reproducible.   
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The thumb is the first digit of the human hand which is also known as pollex in its 

scientific term. Since the thumb is the only opposable digit to the other four fingers, it plays 

a critical role in hand function. Controlling this finger is vital for the realisation of different 

hand grip attitudes. Also, the contribution of the thumb towards hand functions and 

movements is inherently indispensable since the thumb is the only opposable digit that 

controls grip formation. Injury or loss of function of the thumb can severely limit overall 

hand function and movement (Xu et al., 2018).  

 

To control and maximise the attitude and force of this digit, the thumb demands a 

combination activation of all the connected muscles (Drake et al, 2015; Wohlman & 

Murray, 2013). Critically, the thumb cannot be simulated accurately via individual intrinsic 

muscle contribution (Wohlman & Murray, 2013). The technique to record the sEMG signal 

to replicate thumb gestures is centred on the thumb musculature by measuring the activities 

of the intrinsic muscle in the palm area as demonstrated in Figure 1.2. The other extrinsic 

muscles governing the thumb lie on the forearm as shown in Figure 1.3. This interplay 

between extrinsic and intrinsic muscles is mostly reduced or lost for transcarpal and 

transradial amputees. Yet, the remaining residual forearm muscles (the extrinsic muscles) 

are still accessible for both types of amputees and could be useful to control a myoelectric-

based prosthetic hand.  

 

 

Figure 1.2: Positions of the electrodes; (1) AP, (2) FPB, (3) APB, (4) FDI (Sidek et al., 2018) 
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Figure 1.3: (Left) Muscles in the anterior compartment of extrinsic muscles (flexor 

muscles of the forearm). The muscles of the anterior compartment of the forearm are 

depicted in this image from the deepest layer (left) to the most superficial one (right)  

(Right) Muscles in the posterior compartment of extrinsic muscles (extensor muscles of 

the forearm). The muscles of the posterior compartment of the forearm are depicted in 

this image moving from the deepest to the most superficial layer (Aranceta-Garza and 

Conway, 2019) 

 

 

The biomechanics of the skeleton, thumb joint, and muscle-tendon action of the 

extrinsic muscle are the factors that influence thumb activities. Due to the lack of detailed 

studies on other factors influencing thumb characteristics, biomechanical prosthetics have 

limitations in function and performance (Wohlman & Murray, 2013; Xu et al., 2018). These 

limitations of prosthetics can cause phantom or telescoped sensations on the amputees’ 

remaining hand limb. Phantom is a situation in which the proximal limb has shrunk, where 

in some cases, the amputees feel as if the limb is still present (Wijk & Carlsson, 2015).  

 

There are continuous developments in cybernetic hands that can help create 

improved hand prostheses for transradial and transcarpal amputees (Wijk & Carlsson, 

2015). As it is a crucial need for disabled individuals, opportunities for research and 



5 
 

 

development on these cybernetic hands are still open for further improvements. With a 

newer EMG technology called the High-Density surface Electromyogram (HD-sEMG), 

existing technologies can be further improved. The HD-sEMG uses multiple electrodes that 

are arranged in a specific array. Previous studies (Amma et al., 2015; Stegeman et al., 2012) 

have shown that the effect of electrode numbers on recognition performance improves 

recognition accuracy. 

 

 

1.2 PROBLEM STATEMENT 

 

There are millions of hand amputees around the world, and unfortunately, these numbers 

increase each year. Hand prosthetics provide some functionalities of the human hand for 

amputees. However, current prosthetic hands lack accuracy in replicating hand gestures 

due to the lack of information that can be extracted from the muscles. Centring on the 

thumb, there are still gaps in research that focus on the synergy of targeted muscles on 

thumb movements.   

 

Additionally, the limited information obtained from the placement of conventional 

sEMG electrode results in insufficient representations of overall muscle activity (Garcia 

and Vieira, 2011). As a result, smooth movements especially for prosthetic hand 

applications are hard to achieve due to the missing data from the targeted muscles. 

  

Importantly, the main muscles that control the thumb attitude are the five intrinsic 

muscles that have easy access to the thumb. The other four extrinsic muscles that govern 

the thumb are located in the deep compartment of the forearm and contribute indirectly to 

thumb attitude. Despite the loss of access to the intrinsic muscles, any information from the 

extrinsic muscles is non-negotiable for transradial amputees. 
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Previous studies have focused on specific thumb attitudes, especially on abduction 

(Aranceta-Garza and Conway, 2019). However, different attitudes such as flexion and 

extension as presented in this work have not yet been covered. 

 

 

1.3 RESEARCH OBJECTIVE 

 

The main objective of this research, therefore, is to investigate (and establish) the 

relationship between the synergy of the HD-sEMG signal from extrinsic musculature and 

the thumb postures to be replicated on prosthetic hands for transradial amputees. 

 

The main objective can be divided into four sub-objectives as follows: 

1) To upgrade an existing portable thumb muscles platform and establish a standard 

sEMG recording setup for the HD-sEMG patch for consistent measurement of 

signals from the forearm musculature. 

2) To determine the optimised feature extraction method and the best selection of 

features for the HD-sEMG data collected. 

3) To determine the best classifier and validate the performance of the developed 

system by classifying HD-sEMG data collected. 
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1.4 RESEARCH METHODOLOGY 

 

The execution plan for the research has been divided into five phases. An overview of the 

methodology, including the methods and materials of the experimental design, is described 

as follows and is summarised in Figure 1.4;  

 

 

1.4.1 Phase-I 

 

1. Conduct a comprehensive review of the existing literature on the 

development, design, control, implementation, and application of prosthetic 

limbs (particularly hand and thumb prostheses).  

2. Study the related thumb muscles and finalise the targeted muscles.  

3. Request for ethical clearance from the IIUM Research Ethics Committee 

(ID no: IREC 2020-080). 

 

 

1.4.2 Phase-II 

 

1. Upgrade the existing thumb measurement system to accommodate different 

thumb postures, specifically for flexion activities. Set four different postures 

for the study: zero-degree, thirty-degree, sixty-degree, and ninety-degree 

angles. 

2. Finalise the experimental protocol needed for the collection of raw data sets 

of HD-sEMG signals. The protocol includes data collection procedures, 

electrode placement, and the number of records for each subject. 
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3. Test the system on pilot subjects (members of BioMechatronics Lab). 

Improve the necessary study protocol besides analysing and evaluating the 

results.  

4. Purposively sample and select 17 subjects among IIUM students with no 

huge accident history and disease on the targeted hand that may affect the 

result. 

 

 

1.4.3 Phase-III 

 

1. Finalise the set up for the thumb measurement system and the experimental 

procedure to collect HD-sEMG data from the subjects’ forearm musculature 

at different thumb postures.  

2. Perform feature extraction in terms of time domain and frequency domain 

analysis, followed by selecting the features that yield the highest correctly 

classified instances using several classifiers.  

3. Apply classification techniques to establish the relationship between HD-

sEMG signal features and various thumb angles (flexion activities). Finalise 

an appropriate classifier based on the highest percentage of correctly 

classified data to classify the collected data. 

 

 

1.4.4 Phase-IV 

 

1. Formulate the conclusions of the study and recommendations for future 

works.  

2. Write a final thesis and publish several journal and conference papers. 
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Figure 1.4: Flowchart of the methodology 

 

Phase-I 

Phase-II 

Phase-
III 

Phase-
IV 
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1.5 SCOPE OF RESEARCH 

 

The scope of the study is as follows: 

1. This study to investigate the synergy of EMG signal from forearm with 

thumb attitude begins with upgrading the portable thumb training system 

platform to replicate four different thumb attitudes for flexion activities and 

the methods finalised for HD-sEMG data collection procedures by the 

forearm of the healthy subject targeting on the right hand. 

2. Recruiting 17 subjects from the IIUM students with good health and no 

accident history and/or diseases on the targeted hand and each participant 

will be completed the collecting data procedure 

3. Examining the features for time domain (TD) and frequency domain (FD) 

analyses (root mean square (RMS), mean absolute value (MAV), mean 

frequency (MNF) and median frequency (MDF)) and evaluating the results 

based on selected classifiers only (linear discriminant analysis (LDA), 

support vector machine (SVM), k-Nearest Neighbour (KNN), and TREE-

based classifier). Then the collected data are analysed with classifying 

different thumb attitudes using machine and deep learning, and 

classification learner app in Matlab R2020. 

 

 

1.6 THESIS ORGANISATION 

 

The thesis is divided into five chapters: 

Chapter 1: Describes the overview of the research by discussing the problem 

statements, research objective, methodology, and scope of the research.  



11 
 

 

Chapter 2: Presents a literature review related to several studies on the muscles 

(intrinsic and extrinsic) that contribute to controlling the thumb and steps for 

data analyses including feature extraction and selection of classifiers. 

Chapter 3: Elaborates on the research methodology used in the study. 

Chapter 4: Discusses the outcomes from the analyses of HD-sEMG signals for 

several selected features and classifiers. 

Chapter 5: Details the achievement of the objectives, limitations of the study, 

and recommendations for future works. 

 

 

1.7 THESIS CONTRIBUTION 

 

The current thesis contributes to the knowledge of HD-sEMG signals’ patterns in 

replicating thumb attitude specifically for flexion activity in designing advanced hand 

prostheses. The previous study show limitation on the selected methods and effected on the 

accuracy of the classifier result and gap on the attitude of the thumb study. In this thesis, 

we provide an elaborate account of how the procedure was conducted. The work includes 

electrode placement and data collection procedures for flexion activity, feature extraction 

and classification. This thesis discussed with details on the result leads to the best selection 

features and classifier for the collected data. In short, the research contributes to the study 

of HD-sEMG signals in classifying different thumb attitudes, specifically on flexion 

activity for contract and relax activities.  
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CHAPTER TWO 

LITERATURE REVIEW 
 

 

2.1 INTRODUCTION  

 

The thumb is the only opposable digit of the human hand and it is primarily important to 

perform any hand gestures. The digits are controlled by a combination of different muscles 

located within the forearm and hands. sEMG-related technology has been previously used 

to analyse both the thumb and other digit muscle activities. In this chapter, earlier works 

on prosthetic technology, gesture control by EMG, and further details of EMG technology, 

are discussed. Signal processing steps including feature extraction from the captured HD-

sEMG electrodes (the raw data) and the classification process is also elaborated 

accordingly. At the end of the chapter, a summary of the key highlights to be used 

throughout the research is provided.  

 

 

2.2 ANATOMY OF MUSCLES 

 

Individual fingers move biomechanically using muscles that have different anatomical 

compartments and separate tendons. When combined with other digits, standard handgrip 

activities are achieved. The thumb is the only opposable digit responsible for the majority 

of hand functions (Xu et al., 2018). The thumb muscles can be divided into two parts, 

namely intrinsic (hand) and extrinsic (forearm) muscles. 
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2.2.1 Intrinsic Muscles 

 

The thumb has a distinct feature from other digits, where for the four other digits, the main 

movements are bidirectional, namely flexion and extension. Meanwhile, the thumb has at 

least four movements, namely adduction, abduction, flexion, and extension (Adewuyi et 

al., 2016). The majority of the main muscles of the thumb are located in the hand (palm) 

and are also known as intrinsic muscles. The activation of the intrinsic thumb muscles 

located close to the skin’s surface of the hand determines both the grip strength and thumb 

attitude (Xu et al., 2018). Each of these intrinsic muscles serves an individual purpose as 

presented in Table 2.1, while the combination of these intrinsic muscles play a major role 

in carrying out daily activities. Figure 2.1 depicts a diagram of hand anatomy which consists 

of five intrinsic muscles, namely Abductor Pollicis, Flexor Pollicis Brevis, Abductor 

Pollicis Brevis, Opponens Pollicis and First Dorsal Interosseous (Aranceta-Garza and 

Conway, 2019; Drake et al, 2015). Since these muscles are the main muscles used in 

controlling thumb attitude, classification of muscle activations, thumb attitude, and strength 

is required from these muscles. 

 

 

Table 2.1: Intrinsic muscles description 

 

Muscles name Contribution 

Abductor Pollicis Thumb adduction 

Flexor Pollicis Brevis Thumb flexion 

Abductor Pollicis Brevis Thumb adduction 

Opponens Pollicis Thumb opposition 

First Dorsal Interosseous Thumb flexion and extension 

 



14 
 

 

 

Figure 2.1: Intrinsic Muscles 

 

 

2.2.2 Extrinsic Muscles 

 

Hand functions and finger movements are predominantly controlled by the extrinsic 

muscles located in the forearm. Extrinsic muscles consist of several muscles that perform 

various functions as summarised in Table 2.2. For amputees, information from extrinsic 

muscles can be used to replicate the thumb attitude and potentially be used for conventional 

myoelectric prosthesis control (Adewuyi et al., 2016). The extrinsic muscles which directly 

contribute to thumb attitude are illustrated in Figure 2.2. 

 

 The Flexor Pollicis Longus, which is located in the deepest layer of the muscles, is 

the target muscle that controls the thumb digit on the anterior side. On top of this muscle, 

there are two layers of muscles which consist of five other muscles (Flexor Carpi Ulnaris, 
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Palmaris Longus; Flexor Carpi Radialis, Pronator Teres) (Aranceta-Garza and Conway, 

2019; Xu et al., 2018). These muscles contribute to the activity of thumb flexion. Notably, 

there is only one muscle that contributes to the different thumb attitudes on the anterior 

side. Meanwhile, there are three muscles that are connected to the thumb on the posterior 

side, namely the Abductor Pollicis Longus, Extensor Pollicis Brevis, and Extensor Pollicis 

Longus. All of these muscles are located next to the other three muscles in the deepest layer 

of the posterior forearm. The Abductor Pollicis Longus contributes to the abduction and 

extension of the thumb (Abductor Pollicis Longus - Physiopedia, n.d.), the Extensor 

Pollicis Brevis controls thumb abduction (Jabir et al., 2013), and the Extensor Pollicis 

Longus contributes to the extension of the interphalangeal joint of the thumb (Extensor 

Pollicis Longus - Physiopedia, n.d.). Above these muscles, two more layers of muscles 

contribute to different finger functions and this creates challenges in capturing the targeted 

muscle signal for both sides of the hand (anterior and posterior sides). 

 

 

Table 2.2: Extrinsic muscles description 

 

Muscles name Contribution 

Flexor Pollicis Longus Thumb flexion 

Abductor Pollicis Longus Thumb abduction and extension 

Extensor Pollicis Longus Thumb extension 

Extensor Pollicis Brevis Thumb extension 
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Figure 2.2: Extrinsic muscles 

 

 

2.3 ELECTROMYOGRAPHY (EMG) 

 

EMG is a type of bio-signal that represents neuromuscular activities by measuring the 

electrical current generated in the muscles (Li et al., 2015) during muscle activity. When 

the thumb exerts a certain amount of force, the EMG signals from related muscles can be 

captured. Before amplification, the amplitude range of the raw EMG signal varies between 

0 to10mV (±5mV) and these voltage values are directly proportional to the force applied 

(Mohideen & Sidek, 2011); (Arnold et al., 2013). Studies have shown that ion flow through 

muscle fibres has a significant influence on the force exerted and is directly reflected in the 

EMG data collected (Arnold et al., 2013; Dai & Hu, 2019; Ghaderi & Marateb, 2017). Even 

though myoelectric prosthetics have increased flexibility and anthropomorphism of the 

thumb, the control mechanism for this digit through sEMG has remained unchanged over 

the last four decades (Mastinu et al., 2019). 
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2.3.1 High-Density Surface EMG (HD-SEMG) 

 

One of the highlighted advantages of sEMG over intramuscular EMG (or known as needle 

EMG) is that it is widely reproducible in follow-up studies due to its non-invasiveness and 

relative ease in collecting spatial distributions of data. Continuous research and 

development have revealed limitations in the analysis of sEMG, such as limited information 

from the placement of the electrodes, which results in insufficient representations of the 

overall activity of the muscles (Garcia and Vieira, 2011). These limitations have led to an 

improved technology known as the HD-sEMG (Stegeman et al., 2012). HD-sEMG has 

many similarities to ordinary sEMG measurements, the main difference being that smaller 

electrodes are densely arranged in a grid position along the region of interest, which enables 

more information to be obtained from the region of muscles under investigation. Multiple 

electrodes used to sample EMG activity from a single muscle are expected to provide 

valuable insights into muscle physiology and anatomy (Vieira & Botter, 2021). Thus, HD-

sEMG does not limit access in case more data are required to be captured from multiple 

targeted muscles (Garcia and Vieira, 2011) at one time. 

 

A study conducted by Garcia and Vieira (2011) highlighted some advantages of 

using HD-sEMG compared to normal surface EMG. The first advantage is based on the 

myoelectric activity detected and further physiological indications that can be obtained 

when multiple electrodes are used at the location of tendons and end-plates, as well as the 

length of muscle fibres. Also, by using HD-sEMG, the actual position of the muscles can 

be detected more accurately than sEMG. Thus, the problem of placement mismatch for a 

single sEMG can be overcome. In addition, when an array of surface electrodes is placed 

on the skin parallel to the path of the muscle fibres, each electrode will report a delayed 

representation of the Motor Unit Action Potentials. Therefore, the conduction velocity of 

action potentials propagated along the muscle fibres can only be measured afterwards. 

Interestingly, this delay can be minimised or omitted using HD-sEMG technology  

(Ghaderi & Marateb, 2017). 
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 The HD-sEMG uses multiple electrodes arranged in a specific array. Previous 

studies (Amma et al., 2015; Stegeman et al., 2012) have shown the effect of electrode 

numbers on recognition accuracy. The array is used to measure the propagating potential 

at various spatial positions along the course of the muscle fibres. As a result, more 

comprehensive muscular activity data can be obtained using HD-sEMG as compared to 

conventional sEMG. Furthermore, the usage of HD-sEMG can address the placement 

mismatch of electrodes that occurs in conventional sEMG (Garcia and Vieira, 2011). HD-

sEMG also enables high-accuracy estimation of the innervation zone location, as well as 

an estimation of muscle fibres conduction velocity, length, and orientation (Ghaderi & 

Marateb, 2017). 

 

 Using HD-sEMG, electrical activities present on the skin’s surface can be recorded 

using the bi-dimension technique in developing a map (Nait-ali et al., 2019) as illustrated 

in Figure 2.3. The map is an image in which each pixel represents each electrode for HD-

sEMG. The data or signal extracted from these muscle activity maps is required to identify 

active areas during the movements of targeted muscles. The segmentation is beneficial for 

clinical neurophysiology in monitoring muscle activities. Also, it is instrumental in the 

usage of robotic-assisted therapies and prosthetic hands (Amma et al., 2015; Nait-ali et al., 

2019). As shown in Figure 2.3, interpolation maps are commonly used when displaying 

muscle activation as spatial resolution increases. 
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Figure 2.3: RGB colour replicated different amplitude EMG signals captured by HD-

sEMG electrode in the form of a bi-dimension picture representing four different 

positions corresponding to 4 digits: secundus digitus manus, digitus medius,digitus 

annularis, and digitus minimus manus, respectively (Aranceta-Garza and Conway, 2019).  

 

 

2.3.2 Electrode Placement 

 

EMG signals are subjected to noise from various sources. Cables connected to the 

electrodes may pick up noise from the main electricity supply. Motion artefacts may also 

contaminate the EMG signals. Careful electrode placement can mitigate the effects of 

noise. The EMG amplitude signal depends highly on the location of the electrode placement 

(Bao et al., 2018; Xu et al., 2018). The standard placement of the electrode used by 

(Aranceta-Garza and Conway, 2019) is proximally 25% from the ulnar head and the 

olecranon for the posterior view and the ulnar head to the elbow crease for the anterior view 

as shown in Figure 2.4. The electrode used is a 13-by-5 electrode grid (with an 

approximately 13cm-by-5cm coverage area of the signal reception). 
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Figure 2.4: Placement electrode used by Aranceta-Garza and Conway, (2019)  

 

 

Bao et al., (2018) focused on the placement of an electrode on the forearm to 

stimulate finger extension or flexion. The focus of the research was to compare electrode 

positions and forearm rotation which affect the activation threshold. The study also 

developed a theoretical model of electrode placement for the selective activation (extension 

or flexion) of individual fingers. As a result, the activation of the thumb during the 

extension or flexion is accumulated at the middle of the forearm to the side of the radius 

bone approximately 4cm from the wrist as shown in Figure 2.5. In conclusion, the electrode 

placement used by Aranceta-Garza and Conway, (2019) agrees with the outcomes by Bao 

et al., (2018). 
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Figure 2.5: (Top) Active points in the anterior compartment. (Bottom) Active points in 

the posterior compartment. The active points vary when the position of the hand changes 

from supination to neutral on the anterior compartment and pronation. 

 

 

2.4 FEATURE EXTRACTION 

 

The collected signal from the targeted area is in the raw data. To extract valuable 

information from raw data, there is a step called feature extraction, where the most 

significant features are fed to a classifier to form classes for the dataset (Inam et al., 2021; 

Toledo-Pérez et al., 2019). Features can be extracted using TD, FD, and combined time-

frequency domains. Due to its mathematical simplicity and good performance, TD features 

are commonly used (Hakonen et al., 2015; Inam et al., 2021). TD features are determined 

based on the amplitude of the signals and do not require any extensive computations. 

Commonly used TD features are RMS (Aranceta-Garza and Conway, 2019; Higashi et al., 

2019) and MAV (Bi et al., 2020; Turgunov et al., 2020). FD characteristics are based on 

the frequency range and are calculated using Fourier transformations. Commonly used FD 

features are MNF (M. M. Alam et al., 2020; Dupan et al., 2018) and MDF (Alam et al., 

2020; Goubault et al., 2021). The results of the study conducted by Siddiqi & Sidek, (2016) 

showed that TD analysis produces higher accuracy to differentiate different finger attitudes 
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than FD, which is better in classifying muscles’ fatigue status. Also, TD is preferable to be 

used in the study of different hand attitudes’ EMG-based signals. 

 

 

2.5 CLASSIFIER 

 

Data classification is essential for developing a control algorithm for the cybernetic 

prosthesis. It is a useful technique to describe the behaviour of complex nonlinear processes 

in the presence of conventional mathematical models (Inam et al., 2021; Khan et al., 2020). 

 

Classification algorithms are classified into three types: supervised learning, 

unsupervised learning, and reinforcement learning (Ghazali et al., 2015; Khan et al., 2020). 

In supervised learning, the algorithm has access to or is provided with the data it is 

attempting to predict. A classic example of supervised learning is the classification of 

animals, namely cats and fish. After collecting the features’ information such as the 

presence of fur, scale, and ears on the animals’ bodies, the data are fed into a classifier, for 

example, KNN, while labelling those data according to its classes (whether the specific data 

matches that of a cat or a fish). In contrast to supervised learning, there is no target value 

in an unsupervised learning task. For example, classification for customer segmentation. 

The process of understanding different customer groups to develop marketing or other 

business strategies based on customer demands. In contrast to reinforcement learning, this 

algorithm creates a system that can learn by interacting with the environment (Vieira et al., 

2019) through reward and punishment concepts. For example, a rescue robot is designed to 

autonomously move in a building. As the time needed to escape the building is short, the 

robot will be rewarded every time it achieves a new record after trying several routes. In 

case the time recorded gets longer, the robot will be punished to show that the chosen route 

is wrong. 
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HD-sEMG has three specific methods of classification, namely the HD-EMG map 

intensity and centre of gravity classification, HD-EMG map intensity classification, and 

single differential channel intensity classification. All these techniques use supervised 

learning and classification based on the intensity of a single differential channel which is 

recommended as the best technique for classifying HD-sEMG data (Jordanic et al., 2016). 

Table 2.3 summarises the type of classifier and accuracy achieved in earlier studies in 

classifying HD-sEMG signals. 

 

In the table below, various objectives from the previous study are listed. The 

selected papers have one thing in common, they all focus on data collected from the forearm 

area. The accuracy for the papers is greater than 90% except for the paper by Paul et al., 

(2017), which is a comparison of different classifiers.
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Table 2.3: Classifier and result used in earlier researchers. LDA, Random Forest (RF), SVM, KNN 

Author 
(year) 

Title Study’s objective Targeted area and 
dynamic factor 

Classifier 
used 

Results 

(Yu et al., 
2018) 

Attenuating the Impact of Limb Position 
on Surface EMG Pattern Recognition 
Using a Mixed-LDA Classified 

Investigated the effect of limb position 
variation on pattern recognition-based motion 
classification using a linear discrimination 
analysis (LDA) classifier 

-Forearm area 
-Limb position 

LDA 93.60% 

(Celadon et 
al., 2016) 

Proportional estimation of finger 
movements from high-density surface 
electromyography 

Investigated finger force estimation using HD-
sEMG to record the electrical activity of the 
extrinsic hand muscles during isometric finger 
flexion and extension 

-Forearm area 
- Individual fingers 
(index, middle, ring 
and little) 

LDA 91% 

(Paul et al., 
2017) 

Comparative Analysis between SVM & 
KNN Classifier for EMG Signal 
Classification on Elementary Time 
Domain Features 

Comparative analysis. -Forearm 
-Six basic hand 
movement 

kNN, SVM SVM > kNN 

(Islam et al., 
2022)  

Forearm Orientation and Muscle Force 
Invariant Feature Selection Method for 
Myoelectric Pattern Recognition 

The proposed feature selection method would 
be very beneficial for identifying the least 
dimensional features and enhancing EMG-PR 
performance. 

-Forearm area 
-Three orientation 
forearm 

kNN, 
SVM, 
LDA 

91.46% - 
93.27% 

(M. S. Alam 
& Arefin, 
2018) 

Real-Time Classification of Multi-
Channel Forearm EMG to Recognize 
Hand Movements using Effective 
Feature Combination and LDA Classifier 

The study's objective was to devise techniques 
for the quick and real-time classification of 
EMG signals obtained from hand movements. 

-Forearm area 
-Different hand 
motion 

LDA 96.5% 

(Dai & Hu, 
2019) 

Extracting and Classifying Spatial 
Muscle Activation Patterns in Forearm 
Flexor Muscles Using High-Density 
Electromyogram Recordings 

The objective of this study is to quantify the 
spatial patterns of forearm flexor muscle 
activation during individual finger flexions. 

- Forearm area 
- Individual fingers 
(index, middle, ring 
and little) 

LDA, 
SVM 

96.76% 
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2.6 SUMMARY 

 

This chapter introduced two types of muscles, namely intrinsic and extrinsic muscles, 

which contribute to thumb attitude and force exerted. Focusing on extrinsic muscles, this 

study aims to extract information from these muscles to replicate the thumb attitude for 

transradial amputees. Aside from that, the chapter discusses the features extracted from 

HD-sEMG used in previous studies, namely TD (RMS and ARV) and FD (MNF and MDF) 

features. The classifiers were used by previous researchers in the final focus of the literature 

review.  It can be concluded that LDA, SVM and KNN are the three most used classifiers 

to analyse EMG signals in general.  
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CHAPTER THREE 

RESEARCH METHODOLOGY 
 

 

3.1 INTRODUCTION 

 

To tackle the limitations of past studies as discussed in the earlier chapters, this study was 

designated to investigate the synergy between high-density EMG patterns at the forearm 

musculature based on four different thumb attitudes. The study’s goals include forming 

standardised data collection procedures on the sEMG signals taken from the forearm for 

repeatable purposes and classifying those signals based on their thumb attitudes before 

implementing the thumb training system on transradial amputees (the real patients). As 

such, this chapter will discuss in detail the developed system, including the experiment 

setup, data collection procedure, feature extraction, normalisation, and classifier applied in 

categorising the collected sEMG signals. 

 

 

3.2 SYSTEM DESIGN 

 

As shown in Figure 3.1, the platform used to manipulate the thumb’s angles in this was a 

portable thumb training system. The platform was made up of four major components 

which were a hand rest, an adjustable wrist position, a potentiometer, and a load cell.  
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Figure 3.1: Portable Thumb Training System 

 

The hand rest platform was designed to keep the forearm in a resting position, which 

was essential. During the collecting procedure, the subject's forearm was placed on the 

platform to minimise unnecessary contraction of the muscles. Muscle contraction during 

non-exerted force (during relax condition; unwanted contraction) can cause undesired force 

exerted by the subject during contract condition.  

 

During the data collection procedure, a potentiometer was used on the platform to 

measure the angle of the subjects’ thumbs. Using Simulink (Matlab 2020), Figure 3.2 

depicts how the thumb angle’s block diagram was developed. An analogue value 

originating from the potentiometer was fed to the ‘Gain 3’ block and was converted into 

voltage form using the formula shown in Equation 1. The analogue input was divided by 

1024 as the maximum number of analogues before it was multiplied by 5, which indicates 

the maximum voltage that the processor (Arduino) can read.  
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Figure 3.2: Angle block diagram 

 

𝐾(𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒) = 𝑖𝑛𝑝𝑢𝑡 𝑥
5

1024
     (1) 

Equation 1: conversion: from analogue to voltage values of load cell signal 

 

After that, the voltage value was passed to Matlab function’s block for calibration 

purposes using “Angle Meter” apps to utilise Equation 2. As shown in Figure 3.3, the thumb 

attitudes were fixed at zero degrees, thirty degrees, sixty degrees, and ninety degrees and 

displayed to the users. On the platform, the load cell was screwed based on the angle 

accordingly. 

 

𝑜𝑢𝑡𝑝𝑢𝑡 (𝑎𝑛𝑙𝑔𝑙𝑒) = 𝑖𝑛𝑝𝑢𝑡 (𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒) 𝑥 55.641 + 0.6266     (2) 

Equation 2: Conversion of voltage to angle 

 

  

Figure 3.3: Thumb attitudes 
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A load cell was used to capture the force exerted by the subjects. The forces exerted 

were constant variables in this experiment and it was controlled by contraction muscles. 

The contraction muscles to achieve the desired force generated a biopotential signal and 

the signal was analysed in this experiment to see whether the signal successfully classified 

the different thumb attitudes. Calibrations of the load cell were conducted using known 

metal calibration weights which acted as forces applied by the subjects in the real system. 

 

 

3.3 TRAJECTORY 

 

A dedicated trajectory was designed to guide the subjects in applying dedicated amounts 

of force on the load cell for the data collection procedure. The trajectory is necessary to 

standardise the duration and the force applied during the experiments.  

 

Previous researchers used three levels of Maximum Voluntary Contraction (MVC) 

which are 10%, 30%, and 50% (Jordanić et al., 2017; Rojas-martínez et al., 2012) to study 

the reactions of different MVCs that affected muscles fatigue. MVC is the maximum 

contraction that muscles can exert, where the power generated by the activities depends on 

its amount (Dahlqvist et al., 2018). A study conducted by Rozand et al., (2014) found that 

the higher the MVC percentage exerted, the faster muscles become fatigued as it takes a 

longer period for ion in muscle levels to recover. In this case, the highest MVC that can be 

considered to be applied by the participant is 50% of the maximum force. In contrast, the 

disadvantage of using lower MVC is that has a low ion value, which results in low 

amplitude captured by sensors, thus causing readings to be too difficult to be analysed 

(Barru et al., 2018). It is reflected by 10% MVC. As such, in line with the suggestion by 

Aranceta-Garza and Conway, (2019), the fixed force to be exerted by the subjects in this 

study is 30% MVC. 

 



30 
 

 

The contraction duration (with the exertion of force) was set to five seconds and 

eight seconds for relaxation (no force exerted). Relax duration was set to be 1.5 times more 

than the contract duration in line with an earlier study (Aranceta-Garza and Conway, 2019). 

The time provided was believed to be enough for muscles to recover the ion lost during the 

previous contraction procedure before the muscle is ready again for the next contraction 

procedure. Also, one second was set as a transition time for the subjects to change from 

relaxing to contracting mode and vice versa. The conditions (contract and relax) were 

repeated three times in one record to ensure that there was enough sample to be analysed 

in the next process, and this took approximately 50 seconds per record. The trajectory 

sample is illustrated in Figure 3.4.  

 

 

 

Figure 3.4: Trajectory interface 

 

 A Simulink block diagram for developing the dedicated trajectory is shown in 

Figure 3.5. The block diagram was split into three sections. The first section was the block 

diagram to capture the analogue signal from the Arduino and convert it into a force unit. 
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This component included ‘Analog Input 1’, which was set to pin 0 and a display on the 

block that showed ‘Arduino Pin 14’ as well as two ‘Gain’ blocks labelled ‘Gain 1’ and 

‘Gain 2’. 

 

 

Figure 3.5: Force block diagram 

 

 

Equation 1 was installed in ‘Gain 1’ as the conversion of the analogue read to a 5V 

maximum value. The value was then supplied to the ‘Gain 2’ block as the conversion to the 

value of force (N) using equation 3. In this equation, the input was multiplied by 20, which 

was the value of ‘m’ (gradient) in the straight-line equation (also known as a straight line’s 

slope). The value of 20 was fixed based on the output of the calculation straight-line slope 

during the load cell calibration process. The numbers were then multiplied by 9.80665 

which indicated the conversion value from gram to newton before being divided by 5, 

indicating the maximum voltage value. As a result, the output of the ‘Gain 2’ block was a 

force with SI units of Newton (N). 
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𝑜𝑢𝑡𝑝𝑢𝑡 ൫𝑓𝑜𝑟𝑐𝑒 𝑒𝑥𝑒𝑟𝑡𝑒𝑑(𝑁)൯ = 𝑖𝑛𝑝𝑢𝑡(𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒) 𝑥 20 𝑥 
9.80665

5
     (3) 

Equation 3: conversion voltage to force (N) 

 

 Part 2 and Part 3 were dedicated to measuring 30% of the MVC applied by the 

subjects using several blocks such as ‘Max of element’, ‘Memory’, ‘Gain’, and ‘Display’. 

The force value originated from Part 1 and was fed into a block known as ‘Max of Elements 

1’. Using the ‘Memory’ block, the current force value (while imagining the system is 

running) was compared with an earlier maximum force value saved from the same dataset. 

The current subject’s maximum force was shown in the ‘Display 2’ block. At the same 

time, the highest force exerted was the input for the ‘Gain 3’ block. The block (Gain 3) 

calculated 30% of the maximum force and the result was displayed in the ‘Display 1’ block. 

The 30% MVC value was set in part three to be used in the actual trajectory during the data 

collection procedure manually. 

 

 Part 3 contains several blocks for generating a trajectory to be used in the data 

collection procedure. This part includes two ‘Rate Transition’ blocks, one ‘Data Type 

Conversion’ block, one ‘Repeating Sequence’ block, one ‘Mux’ block and one ‘Scope’ 

block to display the generated trajectory. The desired graph was created using the 

‘Repeating Sequence 2’ block as demonstrated in Figure 3.6. The time intervals were set 

to 0, 2, 7, 9, and 15. The contraction period began in sec 2 until sec 7 (5 seconds), and then 

the relaxed period began from sec 7 until sec 15 (8 seconds). This ratio was used in earlier 

research (Aranceta-Garza and Conway, 2019). The output values began with 0 N at 0 sec, 

then sec 2 and 7, and the output set differed at this point depending on the 30% MVC. The 

signal then passed through the ‘Rate Transition 2’ block with an output port sample time 

of 1/200 together with the current force values from the load cell at the same rate. The 

selection of this sample time was after trying multiple sample rates. The ‘Rate Transition’ 
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block was necessary to ensure that the transfer rate for both signals was the same to avoid 

the lagging trajectory displayed in ‘Scope 1’. The output from the ‘Rate Transition 1’ block 

was then passed to the ‘Data Type Conversion’ block so that the value can be converted 

into a readable value. ‘Mux’ block was used to combine both live data and generated 

repeating sequence trajectory for comparison purposes (with double as the data type). 

‘Display 3’ then showed the subjects' real-time force exerted. 

 

 

Figure 3.6: Desired graph parameter 

  

 

3.4 DATA COLLECTION PROCEDURE 

 

Figure 3.7 represents the flowchart for the data collection process. This research was 

approved by the International Islamic University Malaysia (IIUM) Research Ethics 

Committee (Approval ID: 2020-080) (see Appendix I). The subjects were provided with a 

consent form (see Appendix II) before the procedure began. The subject's forearm length 

was then measured using the 25% rule as shown in Figure 3.8 according to a standard 



34 
 

 

procedure from a previous study by (Aranceta-Garza and Conway, 2019) before proceeding 

with placement of an HD-sEMG electrodes pad on the subject’s forearm.  

 

Figure 3.7: Procedures for data collection 
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Figure 3.8: Electrode placement standard 

 

 

 The procedure began with the anterior side. First, the electrode was placed on the 

measured forearm. Then, the subject was asked to sit on a chair facing a dedicated computer 

screen, while the experimenter adjusted the subject’s forearm position on the portable 

thumb training system as shown in Figure 3.9. 

 

 

 

Figure 3.9: Experiment setup to collect the HD-sEMG signals recording 
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 The manipulated thumb attitudes were the thumb angles, namely zero degrees, 

thirty degrees, sixty degrees, and ninety degrees. The experiment began with the MVC of 

individual subjects measured using a load cell. The subject was asked to exert his or her 

maximum thumb force on the load cell before the Simulink automatically calculated 30% 

of his or her MVC. The 30% MVC again was set by Simulink as the targeted force before 

being shown through a graphical user interface (GUI) in trajectory form. For repeatability 

purposes, the subject was asked to apply 30% MVC three times during the procedure. 

 

Subjects were then required to repeat the same procedures three times (three 

records) for each angle for a total of 12 records for each subject across all angles on one 

hand side. After completing the anterior side’s procedures, the subject rested for three 

minutes before the posterior side’s procedures began. The same rules were applied for the 

posterior side in which the preparation of the experiment began by placing an electrode at 

the posterior side of 25% from the ulnar head and elbow. In total, 12 records were collected 

for the subjects' posterior sides. 

 

 

3.5 HD-sEMG RECORDING SETUP 

 

A portable biomedical signal amplifier (Model Name: Sessantaquattro) manufactured by 

OT-Bioelettronica illustrated in Figure 3.10 was used to capture 64 channels of monopolar 

HD-sEMG signals.  
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Figure 3.10: Sessantaquattro by OT-Bioelettronica 

 

 

Data collected from the HD-sEMG patch can be transmitted from an amplifier via 

Wi-Fi to PCs, tablets, or smartphones or stored on an SD card for long-term acquisition. 

Different adapters allow the Sessantaquattro connection of electrode matrixes, electrode 

arrays, or bipolar electrodes. Sessantaquattro can also act as a 64 channel data logger that 

stores data on a MicroSD card. 

  

The electrode used in this experiment was the GR08MM1305, which is an HD-sEMG 

electrode pad that has 13 rows and 5 columns grids with an 8 mm inter-electrode distance 

as illustrated in Figure 3.11. The pad was placed on both sides of the subject's forearm. The 

electrode required foam to ensure that it could adhere to the forearm. Also, the specific 

foam used together with this electrode was the KIT08MM1305 (as shown in Figure 3.12), 

and a special cream known as conductive cream (CC1) was utilised to fill up spaces inside 

the foam to ensure that the biosignal can be captured by the electrode with minimal noise. 
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Figure 3.11: HD-sEMG electrode 

 

Figure 3.12: HD-sEMG electrode foam 

 

 

To acquire or process the signals in real-time, a custom application for 

Sessantaquattro was developed. Alternatively, a freeware software OT BioLab was used to 

display real-time signals and acquire the Sessantaquattro signals used in this experiment. 

Before the data acquisition process started, the software settings had to be updated. Figure 

3.13 depicts the software setup for this study. Using the GUI of the software, the device 

was set to Sessantaquattro, and the adapter option was set to AD1x64SE. The adapter option 

selected (AD1x64SE) was compatible with the plugging of the GR08MM1305 electrode. 

All the configurations were set under sensor settings. The frequency system was also set to 

EMG (2000Hz) for the HD-EMG signal as fixed by the manufacturer in the user manual 

(Manual, n.d.). After everything was set, the data collection procedure could then begin. 
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Figure 3.13: HD-sEMG software setting 

 

 

3.6 FEATURE EXTRACTION 

 

In this experiment, there were four features extracted with two from the TD, namely the 

RMS and MAV or known as Absolute Rectified Value (ARV). These two features are well-

known optimal methods to extract signal amplitude (Phinyomark et al., 2013). Despite the 

previous study’s result that the TD has better features in classifying thumb attitude, two FD 

features were also included in this study, namely MNF and MDF. These two features are 

the most basic and commonly used in for FD. 
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The RMS was obtained by calculating the mean value of the EMG signal using 

Equation 4. 

 

𝑅𝑀𝑆 = ඨ 
ଵ

ே
෍ 𝑥௞׀

ଶ׀
ே

௞ୀଵ
     (4)  

Equation 4: RMS equation 

 

The ARV feature is an average absolute value of the EMG signal amplitude in 

segmentation as shown in Equation 5. 

 

           𝐴𝑅𝑉 =
1

𝑁
෍ 𝑥௞

ே

௞ୀଵ

     (5) 

Equation 5: MAV/ARV equation 

 

in which:  

• ‘N’ is the number of samples per window.  

• ‘Xk’ is the amplitude of the signal at the input of the amplifier in mV. 

 

MNF is the average frequency of the signal. It is also known as the central frequency 

(Fc). It is expressed as shown in Equation 6. 

 

           MNF =
∑ f୧P୧

୑
୧ୀଵ

∑ P୧
୑
୧ୀଵ

     (6) 

Equation 6: MNF equation 
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MDF is the frequency at which the power spectrum density is split into two halves; in 

other words, MDF is half of the total power as expressed in Equation 7. 

 

           MDF =
1

2
 ෍ P୧

୑

୧ୀଵ

    (7) 

Equation 7: MDF equation 

 

in which: 

• 𝑓௜ is the frequency of the spectrum at frequency 𝑖.  

• 𝑃௜ is the power spectrum at frequency 𝑖. 

• M is the length of the frequency bin. 

 

 

3.7 SOFTWARE INTERFACE AND DATA EXTRACTION 

 

Software provided by OT BioLab was used to do the pre-processing steps. An example of 

an offline GUI of the software is shown in Figure 3.14. As demonstrated in the figure, the 

software is equipped with a ‘Channel List’ column on the left side, next to the signal display 

known as ‘Tab 1-RawData’. The ‘Tab1-RawData’ displays the pattern of the collected HD-

sEMG signal in the loop. This channel was used to visualise and analyse the captured signal 

to determine whether it is acceptable or not.    
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Figure 3.14: OTBioLab data interface 

 

 

By zooming in on the ‘Tab1-RawData’ graph, Figure 3.15 represents the electrode 

arrangement of all 64 electrodes (labelled as 1). The amplitude interspace (labelled as 2) 

was determined by the subject signals, which means that different subjects had different 

interspaces. In case the differences between the set conditions (contract and relax) were too 

small, the interspaces were smaller and vice versa. As a result of adjusting the interfaces, 

the contact (labelled as 3) and the relax (labelled as 4) can now be clearly seen. Based on 

the trajectory shown in Figure 3.14, as the participants were required to apply force three 

times in each record for the contact condition, these signals are portrayed in the resulting 

sample in Figure 3.15.  



43 
 

 

 

Figure 3.15: Signal interface details 

 

 

OT BioLab software also was used to extract the dedicated features. Figure 3.16 depicts 

the offline processing features selection. As a note, all of the features selected to be 

analysed in this study were ready to be calculated automatically by the software. These 

features were labelled as 1 (ARV), 2 (MNF), 3 (MDF), and 4 (RMS).   
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Figure 3.16: Offline processing direction (feature extraction) 

 

 

Once the interesting feature was selected by the user, a new row of signals will 

appear below the raw signals as shown in Figure 3.17. The example of a selected feature 

depicted in the figure is ARV.  
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Figure 3.17: Feature extracted interface 

 

 

Then, the extracted feature can be exported into a variety of file formats, including 

.mat, .csv, binary, and .wav depending on the demand of the users. While the export data 

records the entire duration of the data collection process, the data can be filtered to a 

specific period as shown in Figure 3.18. In the case of this study, the only data of interest 

to be analysed was during the contract and relax conditions. As such, the rest of the data 

were ignored. These selected data were later exported into a file for the following 

processing steps. 
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Figure 3.18: Feature extracted interface details and export direction 

 

 

3.8 NORMALISATION DATA 

 

Since the HD-sEMG signals recorded from each subject were unique and there were also 

variations of the 30% MVC value recorded among subjects, there was a need for the data 

to be normalised in the next pre-processing steps. Normalisation is important due to inter-

day and inter-subject variations of the HD-sEMG signals (Bashford et al., 2020). 

Mathematically, the normalisation of the HD-sEMG can be expressed as shown in Equation 

(3). 
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𝑛

𝑥
× 100%     (8) 

Equation 8: Normalisation equation 

where: 

‘𝑥’ is the average of all normalised data values 

‘n’ is the data from the nth electrode out of 64 electrodes 

 

To normalise the data, first, the average of each feature data set of all electrodes was 

calculated (𝑥). Then, the RMS or ARV value of the specific electrode (𝑛) was divided by 

the 𝑥 before being multiplied by 100 to scale up the normalised values. 

 

 

3.9 CLASSIFIER 

 

Classification is an important step in identifying patterns of HD-sEMG signals that 

correspond to specific thumb muscle force exertion magnitudes and postures. In this study, 

the pre-processed data were classified using machine and deep learning classification 

learner app in Matlab R2020 (The Mathworks, Natick, MA).  

 

Using trial and error method, the cross-validation value was set as five folds after a 

few attempts at different settings from 1 up to 10. This implies that all input data from the 

HD-sEMG signal were divided into five groups automatically using a ratio of 1:4 (e.g., 

Group 1 for testing and four other groups, Group 2 to 5, for training). After the first 

classification iteration, the testing group was rotated (Group 2 was now meant for testing 

while Group 1 and Group 3 to 5 were used for training). The whole classification process 

took five times, indicating the five folds, and all five groups were used for testing. The 

result displayed is the mean of the overall five classification results (Frank et al., 2010). 

The training and testing data sets were randomly selected by the app. 
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The classifiers selected in this study were LDA, SVM, and KNN, in addition to one 

random classifier, which was the TREE-based classifier. For the KNN classifier, the value 

of the variable K which indicated the count of the nearest neighbours can be manipulated 

based on the data. In this study, the K value was set to 1 because it produced the highest 

correctly classified instances after comparing to other K values between 1 to 10. The 

selection of these three classifiers namely LDA, SVM, and KNN was because there were 

commonly used classifiers in a previous study that focused on replicating hand posture in 

a prosthetic hand study that produced a highly accurate result. The premier study of this 

research used the Weka machine learning algorithm, and the TREE-based classifier 

produced high accuracy; thus, the TREE-based classifier was included in the actual study. 

 

Machine learning classification was carried out such that the inputs to the machine 

learning algorithm were HD-sEMG data that were collected from the 64 electrodes placed 

on the forearm anterior and posterior muscles and the outputs were the corresponding 

thumb postures at zero degrees (at rest and contract), thirty degrees (at rest and contract), 

sixty degrees (at rest and contract) and ninety degrees (at rest and contract), which were 

denoted as class A, B, C, D, E, F and H respectively as shown in Table 3.1.  

 

 

Table 3.1 Denotation of Thumb Posture Classes 

Thumb Posture Class 

Zero Degrees (contract) A 

Thirty Degrees (contract) B 

Sixty Degrees (contract) C 
Ninety Degrees (contract) D 

Zero Degrees (at rest) E 

Thirty Degrees (at rest) F 
Sixty Degrees (at rest) G 

Ninety Degrees (at rest) H 
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Figure 3.19 depicts the classifier's basic configuration. In this experiment, the 

response option must be set to angle, which was the targeted class. There were eight distinct 

classes, each with four angles (zero degrees, thirty degrees, sixty degrees, and ninety 

degrees) and two different conditions (contract and relax). Data that did not include 

predictors were unmarked, as condition, sub, and trial data were excluded in this study.  

 

 

Figure 3.19: Classifier setting 
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3.10 SUMMARY 

 

To sum, this chapter presented the experimental set ups for data collection and data analysis 

processes. Four different attitudes were fixed in collecting dedicated HD-sEMG signals 

from extrinsic muscles at zero degrees, thirty degrees, sixty degrees, and ninety degrees 

using a developed thumb training platform. Two features from the TD family (RMS and 

ARV) and two from the FD (MNF and MDF) were chosen to be extracted. Using Matlab 

R2020, there were four chosen classifiers selected, namely LDA, SVM, and KNN, as well 

as one random TREE-based, to classify the collected data. The outcomes of the study are 

discussed in the following chapter. 
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CHAPTER FOUR 

RESULT AND DISCUSSION 
 

 

4.1 INTRODUCTION 

 

In this chapter, the entire results starting from the data collection process up to the 

classification process are discussed. The first result to be elaborated is the amount of force 

exerted by the subjects, followed by the comparison between RAW and normalised data 

based on the selected features and classifiers. These are the two features from TD (ARV 

and RMS) and FD (mean and median) using four different classifiers namely LDA, SVM, 

KNN, and TREE-based. After that, the outcomes from the best feature and classifier (with 

the highest accuracy) applied to both hand sides (anterior and posterior) are discussed in 

finalising the study results.  

 

 

4.2 PARTICIPANT 

 

A total of 17 subjects (12 males, 5 females; age 26.5 ± 3.5 years) took part in this 

experiment and were purposely selected among International Islamic University Malaysia 

students with no history of hand injury. Thirty percent of MVC force of each attitude 

(angle) was recorded as tabulated in Table 4.1.  
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Table 4.1: Result of 30% MVC force 

 

 

It is clear from these findings that the magnitude of thumb force exerted by the 

subjects varied significantly. The 30% MVC varied depending on the angular position of 

the thumb, which was also observed. For example, the value of 30% MVC at the ninety-

degree position was generally higher than the value of 30% MVC at the zero-degree 

position (see Figure 4.1). 

Subject ID Gender Age 
30% MVC (N) 

Zero degrees Thirty degrees Sixty degrees Ninety degrees 

1 Male 26 11.84 11.49 10.57 18.1 

2 Male 26 8.56 9.538 12.35 19.31 

3 Male 30 8.15 10.24 14.48 18.44 

4 Male 27 7.97 12.28 12.17 14.87 

5 Male 25 7.68 11.02 14.7 16.99 

6 Male 24 8.26 9.24 10.9 13.78 

7 Male 25 7.89 11.23 12.5 17.56 

8 Male 26 6.98 8.21 10.35 11.68 

9 Male 26 7.84 7.98 9.84 10.96 

10 Male 25 8.45 9.42 12.82 12.35 

11 Male 28 7.87 7.98 9.93 10.67 

12 Male 27 7.46 8.38 11.87 12.91 

13 Female 25 7.05 6.71 6.01 16.02 

14 Female 30 2.39 5.1 5.559 6.996 

15 Female 25 6.42 6.43 6.938 8.547 

16 Female 27 5.48 5.89 6.53 7.03 

17 Female 26 6.67 6.86 7.54 7.81 
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Figure 4.1: Average force applied at 30% MVC in each posture 

 

 

4.3 STATISTICAL ANALYSIS 

 

Statistical analysis was run using Statistical Package for the Social Sciences (SPSS)1 

software to test (i) correlation between the electrodes and (ii) interaction effect of hand 

sides, features, conditions, and angle of the thumbs on the HD-sEMG (force) data captured 

by the electrodes. 

 

 

4.3.1 CORRELATION ANALYSIS 

 

A 2-tailed Pearson product-moment correlation was run to determine the relationship 

between the HD-sEMG electrode readings (electrode 1 to electrode 64). As results, there 

were strong positive correlations within the electrodes, which were statistically significant, 

(r ≥ 0.859, n = 3840, p < 0.01) 

 
1 https://www.ibm.com/products/spss-statistics  
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4.3.2 INTERACTION EFFECT 

 

A Multivariate Analysis of Variance (MANOVA) was run to test the interaction effect of 

hand sides (anterior vs posterior), features (ARV vs RMS), conditions (contract vs relax), 

and angle of the thumbs (zero degrees vs thirty degrees vs sixty degrees vs ninety degrees) 

on the HD-sEMG readings. The result indicated a significant interaction effect of the 

independent variables on the dependent variables with Wilks’ Λ = 0.930, F(192,11229) = 

1.427, p < 0.010, partial ŋ2 = 0.024. The hand sides, features, conditions, and angle of the 

thumbs contributed to the force readings captured by the HD-sEMG. 

 

 

4.4 HD-sEMG MAP 

 

The collected signals from the patch can be visualised based on colour using a map. At the 

sampling rate of 2000 Hz, HD-sEMG activation maps were generated based on RMS and 

ARV features which were extracted from the 64 channels of HD-sEMG. Figure 4.2 displays 

the HD-sEMG activation maps for each posture obtained from one of the subjects 

(randomly chosen: Subject 6).  

 

The HD-sEMG activation maps indicate regions of muscles that had high levels of 

biopotential activations during a specific thumb force exertion and the regions of muscles 

that have lower biopotential activations. Regions that had higher levels of muscle 

activations are represented by a dark red colour whereas regions that have lower levels of 

muscle activations are represented by light blue and dark blue colours. It can be observed 

from Figure 4.2 that the variation in the colours presented on the HD-sEMG activation map 

depends on both the feature extraction method used (ARV or RMS) and the thumb posture 

(zero degrees, thirty degrees, sixty degrees and ninety degrees). 
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Figure 4.2: HD-sEMG activation maps at each thumb posture for Subject 6 using ARV 

and RMS features 

 

 

As a result, it can be observed that the amplitude of both RMS and ARV values of 

the signal measured from the forearm anterior side was higher compared to the posterior 

side for all the postures based on colour density. For the posterior side, the amplitude of 
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both the RMS and ARV became lower as the angle of the thumb increased. On the other 

hand, on the anterior side, the RMS and ARV amplitudes became higher as the angle of the 

thumb increased. It was also observed that the RMS feature generated higher amplitudes as 

compared to the ARV feature in general and this was observed in the EMG activation maps. 

 

 

4.5 THE BEST FEATURES AND CLASSIFIERS 

 

The focus of this chapter is to analyse and discuss the result of different features and 

classifiers. The best feature and classifier are finalised toward the end of this chapter and 

were used as the main feature and classifier of the experiment. It is important to mention 

here that the result discussed in this part comprises the features and classifier using the 

anterior hand side data only. The reasoned selection of the data from this part of the forearm 

is because the muscle (Flexor Pollicis longus) is one of the preserved muscles for the 

transradial amputee and the signal is used to control the prosthetic hand (Pierrie et al., 

2019). 

 

 The data in Table 4.2. displays the classification results for two sets of data. The 

RAW data as well as normalised data are included in the table. The features for each set 

were MNF, MDF, ARV, and RMS. In comparison, the normalised process improved the 

classification result for various classifiers of different features.  
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Table 4.2: Classification result for RAW and normalised data for each classifier 

 

Data Domain Feature 

Classifier 

LDA SVM KNN TREE 

Correctly 

classified 

instances 

(%) 

Correctly 

classified 

instances 

(%) 

Correctly 

classified 

instances 

(%) 

Correctly 

classified 

instances 

(%) 

RAW 

Frequency 
MNF 72.5 69.2 74.8 56.9 

MDF 47.6 60.8 69 60.1 

Time 
ARV 30.3 71.7 83.8 70.1 

RMS 88.2 73.2 82.4 70.1 

Normalized 

Frequency 
MNF 80.2 77.5 81.8 73.6 

MDF 56.8 62.4 78.8 70.1 

Time 
ARV 97.1 85.7 94.0 86.1 

RMS 96.4 87.8 95.0 86.3 

 

 

 The highest increment correctly classified instances were from the ARV feature 

classified using the LDA classifier from 30.3% up to 97.1%. The increment made it the 

highest correctly classified instance followed by the result of the RMS feature using the 

same classifier (LDA) with 96.4%. Meanwhile, the lowest correctly classified instances for 

TD of normalised data was the result for ARV feature classified using the SVM classifier 

with 85.7%. 

 

For the FD, the MNF data classified using the KNN classifier classified the highest 

accuracy with 81.8% accuracy followed by data of the same feature (MNF) classified using 

the LDA classifier with 80.2% accuracy. The lowest accuracy was the result for MDF data 

feature classified using the LDA classifier, with 56.8% correctly classified instances and 
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followed by the same data classified using the SVM classifier with 62.4% correctly 

classified instances. These two data sets’ results were the only results with less than 70% 

correctly classified instances of all the results. 

 

Further analysis was done to obtain the accuracy of classification depending on the 

domain and classifier used on the normalised data. 

 

Table 4.3: Average correctly classified classification for each domain and classifier for 
normalised data (%) 

 

Domain Feature 

The average classification result from each 

domain and classifier 

 

The 

average 

percentage 

for each 

domain 

LDA SVM KNN TREE 

Correctly 

classified 

instances 

(%) 

Correctly 

classified 

instances 

(%) 

Correctly 

classified 

instances 

(%) 

Correctly 

classified 

instances 

(%) 

Frequency 
MNF 

68.5 70.0 80.3 71.9 

 

72.7% 
MDF 

Time 
ARV 

96.8 86.8 94.5 86.2 91.1% 
RMS 

 

Average percentage 

for each classifier 
82.6% 78.4% 87.4% 79.0% 
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Table 4.3 depicts the average of the results for each classifier and domain. KNN 

recorded the highest average correctly classified instances with 87.4% followed by the 

LDA classifier with 82.6% correctly classified instances. The percentages for SVM and 

TREE were less than 80%. As such, it can be deduced that the best classifiers to be used as 

a preliminary option were the LDA and KNN classifiers. 

 

Additionally, based on the dataset domain, the average TD result of 91.1% correctly 

classified instances was 18.4% higher than the average FD result of 72.7% correctly 

classified instances. This percentage demonstrates that TD has a better data set for 

classification than the FD. The result is also in line with the study conducted by Siddiqi and 

Sidek (Siddiqi & Sidek, 2016), which concluded that TD analysis yielded higher accuracy 

in distinguishing different finger postures compared to FD analysis. 

 

TD features and two classifiers namely LDA and KNN had the highest percentage 

of correctly classified, and the next analysis focuses on these setups. The same setup was 

applied to the posterior side data, and both results are constructed in Table 4.4.  
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Table 4.4: Both hand side results for classifier LDA and KNN 

 

Hand side Feature 

Classifier 

LDA kNN 

Accuracy (%) 

Anterior 
ARV 97.1 94.0 

RMS 96.4 95.0 

Posterior 
ARV 96.6 98.2 

RMS 96.5 97.8 

 

Average accuracy for 

each classifier 
96.7% 96.3% 

 

 

KNN scored the highest classification accuracy for the posterior side on average 

(98%), but for the anterior side, this classifier had lower average accuracy (94.5%). 

Interestingly, the LDA classifier showed a consistent result for both sides with the highest 

accuracy recorded from the anterior side for ARV feature with 97.1% and the lowest 

correctly classified instances on the same hand side (anterior) for RMS feature with 96.4%. 

 

Based on the classifier, on average, LDA had higher correctly classified instances 

with 96.7% than KNN (with 96.3%). As such, the final decision was to use these TD 

features (ARV and RMS) with LDA as the classifier for further analysis. 
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4.6 DETAILS OF THE BEST CLASSIFICATION RESULT 

 

Focusing on LDA, inputs for the classifier consisted of TD features (ARV and RMS) and 

a combination (ARV-RMS) from both hand sides (anterior and posterior); their 

combination (anterior-posterior) was further analyzed using a confusion matrix. Figure 4.3 

demonstrates the percentage of correctly classified instances for each set of data via a bar 

chart for comparison purposes.  

 

 

Figure 4.3 Summary of correctly classified instances for ARV, RMS and their 

combinations based on hand sides 

 

 

 Overall, features extracted from the HD-sEMG yielded more than 96% correctly 

classified instances for each data set. Using the RMS values, the forearm posterior side 

(orange bar with label RMS) recorded 96.5% correctly classified instances while the 

forearm anterior side (the blue bar with label RMS) yielded 96.4% correctly classified 

instances. The result showed that the data from the forearm posterior had a better-classified 
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percentage compared to the forearm anterior. These findings coincide with results from a 

previous study that used the same feature. The study by Aranceta-Garza and Conway, 

(2019) show result of 94.85% for anterior and 97.00% for posterior which reveals that data 

from the forearm posterior side resulted in a higher number of correctly classified instances 

compared to the forearm anterior side for the classification of thumb postures. However, a 

different pattern was seen in the result for the ARV feature, where the anterior had a better 

percentage with 97.1% and 96.6% for the forearm posterior. 

 

 Classification using a combination of data collected from both the forearm anterior 

and posterior sides was also carried out. The combination of data from both hand sides 

utilised 64 electrodes on the forearm anterior and 64 electrodes on the forearm posterior, 

resulting in a total data collected from 128 electrodes. The results of this combined 

approach showed a higher percentage of correctly classified instances compared to using 

data obtained from either the forearm anterior or forearm posterior only. In this combined 

approach, using the ARV feature results yielded a percentage of 99.2% correctly classified 

instances whereas using the RMS feature resulted in a slightly higher percentage of 99.7% 

correctly classified instances. The result shows that the RMS feature had better data in 

classifying different classes (thumb posture and condition) compared to ARV when both 

hand-side data are combined.  

 

An additional analysis was also carried out which combined both the ARV and 

RMS features collected from both the HD-sEMG from the forearm anterior and forearm 

posterior. This was motivated by a previous study by Siddiqi and Sidek (Siddiqi & Sidek, 

2016), which revealed that the percentage of correctly classified instances had increased 

significantly. The combination of ARV and RMS features together with both forearm 

anterior and forearm posterior data resulted in a high percentage of correctly classified 

instances of 99.7%, the same result as using the RMS for both forearm anterior and forearm 

posterior data. The next discussion will focus on these two data set results which combines 



63 
 

 

ARV and RMS features of both forearm anterior and forearm posterior with the RMS for 

both forearm anterior and forearm posterior data. 

 

 

4.7 CONFUSION MATRIX AND AVERAGE EACH CONDITION 

 

The next analysis was done to investigate the characteristics of the two highest correctly 

classified instances (RMS and combination feature: ARV-RMS as the features and anterior-

posterior as the hand side) found earlier in Figure 4.3. Table 4.5 and Table 4.6 show the 

confusion matrices for the features respectively. In Table 4.5, the extracted feature was 

RMS while in Table 4.6, a combination of both the ARV and RMS features was extracted 

and used as inputs for the classification. 

 

 

Table 4.5: Confusion matrix for RMS data from the anterior and posterior hand sides. 

 

lass A B C D E F G H  Accuracy (%) 

A=zero_ relax 119  1      99.2 

B=zero_ contract  119  1     99.2 

C=thirty_ relax   120      100.0 

D=thirty_ contract    119  1   99.2 

E=sixty_ relax     120    100.0 

F=sixty_ contract      120   100.0 

G=ninety_ relax       120  100.0 

H=ninety_ contract        120 100.0 

 

Precision (%) 100.0 100.0 99.2 99.2 100.0 99.2 100.0 100.0 
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Table 4.6: Confusion matrix for ARV-RMS data from the anterior and posterior sides. 

 

Class A B C D E F G H  Accuracy(%) 

A=zero_ relax 240               100.0 

B=zero_ contract   240             100.0 

C=thirty_ relax     240           100.0 

D=thirty_ contract       239   1     99.6 

E=sixty_ relax         239   1   99.6 

F=sixty_ contract       1   238   1 99.2 

G=ninety_ relax             240   100.0 

H=ninety_ contract           1   239 99.6 

 

Precision (%) 100.0 100.0 100.0 99.6 100.0 99.2 99.6 99.6 

 

 

Table 4.5 is the result of the RMS data feature of both hand sides (anterior-

posterior). Most of the classes were successfully classified except for three classes namely 

A, B, and D. Misclassification occurred during the classification of zero-degree classes (A 

and B) with one incorrectly classified as class thirty degrees accordingly (class C and D). 

Meanwhile, class D had one data incorrectly classified as class F. 

 

In Table 4.6, the number of classified data in this confusion matrix was doubled and 

enlarged the data up to 240 data via a combination feature where there were 120 data for 

each feature. There were four classes with an accuracy of 100% (240 data correctly 

classified), namely class A, B, C, and G. The lowest accuracy with 99.2% was class F with 

238 data correctly classified and there were two data incorrectly classified as class D and 

H each. The other three classes, namely D, E, and H, had 239 data correctly classified with 

one incorrectly classified. 
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From both the confusion matrices presented in Table 4.5 and Table 4.6, it can be 

observed that overall, regardless of the features used, the algorithm accurately classified all 

the data as their actual class for two classes (C and G) for 100% accuracy and three classes 

(A, B, and E) for 100% precision. Also, in Table 4.5, it can be seen that there were three 

incorrectly classified instances out of 960 (99.7%) whereas in Table 4.6, there were five 

incorrectly classified instances out of 1920 (99.7%). 

 

 Table 4.7 summarises the percentages of the two highest accuracy data. Both were 

the result of a combination of both hand side data with different features (RMS and ARV-

RMS). 

 

Table 4.7: Classification results for anterior-posterior hand sides 

 

Feature Class Accuracy (%) Precision (%) 

RMS 

A=zero_ relax 99.2 100.0 

B=zero_ contract 99.2 100.0 

C=thirty_ relax 100.0 99.2 

D=thirty_ contract 99.2 99.2 

E=sixty_ relax 100.0 100.0 

F=sixty_ contract 100.0 99.2 

G=ninety_ relax 100.0 100.0 

H=ninety_ contract 100.0 100.0 

ARV- RMS 

A=zero_ relax 100.0 100.0 

B=zero_ contract 100.0 100.0 

C=thirty_ relax 100.0 100.0 

D=thirty_ contract 99.6 99.6 

E=sixty_ relax 99.6 100.0 

F=sixty_ contract 99.2 99.2 

G=ninety_ relax 100.0 99.6 

H=ninety_ contract 99.6 99.6 
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The RMS feature had five classes with 100% correctly classified instances, which were E, 

F, G, H, and C compared to four classes for the ARV-RMS feature, namely A, B, C, and 

G. Additionally, five of the classes were classified as 100% precise for RMS feature and 

four classes for ARV-RMS features. Overall, the RMS feature had 100% accuracy and 

higher precision than ARV-RMS. 

 

 Table 4.8 summarises the average result of conditions (contract and relax) and 

attitudes (thumb angles) for both features using anterior and posterior hand side data. For 

RMS, the average correctly classified for relax condition showed 99.8% accuracy and 

99.6% for contract condition. From the manipulated variable perspective which was the 

thumb attitudes, sixty-degree and ninety-degree angles scored 100% accuracy. The attitude 

of zero degrees resulted in the lowest accuracy with 99.2%. 

 

Moving on to the ARV-RMS feature, the correct classification for the relaxed 

condition showed 99.9%, while for the contract condition, it showed 99.6% correct 

classification. For the different attitudes, the only one attitude with 100% correct 

classification was zero degrees. Other than that, the attitude of sixty degrees was the lowest 

correctly classified for this data with 99.4%. Besides that, there were two attitudes with 

99.8% correct classification, namely thirty degrees and ninety degrees. 
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Table 4.8: Summary of correctly classified instances based on conditions and attitudes 

 

Features Condition Attitudes 

Relax Contract Zero 

degrees 

Thirty degrees Sixty degrees Ninety 

degrees 

RMS 
99.8 % 99.6 % 99.2 % 99.6 % 100.0 % 100.0 % 

99.7 % 99.7 % 

RMS-ARV 
99.9 % 99.6 % 100.0 % 99.8 % 99.4 % 99.8 % 

99.75 % 99.75 % 

 

 

4.8 VALIDATION RESULT 

 

For validation, the process focuses on the RMS data set on both sides and implement a 60% 

training, 20% testing, and 20% testing ratio. This process employs the trainlm training 

function with 3 hidden layers. 

 

 Table 4.9 is confusion matrix for training data set. The results show that there is no 

misclassification in any of the classes and resultant for 100% for accuracy and precision. 

 

 For the testing data set the result shown in Table 4.10. Most of the classes were 

successfully classified except for two classes namely B and D. Misclassification occurred 

during the classification of zero-degree contract (class B) with one incorrectly classified as 

class thirty degrees relax (class C). Meanwhile, class D had one data incorrectly classified 

as class C. 

 

 The confusion matrix for validation data set is shown in table 4.11. Majority of the 

classes successfully classified for each class except for class A. For the class A they are 
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one data misclassified as class D and the accuracy for class A is 95.8% and precision class 

D down to 96.3%. 

 

 Table 4.12 is result for all data set and the number of classified data in this confusion 

matrix total 120 each class. There were six classes with an accuracy of 100% (120 data 

correctly classified), namely class B, D, E, F, G and H. Two classes do not achieve 100% 

with 99.2% and 98.3% for class A and B accordingly. The final accuracy is 99.7% and the 

result align with result classified using classifier LDA. 

 

 

Table 4.9: Confusion matrix for training data set. 

Class A B C D E F G H 
 Accuracy 

(%) 

A=zero_ relax 73               100.0 

B=zero_ contract   72             100.0 

C=thirty_ relax     76           100.0 

D=thirty_ contract       76        100.0 

E=sixty_ relax         72      100.0 

F=sixty_ contract          69    100.0 

G=ninety_ relax             70   100.0 

H=ninety_ contract              68 100.0 

 

Precision (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Table 4.10: Confusion matrix for testing data set. 

Class A B C D E F G H 
 Accuracy 

(%) 

A=zero_ relax 23               100.0 

B=zero_ contract   27 1            96.4 

C=thirty_ relax     20           89.1 

D=thirty_ contract      1 18        94.7 

E=sixty_ relax         24      100.0 

F=sixty_ contract          27    100.0 

G=ninety_ relax             27   100.0 

H=ninety_ contract              24 100.0 

 

Precision (%) 100.0 100 89.1 100 100.0 100.0 100.0 100.0 

 

 

Table 4.11: Confusion matrix for validation data set. 

Class A B C D E F G H 
 Accuracy 

(%) 

A=zero_ relax 23      1         95.8 

B=zero_ contract   21             100.0 

C=thirty_ relax     22           100.0 

D=thirty_ contract      26        100.0 

E=sixty_ relax         24      100.0 

F=sixty_ contract          24    100.0 

G=ninety_ relax             23   100.0 

H=ninety_ contract              28 100.0 

 

Precision (%) 100.0 100.0 100.0 96.3 100.0 100.0 100.0 100.0 
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Table 4.12: Confusion matrix for all data set. 

Class A B C D E F G H 
 Accuracy 

(%) 

A=zero_ relax 119      1         99.2 

B=zero_ contract   120            100.0 

C=thirty_ relax    1 118 1          98.3 

D=thirty_ contract      120        100.0 

E=sixty_ relax         120      100.0 

F=sixty_ contract          120    100.0 

G=ninety_ relax             120   100.0 

H=ninety_ contract              120 100.0 

 

Precision (%) 100.0 99.2 100.0 98.4 100.0 100.0 100.0 100.0 

 

 

4.9 SUMMARY 

 

Several analyses were done to evaluate the TD and FD features of anterior-posterior hand 

sides of HD-sEMG signals using classifiers. In sum, TD features (ARV and RMS) had 

higher correctly classified instances scores in classifying eight thumb attitudes compared 

to FD (MNF and MDF). Out of four classifiers used, LDA was selected as the best classifier 

for categorising the data. Also, the combination of hand sides (anterior-posterior) gave the 

highest correctly classified instances compared to the single-hand side. Then, the two 

highest correctly classified were further analysed. Details of the classification results using 

selected features, hand sides and classifier were further detailed using confusion matrixes.  

 

.
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 
 

 

5.1 CONCLUSION 

 

The research aims to investigate and establish the relationship between the synergy of the 

HD-sEMG signal from forearm musculature and thumb postures. Details of the 

accomplishments in achieving the research’s objective are described in the sub-objectives 

as follows: 

 

 

5.1.1 To upgrade an existing portable thumb muscles platform and establish a 
standard sEMG recording setup for the HD-sEMG patch for consistent measurement 
of signals from the forearm musculature. 

 

To achieve the mentioned objective, an existing portable thumb muscle was upgraded to 

achieve the study design in fixing the thumb posture to be at zero degrees, thirty degrees, 

sixty degrees, and ninety degrees. Additionally, a trajectory interface was developed as a 

guide for the subjects during the data collection process to maintain the contract and relax 

conditions. A simple block diagram was used to develop the trajectory such as Analog 

input, Gain and Scope. The details were discussed in section 3.3. other than that, a standard 

sEMG recording setup was finalised and a standard patch placement for measuring EMG 

was set as the length of the forearm using the 25% rule. The details were elaborated 

extensively in section 3.4. Also, a portable biomedical signal amplifier called 

Sessantaquattro (manufactured by OT-Bioelettronica) was used in this research to capture 
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the HD-sEMG signals as elaborated in section 3.5. The force to be exerted by the subject 

was 30% MVC for contact condition and 0% for relax condition (at rest). 

 

 

5.1.2 To Investigate The Signal For The Optimised Extraction Method And The Best 
Selection Of Features. 

 

Based on the literature (Huang et al., 2016; Khushaba et al., 2017; Siddiqi & Sidek, 2016), 

EMG signals can be differentiated using TD, FD, and a combination of time-and-frequency 

domain analyses. To achieve the objective, four features were extracted; two from TD 

analysis and another two from FD assessment. For the TD, the selected features were RMS 

and ARV, while MNF and MDF were used based on the evaluation of FD features. As TD 

features had higher accuracy than FD, these features were combined as ARV-RMS which 

was discussed in section 3.6.  

 

 

5.1.3 To determine the best classifier and validate the performance of the developed 
system by classifying HD-sEMG data collected. 

 

There were four classifiers employed in this study, namely LDA, SVM, KNN, and TREE-

based classifiers. The algorithms of each classifier were discussed in section 3.9. As 

elaborated in detail in Chapter 4, the outcome showed that the best classifier was LDA and 

the best domains were TD features (consisting of ARV and RMS) which had successfully 

classified the thumb attitudes with 91.1% accuracy. On the other hand, FD features 

achieved 72.7% accuracy. Importantly, the combination of features which was ARV-RMS 

with a combination of both hand side data (posterior-anterior) achieved 99.7% accuracy; 
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the same as the RMS feature’s record. The result also has been validated using the trainlm 

training function with 3 hidden layers. 

 

In conclusion, all sub-objectives were successfully achieved. It can be concluded that 

the LDA classifier obtained the highest average of correctly classified instances with 99.7% 

using a combination of RMS and ARV features for both anterior and posterior sides. 

Overall, relax conditions achieved higher correctly classified instances (99.9%) compared 

to contract conditions (99.6%). The average accuracy conditions (contract and relax) and 

attitudes (angle) for the ARV-RMS features were equal with a percentage accuracy of 

99.75%. Meanwhile, the RMS feature scored 0.05% lower with a percentage of 99.7%. 

Even though the difference in accuracy between using ARV-RMS and RMS features seems 

small, it will contribute to a huge impact from the medical point of view in developing a 

prosthesis hand that can be replicated close to a normal hand. 

 

 

5.2 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

 

The limitation of the research that needs to be looked at for future improvements are 

described as follows: 
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5.2.1 Thumb Attitude 

 

Limitation: The thumb attitude used in this experiment focuses on thumb flexion. The 

attitude studied in this experiment does not cover all the thumb attitudes, namely abduction, 

adduction, opposition, and reposition. To create a perfect prosthesis hand, all the attitudes 

must be covered. 

 

Recommendation: Modify the thumb attitude platform for other attitudes. 

As the thumb attitudes in this experiment do not cover all the attitudes listed earlier, further 

modification of the current thumb attitude platform is suggested so that a wide range of 

thumb motions can be covered.  

 

 

5.2.2 Hand Position or Posture 

 

Limitation: In this experiment, the position of the forearm was fixed to a neutral position 

only. As a note, there are still two different positions that can be included in the study, 

namely supination and pronation positions. These two positions are important to be 

considered on a hand for daily activities, sports activities such as playing badminton, and 

for working activities such as typing on a computer which requires the pronation position. 

Since every hand position will affect the position of the targeted muscles which directly 

influence the HD-sEMG reading, a new set of data can be collected to enrich the study 

results for further development of prosthetic hands for a smooth hand posture.  
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Recommendation: Increase the degree of freedom of the thumb attitude platform. 

Besides developing a new thumb attitude platform, the current platform shall be modified 

by adding the degree of freedom for forearm positions.  

 

 

5.2.3 Amputee Subjects 

 

Limitation: The findings of this study are limited to health subjects only as no amputee 

participants participated for data collection purposes.   

 

Recommendation: Collect data from the amputee subjects. 

The study design proposed in the experiment had successfully classified eight thumb 

attitudes. Even though the outcomes of the study are valid to be generalised as the EMG 

signals from healthy subjects are the same as amputee subjects (Asokan & Y.Saber, 2021), 

it would be interesting to compare the sEMG signals from both subjects in the future for 

diversity purposes to reduce the risk of accidentally having extreme or biased groups.  

 

 

5.2.4 HD-sEMG Recording Device 

 

Limitation: The device used in the experiment was limited to collecting data on one forearm 

side at a time. As such, the time taken to collect the data for the anterior and the posterior 

side would be longer than collecting data simultaneously for both sides.  

Recommendation: Explore other HD-sEMG signal recording devices 
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It is best to have a device that can record HD-sEMG signals from both hand sides at one 

time. Future work may explore other latest recording devices such as Quattrocento 

multichannel for time-saving. This simultaneous recording device may also offer better 

accuracy than the current device used (Sessantaquattro) and have four channels as the data 

collected were recorded at the same time, with the same thumb motions. 

 

 

5.2.5 Dynamic Grip Transition 

 

Limitation: In this experiment, the thumb attitudes were fixed at zero-degree, thirty-degree, 

sixty-degree and ninety-degree angles only. Thus, the study on EMG signal during 

transition between different attitudes is still an open problem.   

 

Recommendation: Dynamic grip transitions 

It is recommended to add more thumb attitudes such as fifteen degrees (in between zero-

degree and thirty-degree angles) in producing a smooth prosthetic arm in between the 

disposition of thumb movements. Other than fixing the thumb attitude, it would be more 

interesting to study dynamic grip transitions from one angle to another. Before transradial 

amputees can consider real-time active myoelectric control over a prosthetic thumb 

component in a device, more research is needed in this area. 
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5.3 PUBLICATION 

 

One journal paper and one conference papers have been published as the part of thesis 

contribution: 

Muhammad Mukhlis Suhaimi, Aimi Shazwani Ghazali, Ahmad Jazlan Haja Mohideen, 
and Shahrul Na’im Sidek, “Thumb Attitude Analysis using High Density Surface EMG: A 
Preliminary Survey” 2020 IEEE-EMBS Conference on Biomedical Engineering and 
Sciences (IECBES), Langkawi Island, Malaysia, 2021, 
DOI: 10.1109/IECBES48179.2021.9398767 

Muhammad Mukhlis Suhaimi, Ahmad Jazlan Haja Mohideen, Aimi Shazwani Ghazali, 
and Shahrul Na’im Sidek, “Analysis of High-Density Surface Electromyogram (HD-
sEMG) Signal for Thumb Posture Classification from Extrinsic Forearm Muscles” OAEN-
Cogent Engineering, 2022, DOI: 10.1080/23311916.2022.2055445 

 

One journal paper and one conference papers as to be published as the part of thesis 
contribution: 
 
Muhammad Mukhlis Suhaimi, Aimi Shazwani Ghazali, Ahmad Jazlan Haja Mohideen, 
and Shahrul Na’im Sidek, “Explication of Extrinsic Forearm Muscles on the Classification 
of Thumb Position Using High-Density Surface Electromyogram.” The International 
Journal of Integrated Engineering (IJIE) 
 
Muhammad Hariz Hafizalshah, Muhammad Mukhlis Suhaimi, Aimi Shazwani Ghazali, 
Ahmad Jazlan, and Shahrul Na’im sidek “Analysis of Extrinsic Forearm Muscles using 
High-Density Surface Electromyogram (HD-sEMG) on Thumb Posture Classification.” 
International Conference on Intelligent Systems Design and Engineering Applications 
(ISDEA 2022)  
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