
DESIGN AND DEVELOPMENT OF

IN SITU FPGA-BASED WATER QUALITY

MONITORING KIT

November 2022

BY

ABDULRAHMAN BAHAA ZAIDAN

A dissertation submitted in fulfilment of the requirement for

the degree of Master of Science in Computer and

Information Engineering

Kulliyyah of Engineering

International Islamic University Malaysia

ii

ABSTRACT

In 2017, about 144 million people collected water from untreated water bodies, such as

lakes, streams, and rivers. One of the major causes of death is consuming contaminated

or polluted water. Measuring and monitoring water quality are usually done using two

methods. The conventional method occurs by taking samples of water and then

transferring them to the laboratory. The second method is real-time water quality by

integrating the Internet of Things (IoT). This method is preferable as it only requires

smart sensors and processors to monitor the water quality. Among the widely used

processors are the Arduino and Raspberry Pi. However, these two processors have a

limitation, including a limited number of hard-coded input/output pins, unlike the Field

Programmable Gate Array (FPGA) processor, which has many input/output pins not

hard-coded to allow different interfacing of multiple sensors. Based on the literature, an

FPGA platform provides more flexibility and reconfigurability features when compared

with the Arduino and Raspberry Pi. This research mainly focuses on designing a

reconfigurable multi-core Smart Water Quality System (SWQS) measuring the pH,

Total Dissolved Solids (TDS), and turbidity parameters. The hardware design was

developed based on the system-on-chip (SoC) design methodology on an FPGA to

parallelize the SWQS functionality. A Liquid-Crystal Display (LCD) display has been

incorporated into the Raspberry Pi to show real-time data. The Platform Designer on

Quartus II has been used to instantiate four cores to integrate all functions into one

processor. The Eclipse tool on Quartus II, on the other hand, was used to program the

sensors using embedded C language. The proposed design has been implemented on

DE10 Nano FPGA-SoC consuming 9% of logic resources and 57% of internal memory.

To verify the proposed system functionality, the sensors were tested on different liquids.

To test the pH level, the pH sensor was tested on pure water, lemon juice, and milk to

show the acidity and alkalinity. The pH sensor showed 7, less nearly 2, and less than 8

for pure water, lemon juice, and milk, respectively. The TDS sensor successfully

detected the salt added to the water, and the TDS values increased to approximately

1800 ppm. Finally, the turbidity sensor revealed the dust inserted in the solution. The

more dust in the liquid, the more TDS value there was recorded. Additionally, results

showed that the processing time of all the sensors using FPGA is approximately 300 ms

for ten readings; on the other hand, the processing time of using other processors, such

as Arduino, took 2 s for ten readings. This is because FPGA is functioning at 100 MHz,

while Arduino’s frequency is not more than 24 MHz. All real-time sensor readings were

shown on a Linux Terminal. In conclusion, the proposed FPGA-based system can be

utilized as a heterogeneous multi-core system for many applications, including the

SWQS.

iii

 ملخص البحث
ABSTRACT IN ARABIC

 نهارلاا مثل معالجة غير مصادر من المياه من احتياجاتهم ياخذون انسان مليون واربعون واربع مائة من اكثر

 بالقرب المياه يجعل وهذا المياه في الفضلات برمي تقوم المصانع معظم ,النامية الدول بعض في .والبحيرات

 سلبي بشكل تؤثر المواد هذه .الثقيلة المواد الى بالأضافه كيميائيه مواد تحمل لأنها تلوثا اكثر المصانع من

 هذه في .والبكتيريا الفايروسات تنشر الثقيلة المواد لان المياه في تعيش التي الحية الكائنات وعلى البيئة على

 ونقلها المياه من عينات اخذ عن عبارة وهي التقليدية الطريقة اما هما بطريقتين المياه جودة قياس يتم الايام

 ,ذلك الى بالاضافة .اكثر وتكلفه وقت الى تحتاج الطريقة هذه ولكن ,جودتها قياس ثم ومن المختبر الى

 بأستخدام المياه جودة قياس فهي الثانية الطريقة اما .النقل عملية خلال تتغير ان الممكن من المياه حالة

 الطريقة من مفضلة بشكل اكبر الطريقة ههذ .مختلفة بطرق البيانات ونقل المعالجات مع الذكية الحساسات

 .وقت كل في المياه جودة لقياس المعالج الى بالاضافة الذكية الحساسات الى تحتاج فقط لانها التقليدية

 يركز المشروع هذا فأن لهذا .المفاجأة الحالات في بسرعة القرار اتخاذ على المستخدم ستساعد الطريقة هذه

 المواد كمية الى بالأضافة والعكورة الهيدروجيني الأس لقياس حساسات استخدام على اساسي بشكل

 عرضها لأجل وارسالها البيانات بمعالجة للبرمجة القابلة المنطقية البوابات مصفوفة قومت ذلك بعد .بةئالذا

 وسوف .المياه جودة قياس في المستخدمة الأخرى الأجهزة تعقيد من سيقلل المشروع هذا .الشاشة على

 اخيرا .الذكي المياه متحسس جهاز تطوير في المستخدم الوقت لتقليل البرمجة مع الأجهزة بأستخدام تقوم

 معالج سيقوم .به المتربطة الشاشة على البيانات لعرض فقط سيستخدم باي الراسبري جهاز ,اخرا وليس

 الجهاز .الشاشة على عرضها ثم ومن بداخله مبرمج تطبيق طريق عن البيانات بأستلام باي الراسبري

 .الهيدروجيني الأس لقياس الحليب ,الليمون عصير ,النقية المياه مثل مختلفة سوائل على اختباره تم قد المصمم

iv

الرواسب ومياه مع الكثير اما نسبة العكورة فقد تم استخدام المياه النقيه بالاضافه الى مياه مع القليل من

من الرواسب. اخيرا فقد تم استخدام المياه النقية ومياه تحتوي على الملح لقياس المواد المذابة في الماء. عن

طريق هذا المشروع يمكن استخدام البيانات عن طريق ربطها ببرامج اتخاذ القرار, تحليل البيانات وغيرها من

 البرامج.

v

APPROVAL PAGE

I certify that I have supervised and read this study and that, in my opinion, it conforms

to acceptable standards of scholarly presentation and is fully adequate, in scope and

quality, as a dissertation for the degree of Master of Science Engineering.

I certify that I have read this study and that, in my opinion, it conforms to acceptable

standards of scholarly presentation and is fully adequate, in scope and quality, as a

dissertation for the degree of Master of Science Engineering..

………………………………………...

Rosminazuin Ab. Rahim

Internal Examiner

………………………………………...

Suriza Ahmad Zabidi

Internal Examiner

This dissertation was submitted to the Department of Electrical and Computer

Information and is accepted as a fulfilment of the requirement the degree of Master of

Science Engineering.

………………………………………...

Rafiqul Islam

Head, Department of Electrical and

Computer Information Engineering

This dissertation was submitted to the Kulliyyah of Engineering and is accepted as a

fulfilment of the requirement for the degree of Master of Science Engineering.

………………………………………...

Sany Izan Ihsan

Dean, Kulliyyah of Engineering

vi

DECLARATION

I hereby declare that this dissertation is the result of my investigations, except where

otherwise stated. I also declare that it has not been previously or concurrently submitted

as a whole for any other degrees at IIUM or other institutions.

Abdulrahman Bahaa Zaidan

Signature…………………………………. Date 2022/12/05

vii

Copyright Page

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF

FAIR USE OF UNPUBLISHED RESEARCH

DESIGN AND DEVELOPMENT OF

IN SITU WATER QUALITY KIT

I declare that the copyright holders of this dissertation are jointly owned by the

Student and IIUM.

Copyright © 2022 Abdulrahman Bahaa Zaidan and International Islamic University Malaysia.

All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise without prior written permission of the

copyright holder except as provided below

1. Any material contained in or derived from this unpublished research may

only be used by others in their writing with due acknowledgement.

2. IIUM or its library will have the right to make and transmit copies (print

or electronic) for institutional and academic purposes.

3. The IIUM library will have the right to make, store in a retrieval system

and supply copies of this unpublished research if requested by other

universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM

Intellectual Property Right and Commercialisation policy.

Affirmed by Abdulrahman Bahaa Zaidan

 2022/12/05

 Signature Date

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Allah for blessing me each and every day.

Thanks for the strength, wisdom, and faith to make it through life’s everyday

challenges.

I would like to thank my parents. There are so many things that I want to thank

them for. They are the reason behind all of my success, and I am forever indebted to

them. I would especially like to thank Associate Professor Amelia Wong Binti Azman

for her outstanding guidance, advice, inspiration, and encouragement throughout my

research progress. It is my greatest honor to work under her supervision. Thank you for

nurturing me into a hard-working student and for all your patience and guidance. You

were more than just supervisors to me. I am deeply indebted to you.

In addition, my gratitude goes to my beloved, lovely wife; for her prayers,

understanding, and endurance while away.

Finally, I want to thank Fawaz Mohammed for his countless midnight calls and

messages just to do this research; I am so grateful and thankful to you. I am very

thankful for all of the above for being the solid support system in my life. Thank you.

Allah blesses you

Once again, we glorify Allah for His endless mercy on us, one of which is

enabling us to successfully round off the efforts of writing this thesis. Alhamdulillah.

ix

TABLE OF CONTENTS

Abstract .. ii

Abstract in Arabic ... iii
Approval Page .. v
Declaration .. vi
Copyright Page ... vii
Acknowledgements ... viii

Table of Contents .. ix
List of Tables ... xii
List of Figures ... xiii

CHAPTER ONE: INTRODUCTION ... 1
1.1 Overview... 1
1.2 Research Background ... 1

1.2.1 Field Programmable Gate Array (FPGA) .. 2

1.2.2 Heterogeneous System Architecture (HSA) 3
1.3 Problem Statement .. 4

1.4 Research Objectives.. 6
1.5 Research Scope ... 6
1.6 Dissertation Layout ... 7

1.7 Summary ... 7

CHAPTER TWO: LITERATURE REVIEW ... 8
2.1 Overview... 8

2.2 Different Water Quality Approaches .. 8
2.2.1 Conventional Approach ... 9

2.2.2 Internet of Things (IoT) Approach .. 10
2.3 Sensors Used in Monitoring Water Quality Parameters 11

2.3.1 pH Sensor ... 11
2.3.2 Temperature Sensor ... 12
2.3.3 Turbidity Sensor .. 13

2.3.4 Conductivity Sensor ... 14
2.3.5 Dissolved Oxygen Sensor .. 15

2.3.6 Total Dissolved Solids (TDS) Sensor .. 16
2.3.7 Free Chlorine Sensor ... 16
2.3.8 Water Level Sensor .. 17

2.4 Related Research .. 18

2.4.1 Arduino as a Processing Platform.. 18
2.4.2 Raspberry Pi as Processing Platform ... 26
2.4.3 TI CC3200 as Processing Platform .. 30

2.4.3.1 FPGA as Processing Platform .. 33
2.4.4 Other Processing Platforms ... 34
2.4.5 Summary of Related Works... 38

2.5 Proposed FPGA-Based SWQS ... 43
2.6 Understanding The FPGA-SoC Heterogeneous system 44

2.6.1 FPGA Chip .. 44
2.6.2 System-on-Chip ... 45

x

2.6.3 Heterogeneous Platform .. 45

2.6.4 Features of FPGA-SoC Heterogeneous Platform 46
2.6.5 Memory Management on FPGA-SoC ... 47
2.6.6 Quartus II Development Software ... 48
2.6.7 Quartus Intellectual Property Libraries ... 49

2.6.8 Linux Terminal Interface ... 51
2.6.8.1 Linux Kernel Compilation .. 51

2.7 Summary ... 55

CHAPTER THREE: METHODOLOGY .. 56
3.1 Overview... 56
3.2 Research Methodology ... 57
3.3 Proposed Design Development and System Requirement 60

3.3.1 Smart Water Quality System (SWQS) .. 60

3.3.1.1 Interfacing Multiple Sensors .. 63
3.4 SWQS Hardware Design .. 64
3.5 SWQS Software Design ... 65

3.6 Proposed Design Power Cycle ... 68
3.7 Proposed Design Testing Plan .. 69

3.8 The Design Cycle of The Proposed FPGA-Based SWQS.......................... 70
3.8.1 The Hardware Design Flow of SWQS .. 70

3.8.1.1 Processors ... 71
3.8.1.2 Memory .. 73
3.8.1.3 Clocking and Synchronization 73

3.8.1.4 Data Transfer Protocols .. 74
3.8.1.5 System Peripherals ... 75

3.8.1.6 Bridges .. 78
3.8.1.7 Pin Assignment ... 79

3.8.1.8 Synthesis Report ... 80
3.8.2 The Software Design Flow of SWQS .. 81

3.8.2.1 Firmware Development Flow ... 81
3.8.2.2 The Linux Application Development Flow of

SWQS .. 83

3.9 The Embedded Linux Design Flow of SWQS ... 86
3.9.1 Bootloader Compilation ... 86
3.9.2 Root File-system Creation ... 87

3.10 Adding New Core to SWQS Design .. 87
3.11 Summary ... 88

CHAPTER FOUR: RESULT AND ANALYSIS .. 89
4.1 Introduction... 89

4.2 Results .. 89

4.2.1 The Results of the Quartus Project Compilation 89
4.2.2 The Implementation of Prototype .. 90
4.2.3 Design Verification Method .. 92
4.2.4 The Results of the SWQS Linux-Based Application 98

4.3 Discussion ... 100

4.3.1 Motivations of the Middleware Layer ... 100
4.3.2 System Flexibility .. 101
4.3.3 Applications of the Design .. 102

xi

4.4 SWQS Design Compared to Previous Work .. 102

4.5 Summary ... 103

CHAPTER FIVE: CONCLUSION AND FUTURE WORK 104
5.1 Conclusion .. 104
5.2 Future Work .. 105

REFERENCES ... 106

xii

LIST OF TABLES

Table 2.1 Summary Table 38

Table 2.2 Summary of All Sensors Used in Each Study Given in Table 2.1 43

Table 2.3 Files Generated After the Yocto Compilation 54

xiii

LIST OF FIGURES

Figure 1.1 Hardware Design Flow of FPGA (Intel, 2020) 3

Figure 2.1 Conventional-Based Water Quality Monitoring Example

(Tucsonaz, 2015) 10

Figure 2.2 IoT-Based Water Quality Monitoring Example Using Arduino

(Pinterest, 2017) 11

Figure 2.3 Configuration of pH Probe (Aaruththiran, Yujia, & Bagherian,

2019) 12

Figure 2.4 Configuration of Temperature Probe (Dhaker, 2020) 13

Figure 2.5 Turbidity Sensor 14

Figure 2.6 Electrical Conductivity Sensor 15

Figure 2.7 Dissolved Oxygen Optical Sensor (Staff, 2020) 15

Figure 2.8 Total Dissolved Solids Sensor 16

Figure 2.9 Free Chlorine Sensor (Karak et al., 2012). 17

Figure 2.10 Ultrasonic Level Sensor for Liquids 18

Figure 2.11 Overall Water Quality Monitoring System (Ngom et al., 2019) 19

Figure 2.12 Prototype of Water Quality Monitoring System (Li et al., 2018) 20

Figure 2.13 Overall Water Quality Scheme (Chowdury et al., 2019) 21

Figure 2.14 Overall System Architecture (Lezzar et al., 2020) 22

Figure 2.15 Hardware Implementation for Water Quality Monitoring Device

in Pipeline (Saravanan et al., 2018) 23

Figure 2.16 Experimental Setup of SQWM System (Mukta, Islam, Barman,

Reza, & Khan, 2019) 24

Figure 2.17 Circuit and Block Diagram of IoT System (Pujar et al., 2020) 25

Figure 2.18 System General Blocks and Data Flow (Encinas et al., 2017) 26

Figure 2.19 Block Diagram of Developed (Khatri et al., 2020) 27

Figure 2.20 IoT-based Monitoring System (Niswar et al., 2018) 28

Figure 2.21 System Architecture (Raju & Varma, 2017) 29

Figure 2.22 Overall Block Diagram (Vijayakumar & Ramya, 2015) 30

Figure 2.23 Overall Block Diagram (Geetha & Gouthami, 2016) 32

Figure 2.24 Overall Block Diagram (Billah et al., 2019) 33

xiv

Figure 2.25 The Block Diagram of Smart Water Quality Monitoring System

(Myint et al., 2017) 34

Figure 2.26 Block Diagram of Proposed System (Birje et al., 2016) 35

Figure 2.27 (a) Module 1: The Measurement and Sensing Module Block

Diagram (b) Module 2: The Notification Module Block

Diagram (Cloete et al., 2016) 36

Figure 2.28 Architecture of the E-Sensor AQUA System (Danh et al., 2020) 37

Figure 2.29 Cyclone V SoC FPGA from Intel (Intel PSG Website, 2020). 45

Figure 2.30 Example of a Memory Model of the Proposed SWQS Design 48

Figure 3.1 Research Methodology Phases 57

Figure 3.2 Research Methodology of the Proposed SWQS 58

Figure 3.3 Overall methodology of the Proposed SWQS 60

Figure 3.4 Proposed System Blocks and Data Flow 61

Figure 3.5 Multi-Core Heterogeneous System Architecture Design of the

Proposed Design 62

Figure 3.6 FPGA Single Core Processing Element of the Proposed Design 63

Figure 3.7 Proposed SWQS Hardware Proposed Data Acquisition Design 64

Figure 3.8 The Summary of the FPGA Hardware Design Flow 65

Figure 3.9 Firmware Applications for Each Core with SWQS Linux-based

Application 65

Figure 3.10 Flow Diagram of Firmware 0 66

Figure 3.11 The Sensor’s Core Firmware Flow Diagram 67

Figure 3.12 The Proposed Design Abstraction Layers 68

Figure 3.13 The Architecture of the Proposed SWQS 71

Figure 3.14 The Configuration of the ARM Processor 72

Figure 3.15 Nios II Processor Configuration 72

Figure 3.16 The Configuration of On-chip-Memory Controller 73

Figure 3.17 Clock source IP in Platform Designer 73

Figure 3.18 PPL Configuration in Platform Designer 74

Figure 3.19 ADC Input Signals 75

Figure 3.20 System Timer IP Configurations in Platform Designer 75

Figure 3.21 mSGDMA Controller IP Configurations 76

Figure 3.22 Mutex configuration in Platform Designer 76

Figure 3.23 The Configuration of JTAG IP in Platform Designer 77

file:///C:/Users/Black/Downloads/Abdulrahman_Thesis%2017112022.docx%23_Toc119530097
file:///C:/Users/Black/Downloads/Abdulrahman_Thesis%2017112022.docx%23_Toc119530098
file:///C:/Users/Black/Downloads/Abdulrahman_Thesis%2017112022.docx%23_Toc119530099

xv

Figure 3.24 The Configuration of System ID Core in Platform Designer 77

Figure 3.25 Avalon Memory Mapped Controller IP 78

Figure 3.26 Address Span Extender IP 79

Figure 3.27 Top View of Pin Assignment 80

Figure 3.28 Synthesis Report of the Design 81

Figure 3.29 Nios II Software Development Flow 82

Figure 3.30 The Entire FPGA Development Flow 83

Figure 3.31 SWQS Application Memory Layout 84

Figure 3.32 FPGA Components Base Addresses 85

Figure 3.33 U-Boot Development Flow 87

Figure 3.34 Nios II Core Connections 87

Figure 4.1 The Result of the System Compilation 90

Figure 4.2 System Setup Components 90

Figure 4.3 Design Block Diagram 91

Figure 4.4 Core 1 pH Data Collection and Data Transfer Test Block

Diagram 93

Figure 4.5 Readings of pH Sensor 93

Figure 4.6 The Block Diagram of Core 2 TDS Data Collection and Data

Transfer Test 94

Figure 4.7 Readings of TDS Sensor 94

Figure 4.8 The Block Diagram of Core 3 Turbidity Data Collection and

Data Transfer Test 95

Figure 4.9 Readings of Turbidity Sensor 95

Figure 4.10 Line Graph of pH Values of Pure Water, Lemon Juice, and Milk 96

Figure 4.11 Testing the pH Sensor 96

Figure 4.12 Line graph of TDS Values of Pure Water and Water with Salt 97

Figure 4.13 Testing of the TDS Sensor 97

Figure 4.14 Line graph of Turbidity Values of Pure Water, Water with Little

Dust, and Water with More Dust 98

Figure 4.15 Testing the Turbidity Sensor 98

Figure 4.16 SWQS Results on Linux-Based Application 99

Figure 4.17 SWQS Proposed Single Design Core 101

1

Chapter One: IntroductioIntroduction

CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW

Water quality is an important factor that needs to be considered as it is directly related

to people’s lives. Therefore, this research focuses on designing a Smart Water Quality

System (SWQS) Field Programmable Gate Array (FPGA)-based to eliminate the

problems and drawbacks of previous works. This chapter illustrates the work by giving

a brief background and defining the research problem. The chapter then presents the

research motivation. Finally, it emphasizes the research scope.

Section 1.3 defines the research problem statement. Then, in Sections 1.4 and

1.5, the research objectives and research scope are presented, respectively. In addition,

an outline of the main structure of the thesis is briefly reported in Section 1.6. Finally,

Section 1.7 summarizes Chapter 1.

1.2 RESEARCH BACKGROUND

One of the major causes of death is consuming contaminated or polluted water.

According to the World Health Organization (WHO), in 2017, 2.2 billion people were

drinking water without any safety management services, and 144 million collected

water from untreated water bodies, such as lakes, streams, and rivers (“2.1 Billion

People Lack Safe Drinking Water at Home, More than Twice as Many Lack Safe

Sanitation,” 2017). To reduce the death rate due to contaminated and polluted water,

measuring water quality, especially for consumption, becomes important. Water quality

indicators can mean differently. It shows the suitability of any water body used for

different uses, such as drinking, cooking, and cleaning. Water usage has different

chemical, biological, and physical acceptance levels. For instance, drinking water has

specified water quality parameters, such as pH levels ranging from 6.5 to 8.5. As many

parameters need to be measured, thus, several sensors must be employed for the water

quality test. To this date, the water safety management services that utilize a system that

2

support large computational loads need a huge amount of power, not portable, and big

devices, making it impossible to be commercialized.

Hence, it is pertinent to establish a new smart system considering the latest

technological advancement that can carry out the huge computational load at lower

power but with high performance. Therefore, this research proposes a water quality

system that utilizes the FPGA platform and the Adcanced RISC Machine (ARM)

processor.

1.2.1 Field Programmable Gate Array (FPGA)

FPGA is a reconfigurable computing device with several programmable units that could

solve any computational issues (Giesemann, Paya-Vaya, Blume, Limmer, & Ritter,

2014). This device is an integrated circuit made of semiconductor material, and the main

feature of FPGA is the device’s electrical functionality can be reconfigured even by the

customer. As a result, these powerful devices can be customized to accelerate key

workloads and enable design engineers to adapt to emerging standards or changing

requirements.

Figure 1.1 illustrates the common design flow for an FPGA platform, beginning

with hardware design specifications. The hardware design specifications consist of the

needed hardware design’s functionality, memory size, the number of input/output ports,

speed, and finally, how the data transfers. The next step is the architecture design, in

which the hardware design can be further split into system and sub-system modules,

i.e., the micro-architecture level design (Gerstlauer et al., 2009).

3

Figure 1.1 Hardware Design Flow of FPGA (Intel, 2020)

Once the architecture and the micro-architecture level of the needed hardware

design are completed, the Register Transfer Level (RTL) will begin. At this level,

Hardware Description Language (HDL) will be used to translate the system and sub-

system blocks into a Hardware netlist (“AN 311: Standard Cell ASIC to FPGA Design

Methodology and Guidelines,” 2009). Synthesis and implementation processes will

begin when the digital module design is done. These two steps will translate the HDL

design into a physical netlist prepared for timing analysis. Timing analysis is the process

of ensuring the hardware design is working from a time perspective. In other words, it

will check whether the design is the speed requirements of the system or not (Gerstlauer

et al., 2009). In the end, the hardware design will be executed on an FPGA board.

1.2.2 Heterogeneous System Architecture (HSA)

A Heterogeneous System Architecture (HSA) is a computer platform that functions

with associated software that makes different kinds of processors with different

architectures work in shared memory efficiently and cooperatively from a single source

program (Kyriazis, 2012). Integrating multiple computing elements at low frequencies

leads to high performance with low power consumption; architectural heterogeneity

improves platform flexibility (Burgio et al., 2016). This heterogeneous platform, such

as FPGA-System-on-Chip (SoC), improves the performance of embedded using

4

hardware containing more than one type of processor. This approach has shown

improved performance, particularly in artificial intelligence (AI), in which

computationally demanding models must be trained and executed.

SWQS utilizes different sensors to measure water parameters such as pH,

turbidity, and Total Dissolved Solids (TDS) and then processes the data on FPGA-SoC.

The proposed design methodology reduces the complexity of the FPGA-SoC

heterogeneous platform by adding a middleware layer for software developers to

interact with the FPGA system in the form of an application program interface.

Therefore, heterogeneous architecture is the best choice for complex systems with

multiple input and output ports to enhance the overall system performance.

1.3 PROBLEM STATEMENT

Currently, in Malaysia, water quality monitoring is done by traditional methods,

consisting of taking samples from the area under test and then driving them back to a

laboratory to analyze them. The analysis usually is for detecting chemicals and

microbial that cause the water’s pollution. This method is not only time-consuming but

requires significant human interaction. As a result, important data may be lost because

of the manual collection process. In addition, the water quality analysis is not done

within a short time, so determining a real-time water condition is not plausible. This

traditional method is only good if the samples are taken and analyzed simultaneously

(Geetha & Gouthami, 2016). Moreover, the water might get contaminated, making it

very difficult and costly to recover (Billah, Yusof, Kadir, Ali, & Ahmad, 2019).

Moreover, the technicians cannot take samples from all locations, which may lead to

inaccurate data (Lezzar, Benmerzoug, & Kitouni, 2020). Besides the issues arising from

the manual sample collection, the chemical materials used in water quality testing are

usually toxic and very expensive (Khatri, Gupta, & Gupta, 2020).

Even though the research on water quality monitoring systems have been applied

many times, the current system is still expensive, has short-distance data transmission,

and is not easy to use (Geetha & Gouthami, 2016). Most current SWQS is costly (Pasika

& Gandla, 2020), and there should be a big effort by researchers to reduce the cost to

make the system more affordable for everyone. Performance is also an important issue

5

that needs to be considered. SWQS must have high performance and accuracy to reduce

errors that might cause poor health conditions and death for the people who consumed

the water if the measurements are incorrect.

While FPGA has high processing power, developing an FPGA can be complex

and requires more effort than configuring the same design on the Central Processing

Unit (CPU) (Besta, Stanojevic, Licht, Ben-Nun, & Hoefler, 2019). In addition, it

provides less specialized components (i.e., floating point) operations. It is for this reason

that FPGA remains to be a prototype platform for embedded systems. That said, the use

of heterogeneous platforms mesh with FPGA has recently gained popularity for design

applications that need performance and programmability offered via a processor and

flexibility and configurability accomplished using the FPGA fabric (Zhong, Niar,

Prakash, & Mitra, 2016). The SoC heterogeneous platforms improve the performance

of embedded systems using a hardware design that contains more than one processor.

In addition, when comparing FPGA with other processors such as Arduino and

Raspberry Pi, in terms of configurability and implementation, FPGA is reconfigurable

based on the user’s requirements. However, Arduino and Raspberry Pi are configured

and implemented during manufacturing. Additionally, FPGA can process the data in

parallel to overcome the latency issue when many inputs are used. On the other hand,

there is no way to perform pipelines using processors such as Arduino and Raspberry

Pi. In addition, the processing rate of the SWQ data using an FPGA processor is high

as its frequency reaches 1 GHz. However, the frequency is slightly lower in other

processors, for instance, 16 MHz and 400 MHz for Arduino and Raspberry Pi,

respectively. Last but not least, the pins of FPGA are 40 pins that are not hardcoded as

their interface can be modified based on the sensor’s data exchange protocol, unlike the

pins of Arduino and Raspberry Pi, which are hardcoded during the manufacturing

process. Moreover, FPGA-SoC is a heterogeneous platform that can work with shared

memory for more cooperativity and efficiency. In addition, a heterogeneous platform

such as FPGA-SoC improves the performance of embedded using more than one

processor.

6

For these reasons, the main objective of this project is to design SWQS using an

FPGA-SoC platform to monitor different water parameters, namely; pH, TDS, and

turbidity parameters, rather than relying on the conventional way of measuring water

quality parameters.

1.4 RESEARCH OBJECTIVES

The main objectives of the project are as below:

i. To design a reconfigurable hardware-based Smart Water Quality System

(SWQS) via using a Field Programmable Gate Array-System-on-Chip

(FPGA-SoC) heterogeneous platform.

ii. To implement a real-time prototype for the proposed Smart Water Quality

System (SWQS).

iii. To evaluate the proposed Smart Water Quality System (SWQS) based on

pH, Total Dissolved Solids (TDS), and turbidity parameters.

1.5 RESEARCH SCOPE

The scope of this research mainly concentrates only on the hardware design of SWQS

by utilizing the heterogeneous platform of FPGA-SoC to process signals obtained from

water quality sensors. The system design integrates FPGA with the SoC to create a

customizable heterogeneous platform that segments the system functionality into tasks.

The proposed design in this study will utilize two development kits, the DE10 Nano

FPGA-SoC development kit from Intel and the Raspberry Pi development board. The

utilized boards will not impact the proposed system design since the design flow is the

same for any FPGA development board. The system has two SoC sub-systems: an

external one (Raspberry Pi) and an internal one (ARM SoC). The external sub-system

will provide the system with all the required augments to ease prototype

implementation, like LCD, mouse, and keyboard. The internal SoC will be part of the

SWQS as the main system processor.

7

In addition, testing the proposed system will only be based on three water quality

parameters to verify and validate the functionality and reliability of the proposed FPGA-

SoC platforms. The utilized sensors in this design will be the pH, TDS, and turbidity

sensors. These sensors were used as a proof-of-concept to validate the system’s

functionality. However, other sensors related to SWQS can be adapted to any future

system based on the user’s requirements.

1.6 DISSERTATION LAYOUT

This dissertation is composed of five chapters; a brief introduction and overview of the

research are provided in Chapter 1. In Chapter 2, an in-depth investigation was

conducted about the previous studies in the SWQS development field. Chapter 3

elaborates on the proposed system, and the design steps needed to develop an SWQS

hardware design based on a heterogeneous platform are presented as well as presenting

the flow of software to program the system. Furthermore, the proposed system test

results and the collected data, were discussed in Chapter 4. Finally, in Chapter 5, the

summary of the research findings, contribution, claims, and comparative analysis was

reported.

1.7 SUMMARY

This chapter presented a detailed overview of the research topic, known as SWQS. First,

the problem statement of this study was illustrated. Then, the research objectives are

presented in this chapter. Furthermore, the scope was explained. Finally, the thesis

layout and the relation between each chapter were discussed.

8

CHAPTER TWO

LITERATURE REVIEW

2.1 OVERVIEW

This chapter describes the academic literature correlated with Smart Water Quality

System (SWQS) hardware implementation. The main objective of this chapter is to find

out and elaborate on the latest research achievements in the field of SWQS design and

development. In addition, this chapter highlighted the drawbacks and problems

encountered by researchers in their designs, as well as obstacles in providing suitable

SWQS solutions.

In Section 2.2, a brief overview of water quality approaches is presented. Then,

Section 2.3 explains some sensors that measure water quality parameters such as pH,

temperature, turbidity, electrical conductivity (EC), and dissolved oxygen (DO). In

Section 2.4, previous studies have been presented based on the controller or the

processor. They have been used to collect data on water quality parameters and

summarize the related studies' motivations and drawbacks. Section 2.5, on the other

hand, shows the proposed SWQS FGPA-based followed by Section 2.6. It presents

general information about FPGA in terms of architecture, such as memory, speed,

interfaces, etc., and software tools, such as Quartus, Platform Designer, etc. Finally,

Section 2.7 summarizes this chapter.

2.2 DIFFERENT WATER QUALITY APPROACHES

There are two ways of measuring water quality. The first is the traditional method

involving samples from the river, lake, or any water source, while the second uses

sensors to measure water quality. In the following subsections, both conventional and

Internet of Things (IoT) methods will be discussed in detail.

9

2.2.1 Conventional Approach

The traditional way of measuring water quality parameters, such as the water pH,

turbidity, DO, and EC, starts with several samples for testing. Note that sampling selects

a small portion of the water to be handled and transported to the laboratory (Ngom,

Diallo, Gueye, & Marilleau, 2019). After transporting the samples to the laboratory,

specific materials or solutions must be added to measure a specific parameter. For

example, to measure the level of phosphorus, one of the crucial water parameters,

samples must be transferred to the lab as soon as possible to minimize any external

effects that might change the measurement of the total phosphorus. Potassium per-

sulfate should be mixed with the water sample before heating it for 30 minutes. After

the heating process, the mixture must be cooled to room temperature. Before measuring

the total phosphorus, sodium hydroxide is added and mixed with the sample gently. The

last step is to measure the total phosphorus using a spectrophotometer device 7 minutes

after mixing. Sometimes, the process can take more than five working days (Li, Jaafar,

& Ramli, 2018).

Besides the elaborated identification process, the sampling process is not easy

as the samples must be taken from the specified location and involve a highly complex

process. Additionally, water samples should be transferred to the laboratory and tested

as soon as possible to avoid water pollution. Moreover, this method is time-consuming

and costly, requiring equipment cleaning, measuring procedures, and recording.

Finally, due to human interaction, many errors might occur during the process, and that

will affect the accuracy of the reading.

To conclude, this method is inefficient, and more research should be conducted

to develop alternative methods to avoid the challenges mentioned above. Figure 2.1

shows an example of measuring water quality using the traditional method.

10

Figure 2.1 Conventional-Based Water Quality Monitoring Example

(Tucsonaz, 2015)

2.2.2 Internet of Things (IoT) Approach

With the advancement in technology, many alternative methods have been designed

and developed to measure water quality parameters incorporating the IoT and machine

learning to solve the problems of water quality assessment (Geetha & Gouthami, 2016).

The IoT involves using a smart sensor connected to a processor to process the data for

monitoring. It can also be connected to a communication tool such as Wi-Fi, LoRa, and

Bluetooth to send the data remotely to the main station for real-time monitoring. This

way, data can be sent from over a few meters to thousands of meters away, depending

on the communication tool’s capacity.

This method costs less money when compared to the conventional method, as

the sensors and controller are comparatively cheap. More importantly, it provides real-

time measurement and monitoring to help the user detects any changes immediately.

That said, SWQS needs more exploration since the sensors are expensive with

good quality or cheap with bad quality. Furthermore, the sensors need regular

maintenance to avoid damage, as the sensors can be poorly affected by the materials in

the liquid. In addition, some communication tools can be expensive, and some can only

send data at a lower range, making them unsuitable for big water sources. Figure 2.2

shows an example of measuring water quality using the IoT method.

11

Figure 2.2 IoT-Based Water Quality Monitoring Example Using Arduino

(Pinterest, 2017)

2.3 SENSORS USED IN MONITORING WATER QUALITY PARAMETERS

Sensors convert the physical parameter into equivalent measurable electrical quantity,

which is given as input to controllers through an optional wireless communication

device and parameters.

2.3.1 pH Sensor

The pH represents the number of hydrogen ions in the water. It can be calculated using

the negative base of 10 logarithms of the hydrogen ions per liter (Sensorland, 2019).

For most water sources, the pH value should be from 6 to 9; if it is more or less, most

sea creatures, such as mussels and clams, would be affected negatively (Kraxner, 2015).

pH probe, as shown in Figure 2.3, contains inner and outer tubes. The outer tube

contains a Potassium Chloride (KCl) solution, which considers the controller, while the

inner tube has a buffer solution with pH 7. The bottom of the inner tube is usually made

of a glass overlay that allows the hydrogen ions to move between the probe and test

solution. The inner and outer tubes have a silver wire covered with silver chloride

connected to the sensor amplifier circuit. Once the probe is placed in the water, the glass

membrane will allow the hydrogen ions to go through it and replace the wire’s ions

which will allow current to flow, causing EC. Figure 2.3 shows the configuration of the

pH probe. The voltage values will vary according to pH value; for example, 0 to 0.4 V

is equivalent to pH 7 to pH 0, and so on. The pH value will then be obtained when the

microprocessor processes the value. If the water or the solution pH is less than 7, this

12

means a high concentration of hydrogen ions, implying it is an acidic solution. Once the

pH value reaches more than 7, the solution is a base. As the pH values might be minimal

and unreadable, an amplifier circuit must be added to obtain clear pH values (“PH

Meter,” 2022).

Figure 2.3 Configuration of pH Probe (Aaruththiran, Yujia, & Bagherian, 2019)

2.3.2 Temperature Sensor

The temperature sensor is made of a probe and built-in Integrated Circuit (IC)

containing a register and alarm that will show a warning when the temperature is high

or not in the range. A pull-up resistor is used so the microcontroller will reduce the

resistance when the sensor sends the data. This sensor can function without additional

power as it has a capacitor that stores energy from high signals. However, an external

power source is needed to prevent any outbreak of the sensor. The temperature sensor

is essential as it affects the conductivity and turbidity as the ions move in the water

when the temperature is high (Thermometer, 2019). Figure 2.4 shows the configuration

of the temperature probe.

13

Figure 2.4 Configuration of Temperature Probe (Dhaker, 2020)

2.3.3 Turbidity Sensor

Turbidity is the measuring of water clarity and cloudiness. It indicates whether the water

has suspended particles or not. It is an important factor that should be measured in most

water treatment and supply stations as it might cause harm to aquatic life, not to mention

human health.

The concept of a turbidity sensor is a light-transmitting and scattering rate that

relies on the total amount of particles in the water. If the light is sent to the water and

scattered, the water has many particles that cause the light to scatter. On the other hand,

if the phototransistor receives the light, then the water is clear. A phototransistor is

connected to a resistor; when the voltage is high, the water is clear of particles

(“Gravity: Analog Turbidity Sensor For Arduino,” n.d.). Figure 2.5 shows a turbidity

sensor.

14

Figure 2.5 Turbidity Sensor

2.3.4 Conductivity Sensor

The ability of water to allow current through it is known as EC. Current relies on the

number of electrons that conduct electricity. The parameters that can affect the

conductivity are the solution temperature and ions concentration, as well as the EC

parameter, which can affect other parameters such as DO (Acmasindia, 2019). In the

conductivity sensor, two electrodes are placed against each other. Once a current is

applied to the outer pair, the inner pair potential can be measured. As a result, the current

will switch charge electrodes, finally leading the ions to pull the oppositely charged

electrodes. As a result, the electrode will carry many charges proportional to the water

conductivity (“EC/TDS/PPM Meter On Limited Budget,” 2008). An EC sensor is used

in various applications such as cooling tower water treatment, boiler water treatment

and reverse osmosis monitoring. The sensor selection is based on the required

application to ensure lifetime and accuracy. It is measured in “mS” (milliSiemens) or

“μS” (microSiemens) per centimeter (“Gravity: Analog Turbidity Sensor For Arduino,”

n.d.). Depreciating or appreciating water conductivity may indicate that the water is

polluted, as some materials might increase conductivity, such as chloride, nitrite, and

phosphate ions (O’Donnell, 2017). Not to mention, the conductivity can be

proportionally increased when the temperature is high. However, the conductivity

sensor suffers from some practical drawbacks. For example, the user cannot determine

what ions are dissolved in the water, and the sensor should be cleaned properly before

using it again in another solution. Figure 2.6 shows an EC sensor.

15

Figure 2.6 Electrical Conductivity Sensor

2.3.5 Dissolved Oxygen Sensor

DO is an instrumental water parameter that is measured in mg/l. Electrolysis and optics

are the methods that are used to measure DO. However, the optic method is better in

terms of accuracy and time. The DO sensor consists of a photodetector, two blue and

red LEDs, and a luminescent dye between the LEDs, as shown below in Figure 2.7.

Once the blue light reaches the dye, the electrons will get energy and let the light emit

until it becomes stable. On the other hand, the photodetector will receive the light and

destroy it if the solution contains oxygen because there is an interaction between the

dye and the oxygen.

Figure 2.7 Dissolved Oxygen Optical Sensor (Staff, 2020)

16

2.3.6 Total Dissolved Solids (TDS) Sensor

It is a smart sensor that measures the total dissolved materials in a liquid such as water.

The Total Dissolved Solids (TDS) sensor measures the solution conductivity as solids

that are ionized in liquid-like minerals and salt raise the conductivity of the liquids.

Therefore, the TDS sensor mainly measures conductivity; the TDS value could be

estimated from these readings. The unit that measured the values is Parts Per Million

(PPM). In addition, the sensor’s cost starts at $10 only, but with limited features. For

instance, a basic one can measure only the TDS of a liquid. However, expensive one

can measure the temperature, salinity, and even more.

It is essential to measure the TDS value, as it indicates that the water has many

dissolved solids when the value is high. As time pass, these materials might cause

damage and decrease the devices’ and water pipelines’ lifetime. Therefore, it is

important to find a way to solve this issue, like using a water filter (Aquasana, 2022).

Figure 2.8 presents an example of a TDS sensor.

Figure 2.8 Total Dissolved Solids Sensor

2.3.7 Free Chlorine Sensor

Free chlorine is one of the most important water quality parameters that need to be

measured to ensure water quality. Free chlorine is known as Residual Chlorine (RC). It

shows the indication for the water potability level. It measures the amount of RC, which

17

exists in the liquid as dissolved gas, such as Chlorine (Cl2) and hypochlorite ion (ClO−),

which might measure hypochlorous acid (HOCl) as well. Free chlorine sensor could be

utilized to measure the total amount of three materials Cl2, OCl−, and HOCl. Note that

Mg/L is the unit that is used to measure the free Cl2 parameter.

Cl2 is commonly used to disinfect and clean the contaminated water source. Free

Cl2 in the water can be tested using a different kit, such as digital colorimeters or color-

wheel test kits. The sensor read indicates that the water containing free Cl2 is free of

contamination. Figure 2.9 shows an example of a free Cl2 sensor (Karak, Bhagat, &

Bhattacharyya, 2012).

Figure 2.9 Free Chlorine Sensor (Karak et al., 2012).

2.3.8 Water Level Sensor

The water level is an essential parameter that needs to be measured in real-time so fast

action can be taken before something happens. A water quality sensor is a device that

is utilized to measure the low and high levels of water in a calm situation. The water

level sensor is a contact sensor that is used to convert the water level, which is an analog

read, into an electrical signal that a microcontroller can process. Different kinds of

sensors could be used to measure the water level, such as optical water level sensor,

magnetic flap level, hydrostatic level transmitter, ultrasonic sensor, etc.

The water level can be measured by placing the sensor into the liquid at the

surface, and then the pressure of the liquid will be converted into the height of the liquid

using the following equation:

18

 𝑃 = ρ. g. H + Po, (2.1)

where P is the pressure of water measured at the surface, ρ is a fixed value which

is the density of the water, g is the gravity, Po is the pressure of the atmosphere at the

surface of the liquid, and finally, H is the depth where the sensor was placed. Figure

2.10 shows the ultrasonic sensor, one of the sensors that can be used to measure the

water level (“Ultrasonic Level Sensor,” 2022).

Figure 2.10 Ultrasonic Level Sensor for Liquids

2.4 RELATED RESEARCH

2.4.1 Arduino as a Processing Platform

Arduino is an electronic device that utilizes an open-source platform based on easy-to-

use hardware and software. Arduino microcontroller could be used to process data from

different sensors and devices by sending a set of programming codes to the board.

Arduino Software (IDE) is an easy-to-use software that the programmer can use to

control the Arduino board. The board has sixteen digital pins and six analog pins, all

hard-coded. In addition, Arduino has a built-in clock frequency that reaches up to 16

MHz. Arduino board has been used in many water quality systems with different

sensors. The below graphs conclude some of the studies that have used Arduino to

design water quality systems (“What Is Arduino?,” 2018).

19

In (Ngom et al., 2019), the author presents a water quality monitoring system

that uses the LoRa transmission system to send the data to be visible on a website. The

system used an Arduino Mega 2560 microcontroller to get and process the sensors’

data. Water quality was monitored using four sensors: pH sensor, oxidation/reduction

potential (ORP) sensor, EC sensor, and water temperature sensor. Moreover, the

Arduino microcontroller was used because it was easy to handle due to the hardware

and software flexibility. In addition, the LoRa transmission system transmits the signals

using industrial, scientific, and medical (ISM) bands. Therefore, there is no need to pay

for the local telecommunication operator. The prototype is a low-power consumption

system as all sensors may operate using 5 V, and it is recharged using a solar panel.

However, this system did not measure other important water parameters such as water

level, turbidity, etc. In addition, the LoRa transmission system is the low range,

transmitting data within 2 km to 3 km at a high price because it needs a gateway for

transmission. The complexity and cost are the main problems in water quality

monitoring systems. Figure 2.11 shows the overall water quality monitoring system.

Figure 2.11 Overall Water Quality Monitoring System (Ngom et al., 2019)

Moreover, (Li et al., 2018) have designed a wireless water quality system to

measure water quality parameters, send it through Wireless Sensor Network (WSN)

technology, and finally display the obtained data on a website platform. Arduino Uno

microprocessor is used to process the obtained data from the smart sensors and direct

the data into the transmission unit to transmit the data. The pH sensor, temperature

sensor, and TDS sensor are connected to the processor. TDS is a water quality parameter

20

used to show the inorganic salts and small amounts of organic matter present in solution

in water. The obtained data is transferred to the IoT platform through a Wi-Fi shield.

Then, the data will be stored and displayed on the screen using ThingSpeaker software,

providing immediate visualization of data simultaneously to ensure that the

transmission is done successfully without any loss. A Wi-Fi shield is used as it can

transmit a high amount of data, and the transmission rate of a Wi-Fi shield is high

compared to other communication mediums. The pH sensors used in this project can

function in temperatures between 0 to 60℃ without damage within the same range of

temperature needed. In addition, this sensor is used to measure the pH value without

delay. Furthermore, the TDS sensor has very high accuracy and is waterproof to be used

in water. On the other hand, the above system requires calibration before collecting the

data. Therefore, data transmission might delay or even lost with a poor Wi-Fi

connection. Figure 2.12 presents the prototype of a water quality monitoring system.

Figure 2.12 Prototype of Water Quality Monitoring System (Li et al., 2018)

Additionally, (Chowdury et al., 2019) have developed SWQS to measure the

quality of the water remotely. Conductivity, pH, temperature, and turbidity are the

parameters that were measured in this project, as seen in Figure 2.13. Arduino Mega

2560 was used to be the processing unit for the data obtained from the sensors because

it has several ports, which make it suitable for many sensors to be connected and then

display the results on LCD to monitor the data in real-time. The obtained data is just a

number; the user might not understand it, which is why a classification method was

21

required to classify the data of each sensor into good or bad along with the real-time

numbers. Thus, big data analytics was integrated with IoT because of its high speed,

reliability, and scalability. IoT application was utilized to help the user get the

visualized data on a mobile, laptop, and Personal Computer (PC), easing the

visualization. Users can get daily/monthly/ even yearly reports as the system has a data

management layer to provide the client with the reports. The designer had utilized an

Arduino board limited to the interfaces, such as Inter-Integrated Circuit (I2C) and Serial

Peripheral Interface (SPI), even Arduino Mega has many pins, but still, the interfaces

cannot be changed as it is hard-coded and cannot be reconfigured.

Figure 2.13 Overall Water Quality Scheme (Chowdury et al., 2019)

Moreover, (Lezzar et al., 2020) have designed and developed an IoT system that

measures specific water quality parameters to achieve high accuracy. The system has

five sensors to measure parameters that indicate if the water is contaminated with pH,

temperature, turbidity, ORP, and Cl2. ORP is an essential environmental water

parameter that reflects the clearness of the liquid and could remove the pollutants in

ponds. Meanwhile, the Cl2 sensor measures the Cl2 concentration in the water, which

needs to be kept at a low level to keep drinking water healthy. The Arduino

ATmega1281 microcontroller is the main processing unit to which all sensors are

connected. The system solves the problem of the power supplies as it is attached to solar

cells to recharge the batteries. All obtained data was sent to the user and stakeholders

using the Message Queuing Telemetry Transport (MQTT) protocol via the SIM800c

22

module to achieve quick data transfer. The system can monitor the water quality in a

fixed tank or mobile water source. Moreover, it can localize where the water is

contaminated exactly. Thus, a decision can be made accordingly. The designed system

consists of a cloud infrastructure to get the parameters remotely. It is a lifespan system

that was designed to avoid short-term maintenance. SIM800c module is a GSM/GPRS

solution that supports different frequency bands instead of Wi-Fi because Wi-Fi is

unavailable everywhere. Figure 2.14 presents the overall system architecture.

Figure 2.14 Overall System Architecture (Lezzar et al., 2020)

Additionally, (Saravanan, Anusuya, Kumar, & Son, 2018) have proposed a

Supervisory Control and Data Acquisition (SCADA) system that cooperates with IoT

for real-time water quality monitoring in India. Several sensors measure physical and

chemical water parameters such as water temperature, flow, pressure, pH, and color. A

color sensor is utilized to discover whether the water is contaminated. When the water

is mixed with dust, it will be shown in the RGB value within the range of 0 - 255. GPRS

module was connected to Arduino ATmega 368 microcontroller to connect the latter

with the internet. The water contamination status was sent to the server through a

personal computer or mobile device to be displayed on the website. The data obtained

from the sensors were viewed on the web platform, and there was an LCD for viewing

data on-site.

Moreover, after the data was obtained from each sensor, it was compared with

the threshold values to inform authorized users via SMS of any abnormal sensing to

23

take action needed as fast as possible. SCADA system was used to get the sensor

reading from different stations for real-time monitoring. In addition, the primary

advantage of the SCADA system is the report generation available to the operator in

each station. The system is designed to make the operation easier, reduce size, weight,

and cost, and improve sensitivity. Using the General Packet Radio Services (GPRS)

module has many advantages, such as high-speed communication between a mobile

device and the main network. Arduino microprocessor is used instead of a

Programmable Logic Controller (PLC) controller to accelerate the SCADA system

speed. Furthermore, the most exciting systems were standalone devices that were not

connected to any IoT platform, while this system utilized IoT to avoid taking the results

on-site. However, the proposed SCADA system cannot be implemented in areas not

covered by Wi-Fi; hence, the GPRS module constantly needs Wi-Fi. Figure 2.15 shows

hardware implementation for water quality monitoring devices in the pipeline.

 Figure 2.15 Hardware Implementation for Water Quality Monitoring Device in

Pipeline (Saravanan et al., 2018)

An IoT system was designed by (Mukta, Islam, Barman, Reza, & Khan, 2019)

to measure four different parameters: pH, conductivity, temperature, and turbidity.

Arduino Uno is used as a microcontroller to process the data obtained from the sensors.

The Arduino microcontroller is connected to a desktop directly, so the obtained data

can be displayed on it. An application was developed in the .NET platform to check the

obtained data with the World Health Organization (WHO). The sixty-water sample was

taken from three sources: drinkable, unclear, and natural. Fast forest binary classifiers

are machine learning algorithms for training and testing the module, which has been

used to classify whether the test water sample is drinkable or not. In the end, it was

24

concluded that the fast forest algorithm is the best in terms of accuracy, and the F1

score, which measures the model's accuracy, was used for the overall system

performance. In addition, the system is not real-time based, meaning samples need to

be collected, which is time-consuming. Apart from that, some water features might be

affected when transferring it. Additionally, Figure 2.16 illustrates the experimental

setup of the SQWM system.

Figure 2.16 Experimental Setup of SQWM System (Mukta, Islam, Barman, Reza, &

Khan, 2019)

Furthermore, (Pujar, Kenchannavar, Kulkarni, & Kulkarni, 2020) have

developed a real-time water quality system to monitor six water parameters like pH,

EC, nitrate, Biochemical Oxygen Demand (BOD), Total Dissolved Oxygen (TDO), and

temperature. The sensors are connected to Arduino Mega 2560 controller to process the

sensors’ data, as shown in Figure 2.17. A total of thirty-six (36) samples were randomly

collected from six different stations. Note that the samples were taken in different

seasons throughout the year to check whether the weather impacts water quality or not.

After data obtaining, it was sent through the ESP8266 Wi-Fi shield to the main station

for monitoring. One-way and two-way Analysis of Variance (ANOVA) analysis tools

were used to evaluate the system, and it has been found that one-way ANOVA is the

most suitable tool for training data, such as an IoT system. Furthermore, this research

found that different seasons have different results. In other words, temperature, DO,

conductivity, BOD, and nitrate parameters were impacted in the winter.

25

Figure 2.17 Circuit and Block Diagram of IoT System (Pujar et al., 2020)

(Encinas, Ruiz, Cortez, & Espinoza, 2017) proposed a real-time water quality

system to monitor three water quality parameters, namely pH, temperature, and DO.

Arduino microcontroller was implemented for processing the data into Zigbee wireless

communication tool for transmitting the data obtained from the sensor remotely to the

main station. An application was developed using the C# programming language, in

which its database was designed using the MySQL platform. While the readings were

obtained from the sensor, it was directly sent to the database for local storing and sent

to a web server to visualize the data on the application. The overall system costs less

compared to other designs, and it is portable and has low power consumption.

Additionally, the C# programming language was used because it allows giving

a request to the sensors to send their readings through the microcontroller along with a

multiplexer. The Zigbee tool will transmit the data obtained from the sensors to the

computer for display on the application. A multiplexer is a device that is used to raise

the efficiency of the communication system by collecting the data from each sensor and

transmitting via a single line only. However, the system was designed to display data

without alerting the end user if the water condition was bad. Developing an artificial

intelligence (AI) module to alert when the data is not within the standards set in the

database has been recommended. Figure 2.18 presents the system’s general blocks and

data flow.

26

 Figure 2.18 System General Blocks and Data Flow

(Encinas et al., 2017)

2.4.2 Raspberry Pi as Processing Platform

The Raspberry Pi is another low-cost and small-size controller that could function as a

computer along with other peripheral devices, such as a mouse and keyboard. It helps

developer to design any device using Python or Scratch programming languages. Note

that Raspberry Pi has the capability of being connected to other devices, such as sensors.

Since the Raspberry Pi controller has been used in many smart devices to process the

sensors' data, it has an inbuilt Wi-Fi module for remote access. Thus, there is no need

for external equipment. In addition, the Raspberry Pi controller can function on 12 V

only; thus, it can be implemented easily. Many water quality systems have utilized the

Raspberry Pi controller to collect the data from water quality sensors and send it through

different transmission devices for monitoring (“What Is a Raspberry Pi?,” 2015). The

below studies show the main advantages and disadvantages of using Raspberry Pi in

water quality designs.

(Khatri et al., 2020) invented a real-time water quality system in India that

measures water quality parameters using different sensors, such as pH sensor, EC

sensor, ORP sensor, DO sensor, and temperature sensor, as mentioned in Figure 2.19.

ORP is a water quality measurement that indicates if the water is oxidizing or reducing.

ORP parameter should be measured when its value is low, indicating that the water has

less DO. It then leads to an increase in the toxicity of certain materials, which increases

27

water contamination. The obtained data from the sensor was processed using a

Raspberry Pi 3 controller, which collects data, analyzes it, and makes decisions since

the controller is programmed using python. Finally, the system’s performance was

validated by comparing the results with another work using Absolute Percentage

Relative Error (APRE). Raspberry Pi has an inbuilt Wi-Fi module for remote access.

Thus, there is no need for external equipment. In addition, the Raspberry Pi controller

can function on 12 V only; therefore, it can be implemented easily. The system has very

high accuracy in measuring the parameters compared to other work. However, Linux

operating systems must be used when implementing a system using Raspberry Pi, which

is not popular among users. In the future, it has been recommended to implement a

water quality monitoring system using fuzzy logic in the IoT environment and

distribution networks.

Figure 2.19 Block Diagram of Developed (Khatri et al., 2020)

(Niswar et al., 2018) proposed a water quality monitoring system using an IoT

platform to measure water quality for crab farming in Indonesia. The system has three

sensors to measure pH level, temperature, and salinity. The sensors are connected to

Raspberry Pi and Arduino processors for processing the data into the mobile phone

using the MQTT protocol. LoRa wireless communication system is the middle way to

transfer data long distances. The user has designed a web-based application for the

28

mobile phone to remotely monitor water quality using the node-red platform. This open-

source programming tool can be used to communicate with IoT devices. The system

was designed to alert the crab farmer if the farm water quality is not acceptable for all

water parameters. The system is essential for crab farmers to monitor the water quality

parameters as water quality can affect their survival. However, the system can measure

only pH, salinity, and temperature and neglects other parameters such as DO, which

might have a bad impact if it is not within the acceptable level. In addition, the LoRa

system and the sensors are connected to the Arduino microprocessor and Raspberry Pi,

making it complicated. Furthermore, the data was transferred using 3G and 4G

networks, which are not available everywhere, which might delay data transfer or cause

data loss. The author recommended adding this system to the water circulation to reduce

human intervention for improving water quality. In addition, it has been recommended

to reduce the energy consumption for all devices used to design the system. Figure 2.20

shows an IoT-based Monitoring System.

Figure 2.20 IoT-based Monitoring System (Niswar et al., 2018)

A real-time water quality monitoring system has been proposed for aquaculture

farmers to alert them if the water body is polluted (Raju & Varma, 2017). The system

consisted of several sensors to measure different water quality parameters. The water

quality sensor: DO, temperature, carbonates, nitrate, pH, ammonia, and salt, are

connected to a Raspberry Pi 3 controller that contains an inbuilt Wi-Fi module. The

system was powered using a solar panel to reduce power consumption. The system

29

always stores data and alerts the farmers if the water conditions are not in the allowable

range. In addition, a mobile application was designed to allow the user to monitor the

data remotely in real-time so the farmer can view the historically obtained data. Using

solar panels will overcome the problem of electricity breakdown as the farmers face a

lot of power cuts. When the farmer receives a message alerting him of abnormal water

conditions, the message also states how to solve the faced issue. Nevertheless, the

overall system’s initial cost is high compared to other systems. The cost and energy

consumption can be reduced when the system is developed to be automated using an

internet network. The system architecture is shown in Figure 2.21.

 Figure 2.21 System Architecture (Raju & Varma, 2017)

(Vijayakumar & Ramya, 2015) designed a low-cost water quality monitoring

system that used smart sensors to measure five water quality parameters; pH,

conductivity, turbidity, DO, and temperature. These sensors are connected to a

Raspberry Pi B+ controller to process the sensors’ data to the USR-WIFI232-X-V4.4

module that transfers the obtained data to the cloud using a gateway. A mobile

application was provided to view the data obtained from the sensors. Raspberry Pi

controller can be connected to several sensors and interfaces simultaneously, making it

30

suitable for systems with many inputs and outputs. The controller and the used wireless

communication module were the best choice for such a system as it is portable, low

cost, and capable of processing, analyzing, sending, and finally viewing data on a

mobile phone. Thus, it was more efficient compared to other systems. It has been

suggested to measure biological parameters as the system measured only physical

parameters and implement the design in many areas to collect more data about the

condition of the water body. The overall block diagram is presented in Figure 2.22.

Figure 2.22 Overall Block Diagram (Vijayakumar & Ramya, 2015)

2.4.3 TI CC3200 as Processing Platform

The Texas Instrument CC3200 microcontroller is a single chip with an internal Wi-Fi

chip invented for IoT applications. It allows the developer to design a completed

application using only a single chip. It contains software, tools, and sample applications

31

and is easy to program. It has different peripherals, such as I2C, Serial Peripheral

Interface (SPI), Universal Asynchronous Receiver-Transmitter (UART), and Analog-

to-Digital Converter (ADC) channels (“CC3200 Is the Industry’s First Single-Chip

Microcontroller Unit with Built-in Wi-Fi,” 2015). TI CC3200 has been used to design

some water quality to process the data obtained from the sensors.

Additionally, (Geetha & Gouthami, 2016) have designed a cheap system for

water quality monitoring. To check water quality, the design uses five sensors to

measure pH, turbidity, temperature, water level, and EC. The data is collected using a

TI CC3200 controller, a single chip with Wi-Fi built into it for wireless communication

purposes, as presented in Figure 2.23. The controller, as mentioned above, is

programmed to store the data in the cloud using the Ubidots platform to analyze the

data after storing it. Testing WHO’s data is added to the module to compare it to the

obtained data from sensors. In addition, once readings from sensors reach abnormal

values, the user will get an alert that a problem needs to be solved. TI CC3200 controller

is easy to use, and its speed is high compared to other processors with external Wi-Fi

chips (Texas instrument CC3200 Simple Link, 2017). The controller works in four

modes; Hibernate, Sleep, Deep Sleep, and Active. Thus, the consumed power will be

reduced because the controller is not always functioning. However, using a Wi-Fi

module is not a good choice as it consumes high power. Still, its range of

communication is high compared to other communication protocols, not to mention the

need for external hardware chips that are not needed anymore when using a Wi-Fi

module. It has been recommended to improve the system by implementing machine

learning algorithms for detecting abnormal water quality parameter values.

32

Figure 2.23 Overall Block Diagram (Geetha & Gouthami, 2016)

Furthermore, a new system has been developed to monitor the water quality

parameters in real-time to reduce human intervention (Billah et al., 2019). This system

was designed to allow the farmers to monitor their waterways to take the actions needed

when the water parameters are not good. Thus, three sensors were used to measure

temperature, pH, and turbidity. TI CC3200 microcontroller is the main chip used to

process the data from the sensors and send it through the Wi-Fi network. Finally, the

data was displayed on LCD using graphs, charts, etc. Then, data is transmitted using

MQTT to the end-user for monitoring purposes. CC3200 microcontroller has built-in

Wi-Fi. Hence, there is no need for outer Wi-Fi equipment. Furthermore, the MQTT

protocol is used to make the communication between the microprocessor and end-user

easier as it is not complicated. However, the MQTT protocol was low in data rate

transmission, and that caused the system to be slow. On the other hand, some challenges

have been faced during real implementation, such as the turbidity parameters being

unstable most of the time as it is susceptible to the water flowing; this sensor needs

some time to get a more stable reading. Besides, the turbidity sensor can only measure

the quality, not the quantity. Therefore, the user cannot get the turbidity reading like

other sensors. Figure 2.24 presents the overall block diagram.

33

Figure 2.24 Overall Block Diagram (Billah et al., 2019)

2.4.3.1 FPGA as Processing Platform

FPGA is a reconfigurable device that contains many programmable units (Giesemann

et al., 2014). This device is an integrated circuit made of semiconductor material. The

main advantage of FPGA is any user can reconfigure the device’s electrical

functionality as it is not hard-coded. These powerful devices can be customized to

accelerate key workloads and enable design engineers to adapt to emerging standards

or changing requirements. In Section 2.5, we will elaborate more on the architecture of

an FPGA.

In (Myint, Gopal, & Aung, 2017), water quality parameters have been

monitored using IoT technology using five smart sensors to measure water quality

parameters; pH, water level, turbidity, temperature, and carbon dioxide (CO2). They

were measured on the water’s surface, as illustrated in Figure 2.25. A Very High-Speed

Integrated Circuit Hardware Description Language (VHDL) and C language using the

Quartus II tool were used to program the FPGA controller. It is the core system used to

collect the data obtained from the sensor and process it to a personal computer. The

Zigbee-based wireless communication system was applied to transfer the data remotely

from the water location into the main station, where the user can see the water

parameters in real-time. The carbon dioxide sensor was SEN0219, which is the best

choice for detecting the CO2 level due to its high stability and sensitivity. The power

34

consumption is very low, and finally, it is waterproof and does not cause any poisoning.

In addition, the Zigbee communication tool is easy to use, install and upgrade. Selecting

Nios II was to get the best performance of the processing unit. Moreover, the designed

system decreased water quality measurement costs and time consumption. In addition,

the work did not maximize the potential of an FPGA by utilizing only one softcore

(Nios II) processor. This increases the time to collect the data as it will collect in series

instead of parallel. However, the author suggested increasing the number of nodes to

cover more areas and measure the water quality for a wide area.

Figure 2.25 The Block Diagram of Smart Water Quality Monitoring System

(Myint et al., 2017)

2.4.4 Other Processing Platforms

Besides the above-mentioned platforms, such as Arduino, Raspberry Pi, TI CC3200,

and FPGA, there are some works published during the last few years utilizing other

microcontrollers. The below studies will mention some of these studies.

(Birje, Bedkyale, Alwe, & Adiwarekar, 2016) developed a new system to

monitor two parameters that show if the water is safe for the life of aquatic or not. Note

that pH sensors, pH meter, and turbidity sensors were used to measure the mentioned

parameters in the water. The sensors were connected to Analog-to-Digital Converter

35

(ADC) to convert the analog readings of the sensors, as the Peripheral Interface

Controller (PIC) microcontroller cannot process analog signals. Finally, the PIC

microcontroller was connected directly to the LCD to display the data obtained from

the sensors. The system is cost-effective, portable, and easy to set up by the user. The

pH meter is a commercially available voltmeter, but it is not suitable because it has very

high resistance, so it cannot be used to measure the voltage of the pH electrode. Thus,

it is necessary to design a pH meter to overcome the problem mentioned above. PIC

microcontroller has the advantage of using software control for self-reprogramming

along with a power-saving mode, making it suitable for such a system. However, the

system is not real-time monitor the water quality parameters. Plus, it has many hardware

modules, such as resistors, capacitors, amplifiers, LEDs, photodiodes, and voltage

regulator IC, making it impossible to redesign it again. LCD is not a good choice for

monitoring water quality parameters due to its limited size and display. Thus, it is

essential to monitor the water quality parameters using a mobile application or a

website. The author suggested using the Gobal System for Mobile communication

(GSM) module to view the data remotely on smartphones. Figure 2.26 shows the block

diagram of the system.

Figure 2.26 Block Diagram of Proposed System (Birje et al., 2016)

36

(Cloete, Malekian, & Nair, 2016), proposed a low-cost sensor to measure water

quality parameters; temperature, pH, ORP, flow, and conductivity. As the sensors were

designed locally, adding a signal conditioning circuit was necessary to interface the

sensor to the controller. Zigbee wireless communication module was connected to the

microcontroller, allowing the obtained data to be sent remotely. Water quality

parameters were then displayed on LCD. A buzzer option was added to the system, and

the buzzer went off whenever the measurements were out of the allowable range. The

sensors were designed locally as most of the water quality parameters are commercially

available and cost-effective. The turbine used to design the flow sensor was cheap and

could do digital readings. The two-electrode way was used to design the conductivity

sensor and was easy to maintain, and its cost was cheap. The Zigbee module uses less

power and does not need additional infrastructure, but the sending and receiving range

is very small, from 10 m to 70 m. However, some sensors, such as ORP, required

additional signal conditioning circuits, which increased the system's complexity. In

addition, historical data was unavailable because it is a real-time system. Thus, it is

important to add such a function to estimate the water quality over the year. It has been

recommended to design a turbidity sensor because it is an essential parameter that needs

to be measured to get a low-cost design rather than using expensive sensors.

Figure 2.27 (a) Module 1: The Measurement and Sensing Module Block Diagram

(b) Module 2: The Notification Module Block Diagram

(Cloete et al., 2016)

37

(Danh, Dung, Danh, & Ngon, 2020) established a new system known as the

Aquaculture system that monitors water quality in the Mekong River. The system used

four sensors to measure temperature, pH, DO, ORP, and salinity. When the readings are

detected directly, they will be sent to ThingSpeak, an IoT platform, to save the data on

the server. The master control unit received updated data measured by the sensors every

minute. The system application is available on the App Store on iOS devices and the

Play Store for Android users to view the data in real-time. The system has the option of

sensor automatic cleaning to remove dust and algae because such dirt may cause

unstable sensor measurement; thus, automatic cleaning will increase the system’s

effectiveness. The master control unit has a built-in wireless communication system to

transfer data to the user. An SMS message will alert the user if the data is above or

below acceptable levels. However, the system is complicated with many electronic

devices for controlling, measuring, data transferring, etc., making it heavy for the user

to carry and set up from one place to another. In addition, even with the automatic

cleaning system, some of the sensors have been damaged due to dust. Therefore, it is

important to use sensors of good quality and waterproof to prevent any damage. Figure

2.28 shows the architecture of the E-Sensor AQUA system.

Figure 2.28 Architecture of the E-Sensor AQUA System (Danh et al., 2020)

38

2.4.5 Summary of Related Works

Table 2.1 shows the conclusion of all related studies by listing drawbacks, motivation,

and future work. Meanwhile, Table 2.2 shows the sensors used in each study to measure

physical and chemical water quality parameters.

Table 2.1 Summary Table

No. Author and

year

Motivation Drawbacks Future work Processor

1 (Vijayakumar

& Ramya,

2015)

1) Low cost 1) Wi-Fi

module is

not inbuilt

1) Measuring

biological

water quality

parameters

Raspberry

Pi

2) It is portable 2) It is

complex

2)

Implementing

the design in

many areas

3) Displaying

data on the

mobile app

2 (Khatri et al.,

2020)

1) No need for

an external Wi-

Fi module as

Raspberry Pi

has an internal

one

1) Raspberry

Pi with

Linux

operating

system is not

user-

friendly.

1)

Implementing

a new system

using fuzzy

logic in an

IoT

environment

Raspberry

Pi

2) Easy to

function as

Raspberry Pi

needs only 12

V

3) High

accuracy

4) Cost-

effective

3 (Ngom et al.,

2019)

1) No payment

for LoRa

transmission

band.

1) Most

water quality

parameters

were not

measured.

Unavailable Arduino

2) Low power

consumption.

2) Low

transmission

rate.

39

3) Solar panel

alternated

power source.

3) System is

costly.

4 (Li et al.,

2018)

1) pH sensor

can function at

0 to 60℃.

1) System

requires

calibration

before

starting.

Unavailable Raspberry

Pi

2) TDS sensor

is waterproof

and has high

accuracy.

2) Data

might lose

or delay due

to weak Wi-

Fi.

5 (Chowdury et

al., 2019)

1) User can get

a report about

the water

condition at

any time.

1) Data is

only a

number.

Unavailable

Arduino

6 (Lezzar et al.,

2020)

1) It is a

lifespan system

that does not

require short-

term

maintenance

1) SIM800c

requires

GSM/GPRS

network to

transfer the

data

Unavailable Arduino

7 (Saravanan et

al., 2018)

1) Less cost,

weight, and

size

1) SCADA

system

cannot be

implemented

in areas that

have no Wi-

Fi cover

Unavailable Arduino

 2) GSM

provides high-

speed

communication

3) Using

Arduino

processor

accelerated

SCADA

system

4) Utilizing

IoT to control

the system

remotely.

8 (Mukta,

Islam,

Barman,

Reza, &

Khan, 2019)

1) F1 score

showed that

the system's

overall

1) System

measures

only

physical

parameters.

Unavailable Arduino

40

performance

was high

2) Not a

real-time

system

9 (Pujar et al.,

2020)

1) System

measure water

parameters in

different

seasons

1) Wide

range of data

collection

Unavailable Arduino

10 (Encinas et

al., 2017)

1) The system

is portable

1) No user

alert in the

system.

1)

Developing

an AI module

for providing

alerts to the

user when

water is in

bad

condition.

Arduino

2) Less costly

and power

consumption.

11 ((Niswar et

al., 2018)

1) Monitoring

water quality

remotely

1)

Complexity

of the

system

1) Adding the

system to the

water

circulation to

reduce

human

intervention

Raspberry

Pi

2) Alert the

user of any

shortcomings

2) Needs

good

coverage of

3G and 4G

networks

2) Reducing

power

consumption

12 (Raju &

Varma, 2017)

1) System

works all day

and stores data

1) Overall

cost is high

1) Reducing

power

consumption

by

automating it

using the

internet.

Raspberry

Pi

2) Solar panel

is used to

overcome

power problem

3) User

receives a

message on

how to solve

any issue

13 (Geetha &

Gouthami,

2016)

1) TI CC3200

processor is

easy to use and

fast

1) Adding

Wi-Fi

increases

1)

Implementing

machine

learning

TI

CC3200

41

2) It has four

functioning

modes

power

consumption

3) Consume

less power

4) High range

of

communication

14 (Billah et al.,

2019)

1) Has a built-

in Wi-Fi

module

1) Turbidity

sensor

readings

were mostly

unstable

Unavailable TI

CC3200

2) MQTT

protocol is user

friendly

2) Turbidity

sensor does

not show

numbers.

15 (Myint et al.,

2017)

1) Carbon

dioxide has

high stability

and sensitivity

and uses low

power

1) VHDL is

not easy to

use

1) Increasing

the number of

nodes to

cover more

areas

FPGA

2) Nios II

provides high

performance of

processing unit

 3) Low cost

16 (Birje et al.,

2016)

1) The system

is cost-

effective,

portable as

well as easy to

set up by the

user

1) System is

not real-time

1) Using

GSM to view

data remotely

PIC

2) PIC

microcontroller

has software

control for

self-

reprogramming

and power-

saving mode

2) Many

hardware

modules

make it

difficult to

be

redesigned

3) LCD is

small

42

17 (Cloete et al.,

2016)

1) Less cost 1) Sending

data

remotely

with a range

from 10 m to

70 m

1) Design a

low-cost

turbidity

sensor

Unavailable

2) Zigbee

module uses

less power

2) ORP

sensors

require

additional

signal

conditioning

circuits

3) No need for

external

infrastructure

3) It is only

displaying

data with

storing it

18 (Danh et al.,

2020)

1) Sensor can

be

automatically

cleaned

1) System is

complicated

as it has

many

controlling,

measuring,

data

transferring

devices

Unavailable Unavailable

2) User is

updated

through SMS if

there is any

shortcoming

2) Not

portable

3) Even with

automatic

cleaning,

some

sensors had

been

damaged

due to the

dust

43

Table 2.2 Summary of All Sensors Used in Each Study Given in Table 2.1

2.5 PROPOSED FPGA-BASED SWQS

Based on the findings from the literature review, as summarized in Section 2.4, it is

concluded that there are several processors have been used to design SWQS, such as

Arduino, Raspberry Pi, FPGA, TI CC3200, and others. However, Arduino, Raspberry

Pi, TI CC3200, and other processors are limited by the number of pins that are hard-

coded. The FPGA platform, on the other hand, could reconfigure the interface of each

pin, as well as it has a large number of pins. This means it allows the FPGA to be used

for the real end product and not just as a prototyping platform. In addition, when it

comes to speed, FPGA surpassed other processors with a frequency reach of up to 1

GHz. Speed is an important factor that needs to be considered, as it can affect the system

performance when many sensors are connected to the processor. Additionally, any

sensor with any interface could be easily connected to an FPGA.

The selection of sensors used in this work as a proof-of-concept was based on

the importance of the water quality parameters and the availability of the sensors. From

44

Table 2.2, it can be seen that the pH sensor and temperature are most commonly used.

Unfortunately, the temperature sensor is not widely available. The TDS sensor could

measure the total dissolved materials in a liquid, and the conductivity could be easily

extracted from the TDS sensor; it will be two parameters in one sensor. Finally, the

turbidity sensor, which measures the clarity of the water, is also selected as one of the

parameters to be measured, given that it is one of the most commonly used sensors after

pH and temperature.

 Furthermore, the number of sensors used in previous studies varies between two

(2) and five (5). Therefore in this proposed work, three (3) parameter sensors will be

put to the test-taking, i.e., the mid-point number of parameters. The next section will

look at the architecture of an FPGA to understand how FPGA can be used in

heterogeneous systems.

2.6 UNDERSTANDING THE FPGA-SOC HETEROGENEOUS SYSTEM

FPGA-SoC is a heterogeneous platform that can improve the performance of an

embedded system using more than one processor. This section will explain the

architecture of an FPGA, followed by the software development tools used in this

research.

2.6.1 FPGA Chip

FPGA is a semiconductor IC where the design engineers may reconfigure most of the

electrical functionality inside the device, whether during the Printed Circuit Board

(PCB) assembly process or after the FPGA platform has been shipped out to customers

(What Is FPGA, 2020). FPGAs benefit designers of many types of electronic

equipment, including smart energy grids, aircraft navigation, medical ultrasounds, and

data center search engines (What Is FPGA, 2020). Figure 2.29 demonstrates the

Cyclone V SoC FPGA solution from intel.

45

Figure 2.29 Cyclone V SoC FPGA from Intel (Intel PSG Website, 2020).

2.6.2 System-on-Chip

On the other hand, System-on-Chip (SoC) is a hardware platform containing many

different microprocessor subsystems, memories, and Input/Output interfaces (J

Greaves, 2011). The design of a modern SoC is a complex task involving a range of

skills and a deep understanding of a hierarchy of perspectives on design, from processor

architecture down to signal integrity (Brackenbury, Plana, & Pepper, 2010). Other than

that, the SoC design methodology is a new model for electrical and computer

engineering education in digital logic and microelectronics (William D. & Dennis A.,

2000). FPGA-SoC is one of the powerful SoCs used in the proposed SWQS. Section

2.6.4 presented in detail all the features of the FPGA-SoC heterogeneous platform.

2.6.3 Heterogeneous Platform

As described in Section 1.2.2, a heterogeneous platform is a new computer platform

infrastructure that presents a next-generation hardware platform and associated

software that allows processors of different types to work efficiently and cooperatively

46

in shared memory from a single source program (Hwu, 2016). Architectural

heterogeneity improves platform flexibility by exploiting more than one processor.

2.6.4 Features of FPGA-SoC Heterogeneous Platform

The DE10-Nano Development Kit is one type of FPGA-SoC that provides a robust

hardware design platform utilized by Intel FPGA-SoC, which combines the latest dual-

core Cortex-A9 embedded cores with industry-leading programmable logic for ultimate

design flexibility. Intel’s SoC integrates an ARM-based Hard Processor System (HPS)

consisting of processor, memory interfaces, and peripherals tied with the FPGA fabric

using a high-bandwidth interconnect backbone. The DE10-Nano development board is

equipped with Ethernet networking, high-speed, analog to digital capabilities, and

DDR3 memory (Terasic, 2017a)

Unlike application-specific integrated circuits (ASICs), which can only be

implemented once through manufacturing, FPGAs can be reconfigured following the

customer's needs. This feature allows the user to make improvements and change the

architecture of the FPGA, allows fixing bugs, or uses FPGAs to rapidly prototype

hardware designs, which can later be manufactured as ASICs. In addition, FPGA can

be reconfigured quickly to finish different tasks (Ziener, 2018). However, the flexibility

and reconfigurability increase cost and design complexity and provide less specialized

components such as floating-point operations. Hence, the main purpose of using FPGA

is to utilize its huge parallelism, i.e., its ability to perform pipelines to overcome latency

issues (Purkayastha, Shiddhibhavi, & Tabkhi, 2018). ASICs approach can offer very

high performance and huge power efficiency; however, it lacks flexibility and the eco-

system offered by Programmable Logic Devices (PLD) (Burgio et al., 2016). FPGAs

have many advantages over other processors, such as reconfigurability, and by default,

it provides software flexibility. In addition, more complex water quality systems are

demanded as they do not require image processing. They also require communicating

with other devices and offer a usable user interface.

While the FPGA-SoC heterogeneous platform enhances the performance of any

design, it is not as popular as it costs higher when compared to processors like Arduino.

In addition, the design complexity increases when moving to the hardware level.

47

Nevertheless, when it comes to speed, the FPGA has a higher processing speed in which

the frequency can reach up to 1 GHz, while a processor like Arduino is at 24 MHz.

FPGA can be used not only for designing a small prototype but also to design a real end

product. It is interconnected, and reconfigurable features allow flexibility and additional

functions to be included without changing the main processor.

2.6.5 Memory Management on FPGA-SoC

There are three layers of the memory models in the FPGA-SoC. Figure 2.30 shows an

example of a memory model of the proposed SWQS, and it can be described below:

i. Level 1 Memory (L1) is the local memory for each core. Each core’s

firmware will be stored in built-in memory for each core. When the ARM

processor configures the FPGA, each level 1 memory and its firmware will

be loaded, allowing the processor core to run.

ii. Level 2 Memory (L2): this level of the shared memory among all cores.

This memory will be utilized to store the obtained data from each sensor by

cores. The ARM processor will format this data with a timestamp ready for

collection.

iii. Level 3 Memory (L3): this is a Double Data Rate type 3 memory (DDR3

memory) of an ARM processor that will be utilized to run the Linux

operating system. It is the global memory for the user applications’ data

processing.

48

Figure 2.30 Example of a Memory Model of the Proposed SWQS Design

2.6.6 Quartus II Development Software

Quartus II is a tool provided by intel to implement the hardware design on Intel FPGA

products. It offers a full range of features for each phase of the hardware design flow of

intel FPGA to enhance the design cycle and achieve the highest performance on FPGA

(Intel® Quartus® Prime Standard Edition Handbook Volume 1: Design and Synthesis,

2018). These features can be summarized below:

 Project setup: Quartus Prime helps the designers to create new projects,

add/create design files, specify the target FPGA device, and design

constraints files. This allows the designer to create multiple design versions

that run on multiple FPGA devices to achieve the highest performance

possible.

 Design planning tools: plan for initial I/O pin layout, power consumption,

and area utilization in the Early Power Estimator, the Power Analyzer Tool.

 Integrated Synthesis: it provides efficient synthesis support for VHDL

(1987, 1993, 2008), Verilog Hardware Description Language (HDL) (1995,

2001), and SystemVerilog (2005) design entry languages.

49

 System and IP Integration: this defines and generates a complete system

in much less time than using traditional, manual integration methods with

Platform Designer.

 Platform Designer: Platform Designer is the latest generation system that

integrates hardware and software designs. Platform Designer will save time

and big effort in the design process of FPGA via generating logic

interconnection automatically to connect Intellectual Property (IP)

functions and other subsystems. The Platform Designer utilizes a robust

hierarchical framework that offers a swift response to connect large

systems. In addition, it gives support to Blackbox entities. This will enable

the Platform Designer to provide a quick response time in starting systems

and creating new connections by generating and operating on IP functions

that changed. Furthermore, the tool of Platform Designer supports different

design entryways, like blocked-based design entry, block boxes, Register

Transfer Level (RTL), and schematic entry (Intel, 2021a).

2.6.7 Quartus Intellectual Property Libraries

FPGA design contained components from softcore invented by intel, known as the IP

library. These components are built in multiple processing cores architecture. Each core

consists of a processor along with some necessary components to run the core. Each

core contains the following items that have the advantage of accessibility for each

processing core individually:

i. Nios II softcore processor is an Intel processor that is softcore configurable

32-bit. It can be implemented and programmed to the FPGA. This processor

comes with two types: f/core (for fast) and e/core (for economics). The

proposed design will only utilize the f/core due to licensing. Quartus Prime

software will be used to design the water quality system and compile the

design on FPGA.

ii. On-chip memory: it is a Random-Access memory (RAM) that is utilized

to store Nios II processor firmware. Furthermore, the details of the firmware

50

and its benefits will be elaborated in Chapter 4, Section 4.2.2.1. It is L1;

hence, it can only be accessed through one core. This type of memory is

situated inside an FPGA chip.

iii. Avalon System Interconnect: it is a bus system that was developed by Intel

Programmable Solutions Group. This bus system connects all system

components to the memory-mapped interface type.

iv. System Timer: it is a softcore internal timer. It was used to synchronize the

collection and transfer of the data among system cores.

v. System ID: this component is utilized to provide each core Identifier

number. The ID number will help identify which core should be running.

vi. I2C Controller: I2C is a data transfer protocol that uses two serial wires.

This controller can be used to control I2C sensors.

vii. SPI Controller: Serial Peripheral Interface (SPI) is a data transfer protocol

to control SPI sensors.

viii. ADC Controller: Analog-to-digital controller (ADC) is used to control the

flow of data of ADC-type sensors.

Some shared peripherals subsystem is a combination of IPs design that several

processing cores can access as shared resources. These IPs give system-level services

for the processing cores, such as mailbox, mutual exclusion (mutex), shared memory,

Advance eXtensible Interface (AXI)-Avalon translation (for ARM SoC interface and

handshaking), and a clock that can be synchronized using Phase Lock Loop (PLL).

Elaboration on shared peripherals is shown below:

i. Mutex is a mutual exclusion peripheral that will be used to control the

cores’ operation. In addition, it helps in arranging the accessibility of cores

to each shared peripheral. In the proposed design, mutex IP is required as

it is a multi-core system. Therefore mutex is required for controlling the

access to shared memory and peripheral between cores. For example, when

the mutex is idle, the collected data from the pH sensor will be written to

the shared memory. However, if the mutex is not idle because the shared

51

memory access is given to the TDS sensor or turbidity sensor, then the

firmware will be waiting for the mutex to be free.

ii. PLL: for synchronizing the operation clock of the cores of the processors,

PLL is utilized.

iii. Mailbox: it is a softcore IP that is utilized to send messages among cores.

iv. Shared Memory: it is the L2 of the system. When mutex approves the

access, shared memory can be used by multiple processing cores.

2.6.8 Linux Terminal Interface

An embedded Linux application is a special version of the Linux operating system

running on the embedded computer system, like FPGA. This requires a processor to be

part of this FPGA, such as a hard-core processor. Note that a hard-core processor is a

hard IP integrated into FPGA. Generally, a hard-core processor runs at 600 MHz to 1

GHz, such as an ARM processor. The entire system will be controlled through this

application as the application reads segmented and analyzed data from all sensors stored

in the shared memory. PC, laptop, or any screen can be connected to FPGA directly and

display the data from shared memory. However, this does not make the system portable.

Therefore, Raspberry Pi was used to be connected ARM terminal for accessing it,

reading the water quality data, and displaying it. Raspberry Pi was chosen as Linux

operating system. Further, from the Linux Terminal in the Raspberry Pi operating

system, the ARM terminal can be accessed. Linux application has been used as it can

be implemented on Raspberry Pi processor as well as ARM terminal could be accessed

using Linux Terminal on Raspberry Pi.

2.6.8.1 Linux Kernel Compilation

While there are various selections of Linux compilation software, the Ubuntu 20.02

machine is used to compile the Intel Angstrom distribution. Some packages must be

installed on the host PC to permit the compilation of Angstrom distribution. The

52

packages listed down are not fixed lists since the installation depends on the

requirement of each machine.

In addition, it is necessary to make a setting for the /bin/sh point of bash instead

of a dash by running a command of the terminal.

The root filesystem and Linux kernel can be compiled using recipes from

Angstrom. The Yocto Project (YP) is building the embedded Linux when the recipes

are cloned. YP is an open-source collaboration project that helps developers create

custom Linux-based systems regardless of the hardware architecture. The project

provides a flexible set of tools and a space where embedded developers worldwide can

share technologies, software stacks, configurations, and best practices. These can be

used to create tailored Linux images for embedded, and IoT devices or anywhere a

customized Linux Operating System is needed. YP can be run using the below

commands:

53

Images directory will then contain all the generated images after the compilation

of the YP. Table 2.3 presents the important files list of the YP.

54

Table 2.3 Files Generated After the Yocto Compilation

Linux kernel and U-boot are then compiled from the git trees in

https://github.com/altera-opensource. Finally, the git source can be cloned, and the

Linux kernel and U-boot can be compiled using the below instructions.

55

Therefore, after doing all the above steps, the Linux image is ready to be burned on the

SD card. Plus, the SWQS Linux application is ready on the ARM processor.

2.7 SUMMARY

In this chapter, the literature review of water quality monitoring systems has been

explored and investigated. This chapter summarized some studies developed to measure

physical and chemical water quality parameters by identifying gaps in the current

studies and showing the weakness, challenges, and critical analyses. The challenges and

motivations of each design were conducted in this chapter, followed by the description

of the proposed FPGA-based SWQS. Later, the chapter provides a general overview of

the FPGA platform along.

56

CHAPTER THREE

METHODOLOGY

3.1 OVERVIEW

The primary objective of designing and developing in situ Smart Water Quality System

(SWQS) Field Programmable Gate Array (FPGA)-based kit is to enhance and improve

the safety of the water. This can be realized using the integration of sensors and

processors to detect the materials that cause water contamination. The liquid quality

parameters will be measured using different sensors to reach high quality.

This chapter describes the methodology proposed to develop the SWQS engine

and derive the data acquisition procedure from this system. Furthermore, this chapter

elaborates on the experimental details and how sensors will be set up along with FPGA

to measure the water quality. Section 3.2 introduces the research methodology phases

based on four main phases and then specifies the methodology for designing SWQS. In

addition, Sections 3.3 and 3.4 illustrate the hardware and software design of the

proposed SWQS, respectively. Section 3.5 discusses the proposed design power cycle,

while Section 3.6 proposes the testing plan of the design. This chapter elaborated on the

technical guideline for an SWQS system utilizing multiple processing cores covering

both software and hardware design. Section 3.7 covers the FPGA design cycle that

contains the hardware design flow by including all components required to design a

processing core and all the processing elements. In addition, the flow of the software

design for both core firmware development, as well as the Linux applications

development will also be explained.

The embedded Linux design cycle and all the system components to design a

Linux image will be demonstrated in Section 3.8. On the other hand, Section 3.9

elaborates on the steps of adding the processing cores to the proposed hardware design

based on the designer’s preferences.

57

3.2 RESEARCH METHODOLOGY

The research methodology of this study was developed based on four phases; these

phases are summarised in Figure 3.1. Each phase has its description and what outcome

is derived.

Phase I was accomplished in Chapters 1 and 2. The problem statement,

objectives, and scope were discussed in Chapter 1. Furthermore, the research literature

review, motivation, challenges, and design aspects were discussed in Chapter 2. Phase

II and Phase III were covered in Chapter 3. All the design considerations, methodology,

implementations, and testing scenarios were discussed. Finally, Phase IV was covered

in Chapter 5. All the results of the system design, data collection, system reliability,

data validity, and testing scenarios were discussed.

Figure 3.1 Research Methodology Phases

58

The investigation that has been done on the water quality parameters was done

by reading books and articles. From that, the literature has been elaborated with related

works. Next, motivations, challenges, and recommendations have been derived and

concluded. The proposed design was chosen based on the issues and problems of the

literature; however, there are many of them. Therefore, the scope of the research was

designed to focus on the hardware design and make SWQS that eliminates the issue of

performance and reconfigurability. In addition, based on the scope of the research, three

objectives have been set to reach SWQS with high performance, high efficiency, less

power use, and a system that can be reconfigured. Figure 3.2 shows the research

methodology of the proposed SWQS.

Figure 3.2 Research Methodology of the Proposed SWQS

59

The Hardware design flow on FPGA starts with building the embedded system

architecture using Platform Designer in Quartus Prime. Platform Designer is the next-

generation system integration tool of Quartus Prime. Once the design is done in

Platform Designer, a design compilation is needed to transfer the Verilog system files

to the programmable file used to configure the FPGA. The compilation must be

successful in passing this step. Subsequently, assign the pins in another tool called Pin

Planner from Quartus Prime. After that, the Quartus Prime project can be compiled to

generate the software object file (sof), which can be used to program the FPGA.

Once the hardware flow is done, the developer can start the software flow. The

software flow generates the executable link and format file (.elf), which is the processor

firmware. Once the .elf file is ready, it can be stored in the processor’s core memory.

Linux application development flow starts after the completion of the hardware

flow and firmware development flow. In this research, the SWQS application was

developed using C++ programming language. The development starts with the memory

management step, defining the memory layout. After that, the address of the Advance

eXtensible Interface (AXI) bridge should be defined. Consequently, this address will

be added to the hardware registers span of Intel FPGA. Therefore, the result address

will be used to access the FPGA-related design registers by adding the offset of each

register. After that, a virtual memory must be created in any Linux-based application to

avoid segmentation faults due to the memory protection unit of Linux, which restricts

any direct access to an address in the system.

Next is the generation of the Bootloader and the Linux image. The tool used to

generate the Bootloader is Embedded Software and Tools for Intel System-on-Chip

(SoC) FPGA software (SoC EDS). After finishing the Quartus Prime project, the

Handoff folder was created. This folder contains information about the hard processor

system components and connections. This folder is used with the SoC EDS to generate

the pre-loader and U-boot. Once the Bootloader folder is created, a compilation is

required to generate the binary files of the Bootloader.

60

Raspberry Pi was used to run Linux operating system on it, and then the Linux

application in the ARM processor was accessed using the Linux Terminal on the

Raspberry pi. Figure 3.3 summarizes the entire methodology of this work toward

designing and developing an FPGA-based SWQS.

3.3 PROPOSED DESIGN DEVELOPMENT AND SYSTEM REQUIREMENT

3.3.1 Smart Water Quality System (SWQS)

The proposed design was built on a DE10 Nano FPGA-SoC development kit, which

was connected to three water quality sensors named pH, Total Dissolved Solids (TDS),

and turbidity. The selection of sensors may be added depending on the requirements of

agencies. Section 3.10 of this dissertation will explain how the changes can be done at

the software level.

Figure 3.3 Overall methodology of the Proposed SWQS

61

Figure 3.4 presents the general overview of the proposed system and its data

flow. In the beginning, the DE10 Nano FPGA-SoC development kit was connected to

three water quality sensors named pH, TDS, and turbidity. Note that the main FPGA

chip is divided into two parts. The first is the main chip, which focuses on processing

the data from sensors and making it ready to display. On the other hand, the second part

is the ARM processor, which has the Linux application. The ARM processor was

utilized to run the Linux application. This application controls the entire system, reads

the segmented, and analyzes data from sensors stored in the shared memory. The next

step was to read the data from the ARM processor; therefore, a PC or laptop could be

used to display the data. However, the PC and laptops or any screen are not portable,

and for that reason, they were replaced by Raspberry Pi. The Raspberry Pi processor

can be connected to any screen easily same as other processors like Arduino. On the

other hand, Raspberry Pi was used as Linux operating system can be run on it. The

Linux application in the ARM processor could be accessed using the Linux Terminal

on the Raspberry pi. The entire system is portable and can be fed power via a 20000

mAh power bank.

Figure 3.4 Proposed System Blocks and Data Flow

The complex requirements of developing SWQS designs and applications have been

discussed in the literature review in terms of computation power, algorithms

complexity, resource flexibility, and cost. To overcome this trade-off among design

requirements and considerations, a heterogeneous platform is the critical design

62

approach in SWQS applications. The generic proposed multi-core heterogeneous

platform can be seen in Figure 3.5.

Figure 3.5 Multi-Core Heterogeneous System Architecture Design of the Proposed

Design

The hardware design was developed based on digital design methodology on

FPGA to parallelize the SWQS functionality based on each developed core. In

comparison, the software stack was developed on an ARM SoC sub-system to improve

the computation power of the ARM processor. Figure 3.6 presents the FPGA single-

core processing element of the proposed design.

63

Figure 3.6 FPGA Single Core Processing Element of the Proposed Design

3.3.1.1 Interfacing Multiple Sensors

The hardware limitations in the proposed design were minimized through FPGA. The

designer can add the preferred sensor with any data transfer protocol, like Inter-

Integrated Circuit (I2C), Universal Asynchronous Receiver-Transmitter (UART),

General Purpose In/Out (GPIO), and Serial Peripheral Interface (SPI). All the data

transfer protocols can be easily implemented on FPGA.

From Figure 3.7, the processing cores will be utilized for specific SWQS

functionality. The proposed SWQS hardware data acquisition system was developed

based on the following functionalities: pH detector, TDS detector, and turbidity

detector. Each of these functions was assigned to a processing core, core 1 is the pH

detector, core 2 is the TDS detector, core 3 is the turbidity calculator, and core 0 is the

system synchronizer. Each core is running independently, which might cause data

synchronization issues. Hence, core 0 was utilized to synchronize collected data before

sending it to the ARM SoC sub-system. In addition, core 0 is responsible for packetizing

the collected data from the other cores and initializing the DMA, which is responsible

for transferring the collected data from the FPGA domain to the ARM sub-system

domain. Finally, the Linux Terminal on Raspberry Pi was utilized to access the ARM

terminal and send the data to the screen.

64

Figure 3.7 Proposed SWQS Hardware Proposed Data Acquisition Design

3.4 SWQS HARDWARE DESIGN

The proposed SWQS hardware design has two parts: hardware and software. The FPGA

hardware design flow begins with using Platform Designer to build the embedded

platform architecture in Quartus Prime. Section 3.8.1 demonstrates the configuration

steps of the SWQS.

After the design in the Platform Designer is done, a compilation of a design is

required for FPGA configuration by transferring the files of the Verilog system to a

programmable file on an FPGA device. The step of compilation should be successfully

done to pass this stage. The next step is to assign the FPGA interface pins once the Qsys

file generated from Platform Designer is done. Other than that, the pins can be assigned

using the Pin Planner tool in Quartus Prime software. The location of each pin is

obtained from the user manual of the development board. After that, the Quartus Prime

project should comply to get the sof used for FPGA programming. Figure 3.8 exhibits

the FPGA hardware design flow of the proposed SWQS.

65

Figure 3.8 The Summary of the FPGA Hardware Design Flow

3.5 SWQS SOFTWARE DESIGN

The software part of the proposed design will have four firmware applications when

separated cores are used for each firmware. As shown in Figure 3.9, system

synchronization of data collection and the transmission between FPGA and ARM will

be done using firmware 0. Note that firmware 1, firmware 2, and firmware 3 will be

responsible for initializing, calibrating, controlling, and collecting data from the pH

sensor, EC sensor, and temperature sensor, respectively.

Figure 3.9 Firmware Applications for Each Core with SWQS Linux-based

Application

66

System synchronization of data collection and the transmission between FPGA

and ARM will be done using firmware 0. First, firmware 0 starts the system’s

peripherals, such asDirect Memory Access (DMA), mutual exclusion (mutex), SPI, and

GPIO. Consequently, it configures the DMA and checks the flag of the shared memory.

When new data is collected from the cores of the cores, the collected data is then going

to be packetized and will be written to the source memory location of DMA. After that,

DMA will be triggered to transfer the data to the system’s Double Data Rate type 3

(DDR3 memory). The firmware 0 flow diagram is displayed in Figure 3.10.

Figure 3.10 Flow Diagram of Firmware 0

Firmware 1, firmware 2, and firmware 3 will be responsible for initializing,

calibrating, controlling, and collecting data from the pH sensor, TDS sensor, and

turbidity sensor, respectively. Calibrating the sensor is important to make sure that the

sensors are functioning with high accuracy and to prevent uncertain measurements of

the sensors. Apart from that, each sensor’s firmware will start the process of initializing

the controller of the sensor, which is the process of defining and identifying the channels

of each sensor. It is done at the first usage. In addition, calibrating the sensor is required

to ensure high-accuracy measurements and to prevent uncertain sensor readings. Next,

the controller will check the sensor ID whether is valid or not to confirm the sensor

connectivity. At the moment, the sensor connectivity is confirmed. The controller will

read data from each sensor and store the collected data in the sensor’s local memory.

67

The firmware will then check the status of the mutex to have access to the shared

memory. When the mutex is idle, the collected data from the sensor will be written to

the shared memory. However, if mutex is not idle because the shared memory access is

given to other sensors, then the firmware will be waiting for the mutex to be free. Figure

3.11 illustrates the sensor’s core firmware block diagram.

Figure 3.11 The Sensor’s Core Firmware Flow Diagram

On the Linux side, the SWQS application will be developed using Linux C++

libraries. The developed application will be used to control the cores that are running

on FPGA. Each core can be individually reset, print the system’s status, and finally print

out the collected data stored in DRR3 memory. This application will ease the interaction

between the user and the hardware layer without the need for interaction with the

hardware directly or frequent updating. In addition, the most important feature is that

any runtime environment or application running on a Linux operating system can be

easily integrated with this application.

From a software standpoint, our proposed design will add layers between

hardware and application layers. As can be seen in Figure 3.12, the layer is known as

the middleware layer. Accessing and modifying the hardware will be easier with the

68

existence of this layer. Many Application Programming Interface APIs are provided by

the middleware layer that can be used to access the hardware. Moreover, these APIs

will ease the development because these APIs can cover multiple hardware accesses,

and any software platform can be migrated to these APIs based on the requirements.

Figure 3.12 The Proposed Design Abstraction Layers

3.6 PROPOSED DESIGN POWER CYCLE

There are two operations that the proposed SWQS design has, one operation for the

FPGA side, while the other operation is for the SoC side. First, the system’s image will

be stored on a global memory (L3) SD card mounted to the system board. The SD card

contains the required files for FPGA configuration and running the embedded Linux

system. These files are Linux Kernel Image, Root File System (Rootfs), FPGA

configuration file, First Stage Bootloader (pre-loader), Second Stage Bootloader (U-

boot), Linux Device Tree, and embedded Linux C application.

69

Once the system is powered on, the pre-loader will be loaded from the SD card

to the ARM on the memory chip to start the chip pins, DDR3 calibration, and the clocks.

Subsequently, the U-boot is loaded to DDR3 to start the Mux pins of the Hard Processor

System (HPS), configure FPGA, load the Rootfs and device tree to DDR3, and finally

give the needed control to the kernel image for booting the system. At the time the

configuration of FPGA is done, the four cores are going to be loaded and ready to start

running. ARM will begin a test to verify the availability of the cores, L1, L2, and L3

initialization, and the response of the sensors.

3.7 PROPOSED DESIGN TESTING PLAN

This research has proposed a new system design of SWQS based on a heterogenous

platform known as the FPGA-SoC platform. The verification of the design will be done

based on component-level testing. The design cores will be tested separately to achieve

the needed function. Additionally, the peripheral’s sub-system functionality will be

tested individually. The proposed verification is going to be as the following:

i. Core 0 data packetize test.

ii. Core 0 DMA run test.

iii. Core 1 pH test.

iv. Core 1 data transfer test.

v. Core 2 TDS test.

vi. Core 2 data transfer test.

vii. Core 3 turbidity test.

viii. Core 3 data transfer test.

ix. Mutex functionality test.

The system implementation and data collection were the second tests that will

be required to be done. The proposed system was meant to ensure the utilization of new

sensors is an easy task and needs less effort to add more components to the system. The

data will be collected by the cores from pH, TDS, and turbidity sensors. In addition, the

raw data from each sensor will be converted by the core into an understandable user

format. In that format, a timestamp will be added to each data sample to gain the

70

system's synchronisation. Thus, L2 local memory will store the data in the form of 128-

bits divided into 32-bit to the core ID, 32-bit to the timestamp, and 64-bit to the data

sample. Once the data is ready at the core level, the synchronizer core, core 1, will send

the collected data to the ARM processor via DMA.

Consequently, testing the overall system by collecting the data from each sensor

in a real-time environment to ensure it is functioning well. The proposed design will be

tested on different liquids for each sensor to prove that the sensors read the correct data.

The first test will be done on pure water, lemon juice, and milk to test the validity of

the pH sensor. At the same time, the TDS sensor will be tested on pure water and water

with salt to verify the sensor functionality. Last but not least, the turbidity sensor will

be tested on three liquids: pure water, water with little dust, and water with more dust.

The liquid choice was made based on the sensor functionality. For example, to test the

pH sensor, pure water is required to be tested as its pH value is 7, while milk will be

used to see whether the pH sensor readings will be more than 7 or not. Correspondingly,

lemon juice is used as an acidic liquid, and the pH value of acidic liquids is less than 7,

as it is known. The main goal of the proposed design is a proof of concept that the

system is usable and can be used in real life.

3.8 THE DESIGN CYCLE OF THE PROPOSED FPGA-BASED SWQS

The design cycle consists of the hardware flow in terms of the configuration of the

Platform Designer. Other than that, it consists of software flow, which is the

programming of the sensors using the Eclipse tool, and the flow of the Linux application

development. In the subsequent subsections, the FPGA-based hardware and software

design flow will be elaborated.

3.8.1 The Hardware Design Flow of SWQS

The sensors are connected to FPGA to process analog data from the sensors and convert

it into digital for processing purposes. Each sensor is connected to a separate Nios II

core to increase the processing speed, as the cores will function in parallel. The

proposed SWQS design can be found in Figure 3.13. The proposed architecture contains

71

the processors, memory, clocking and synchronization, data transfer protocol system

peripherals, and bridges.

Figure 3.13 The Architecture of the Proposed SWQS

3.8.1.1 Processors

One ARM hard-core processor system has been utilized for the proposed SWQS design,

along with three Nios II soft-core processors. The processor has used the AXI protocol

to transfer the data between the FPGA and the ARM processor. There are four bridges

to transfer the data: FPGA-to-HPS (F2H), which has 128-bit data from FPGA to ARM

processor. However, the second bridge is HPS-to-FPGA (H2F), with 128-bit data

transferred from the ARM processor to FPGA. In addition, the third bridge has 64-bit

H2F control signals. Finally, Avalon Bridge is utilized for SDRAM transactions that

transfer data from m FPGA to DDR3 memory of ARM HPS. Figure 3.14 demonstrates

the configuration of the ARM processor.

72

Figure 3.14 The Configuration of the ARM Processor

The Nios II processor is a soft-core processor that can be designed and

programmed on FPGA. Figure 3.15 presents the single Nios II processor configuration.

The settings of the Nios II processor have been kept as default. However, two factors

need to be modified: reset vector and exception vector. When resetting the processor,

the firmware in memory is known as the reset vector. However, the memory location

required when executing an interrupt is known as the exception vector (Intel

Corporation, 2015). Nios II core has a specified On-Chip Memory for reset and

exception vectors.

Figure 3.15 Nios II Processor Configuration

73

3.8.1.2 Memory

The utilized memory for the Nios II firmware is built internally in the FPGA. The

memory is split into three, one part for each core. Figure 3.16 displays the configuration

of the On-Chip Memory controller. Random-Access Memory (RAM) is used with a

size of 64 KB for each core. Note that the data bus is 32-bit for each memory when it is

needed to be accessed by an ARM processor.

Figure 3.16 The Configuration of On-chip-Memory Controller

3.8.1.3 Clocking and Synchronization

A crystal oscillator has been used to feed the system clock on the development board.

50 MHz is the frequency of the oscillator. An Intellectual Property (IP) known as Clock

Source keeps the 50 MHz clock that the Platform Designer needs, as shown in Figure

3.17.

Figure 3.17 Clock source IP in Platform Designer

74

Phase Lock Loop (PLL) is an IP from Platform Designer that is utilized to

amplify the clock. The clock value could be divided or multiplied based on the

designer’s requirement. The proposed system used a 50 MHz of clock frequency. The

configuration of the PLL is presented in Figure 3.18.

Figure 3.18 PPL Configuration in Platform Designer

3.8.1.4 Data Transfer Protocols

The proposed SWQS design utilized an I2C data transfer protocol communicated with

the Analog-to-Digital Converter (ADC) controller as the three used sensors provide

analog signals that needed to be converted to digital signals using an ADC (LTC2308).

There is an 8-pin analog input that is connected to ADC. LTC2308 is 8-channel, 12-bit

ADC that provides data with low noise. These eight input signals are connected to a

2x5 header, as shown in Figure 3.19. The FPGA chip will read the associated register

in the converter using the serial interface and then translate the data into a voltage value

displayed on Nios II’s console.

75

Figure 3.19 ADC Input Signals

3.8.1.5 System Peripherals

Three controllers have been used for each SWQs core. The first controller is the system

timer, which is set to 1ms with 64-bits of the size of the counter, as exhibited in Figure

3.20. In addition, the readable snapshot feature is enabled to read the data time samples

when the data is collected from the sensors.

Figure 3.20 System Timer IP Configurations in Platform Designer

The second controller is the Peripheral Input/output (PIO). In contrast, the third

controller is the Modular Scatter-Gather Direct Memory Access (mSGDMA) controller

IP that is utilized for data transferring from FPGA to DDR3 of the ARM processor

through the bridge of Avalon SDRAM. Reducing the data overhead on the Nios II

processor is the main purpose of using the mSGDMA controller. Nios II core 0 handles

the software configuration of this IP, as shown in Figure 3.21.

76

Figure 3.21 mSGDMA Controller IP Configurations

Mutex is a peripheral system used in SWQS design. This IP is needed to control

the access of shared peripherals and memory among the cores in a multi-core system.

Only one master at a time can access the shared peripheral. Therefore, this IP needs

software configurations. However, there is no need for hardware configuration. Figure

3.22 illustrates the configuration of mutex in Platform Designer.

Figure 3.22 Mutex configuration in Platform Designer

Joint Test Action Group (JTAG) IP is used to access each core individually when

debugging is needed. The UART IP can be used only in debugging process, and it will

be idle if there is no debug command sent by the Nios II controller. There is no software

or hardware configuration for this IP. Figure 3.23 presents the JTAG configuration.

77

Figure 3.23 The Configuration of JTAG IP in Platform Designer

In addition, System ID Peripheral has been added, a read-only device that gives

the systems in Platform Designer a specific and unique ID. Nios II processor utilizes

the system ID IP to check whether the executable program was compiled targeting the

image of the actual hardware configured in the target FPGA. However, if the system ID

does not match the expected executable ID, it will not be executed correctly.

Furthermore, there are two 32-bit registers in the core interface. Figure 3.24

demonstrates the configuration of the system ID core.

Figure 3.24 The Configuration of System ID Core in Platform Designer

Last but not least, an ADC controller has been utilized to give the ability to

interface between the Nios II core and ADC. This is because all used sensors like pH,

TDS, and turbidity provide analog data that should have a converter to read by FPGA.

Therefore, this IP core is used instead of using a converter chip. It can control all the

needed digital signals from and to the ADC controller. Additionally, it provides a

memory-mapped register interface to read the ADC values.

78

3.8.1.6 Bridges

There are two kinds of FPGA internal bridges that are used in the proposed design,

which are the Avalon Memory-Mapped Pipeline Bridge, and the second one is the

Address Span Extender (ASE) bridge. The main purpose of using Avalon Bridge is to

handle more than one slave for one or more multiple masters with the feature of the

pipeline. Therefore, this bridge will improve the overall system performance and reduce

the bus’s overhead. The Avalon Bridge configuration can be seen in Figure 3.25. Since

the Nios II processor core is a 32-bit processor, the Avalon Bridge data bus is set to 32-

bit as well. The second bridge is the ASE bridge, which extends the memory address

view of the Nios II processor and makes it 64-bit memory. Other than that, this bridge

will provide the ability to write/read data from/ to DDR3 system memory. Figure 3.26

shows the ASE configuration.

Figure 3.25 Avalon Memory Mapped Controller IP

79

Figure 3.26 Address Span Extender IP

3.8.1.7 Pin Assignment

Pin assignment can be done using the Pin Planner tool to connect the pins inside the

FPGA chip with the pins outside. Pins must be defined; otherwise, Quartus software

will assign the pins randomly. Pin assignment can be seen in Figure 3.27.

80

Figure 3.27 Top View of Pin Assignment

3.8.1.8 Synthesis Report

The synthesis report displays detailed synthesis results for each partition in the current

project revision. It shows summary information about syntheses, such as the status, date,

software version, entity name, device family, timing model status, and various types of

logic utilization. From Figure 3.27, it can be observed that the full design has utilized

6313. In contrast, around 57% of the available on-chip internal memory was utilized as

local memory for each processor core. More processor cores can be added to this design

based on design requirements. Figure 3.28 presents the synthesis report of the proposed

design.

81

Figure 3.28 Synthesis Report of the Design

3.8.2 The Software Design Flow of SWQS

3.8.2.1 Firmware Development Flow

The developer can begin with the software flow once the hardware flow is done. The

software mainly focuses on the sensors' programming and creating the Linux

application where the SWQS data is read. In addition, the software is used to

communicate the ARM terminal with the Raspberry pi terminal for external access. The

software flow starts with the generating of the .elf file, which is the firmware of the

processor. Note that firmware is the embedded code of each water quality sensor that

has been run on the cores designed using the Platform Designer tool. In addition,

creating firmware for each sensor was utilized to make each core process the data from

its firmware instead of making all cores deal with one firmware. For instance, firmware

1 is responsible for pH sensor code; core 2 only could have access to pH firmware

instead of making one firmware for pH, TDS, and turbidity core. Therefore, the data

will be read in parallel instead of in series. The processor core memory stores the .elf

file once it is generated. Figure 3.29 presents the complete software flow of the design.

82

Figure 3.29 Nios II Software Development Flow

Once the Platform Designer is generated, a .sopcinfo file will be generated,

which is utilized and is needed by the Nios II eclipse tool to generate the Board Support

Package (BSP). Note that BSP is a file package containing Hardware Abstraction Layer

(HAL), system calls, device drivers, and system header files. The developer could write

the C code based on the design and compile it when the Nios II is generated. After the

compilation process, a .elf file will be created that can be uploaded to the Nios II

memory. Both hardware and software flows are needed to complete the FPGA design.

Figure 3.30 demonstrates the entire FPGA process flow.

83

Figure 3.30 The Entire FPGA Development Flow

3.8.2.2 The Linux Application Development Flow of SWQS

When the hardware and firmware development flow is completed, the flow of Linux

application development begins. Any software development language, such as C, C++,

Python, Java, etc., can be used to design the target application. For example, the SWQS

application is developed using the C++ programming language in this research.

The memory management stage starts developing, where the memory address is

defined. Figure 3.31 presents the SWQS application memory layout.

84

Figure 3.31 SWQS Application Memory Layout

The next step is to define the AXI bridge address and make it (0xff200000).

Subsequently, the hardware registers span of Intel that is (0x40000000) is going to be

added with the AXI bridge address. Figure 3.32 shows the offset of each component in

the system. Finally, the target address, the result, will be used to access the FPGA

proposed design registers by adding each register offset, as established in equation (3.1).

Target address = Bridge offset + Hardware offset. (3.1)

85

Figure 3.32 FPGA Components Base Addresses

The next stage is creating a virtual memory in any Linux-based application

because Linux has a production memory that prevents direct access to an address in the

system. Without virtual memory, segmentation faults can be caused. A Linux system

call is used to achieve this known as mmap(), as shown below:

virtual_base = (unsigned long *) mmap(NULL, HW_REGS_SPAN, (PROT_READ

| PROT_WRITE), MAP_SHARED, fd, ALT_AXI_FPGASLVS_OFST).

The virtual base represents the base memory address that can be utilized with

any offset so that it can be accessed. Therefore, when the developer needs access to the

shared memory, adding the virtual base to the shared memory base is compulsory.

After the address configuration, the header of the frame for each dataset will be

checked. When the frame header exists, the processor can read the data after decoding

the frame data. However, when the frame header is not existing, the data will be rejected

by the processor as it might be invalid or corrupted. In the end, the collected data will

be printed out, and it can be shown in a real-time environment.

86

3.9 THE EMBEDDED LINUX DESIGN FLOW OF SWQS

Embedded Linux is a complete distribution operating system deployed to run embedded

devices such as the Internet of Things (IoT), tablets, smartphones, and Personal

Assistance Devices (Salvador & Angolini, 2014). The kernel of Linux can be run on

different processor architectures and SoC, such as Intel, ARM, and AMD. These five

components included in the embedded Linux system are known as the Bootloader,

Rootfs, kernel, services, and application.

3.9.1 Bootloader Compilation

A small software or mini operating system known as a Bootloader must be run before

starting the Linux environment. The component of the system, such as Ethernet,

memory, and the FPGA configuration, is initiated by the Bootloader, which gives the

ability to start the loading and running Linux kernel environment. Note that the

Bootloader includes platform-dependent services and responsibilities and some

independent features.

U-boot is the Bootloader used in the proposed design because this Bootloader

support Intel FPGA-SoC devices (Intel Corporation, 2014). Many development

platforms have used U-Boot to support architectures, such as MIPS, ARM, AVR32,

Microblaze, Nios, x86, and 68K. The user can use the U-boot to give data interactively

as it has a shell. In addition, it supports scripting, and it is distributed under the GPLv2

license.

Figure 3.33 presents the Bootloader Generation Flow. Embedded Software tools

and Intel FPGA-SoC software (SoC EDS) tools are used to generate the Bootloader.

The Handoff folder is created after compiling the Quartus Prime project. The Handoff

folder includes the hardware processor system’s connection and components. SoC EDS

and Handoff folder is used to generate the U-boot and pre-loader. When the Bootloader

is generated, the “make” tool is used to create the binary files of the Bootloader.

87

Figure 3.33 U-Boot Development Flow

3.9.2 Root File-system Creation

In this design, the default Rootfs of the golden top reference design from TERASIC can

be utilized as it is. The golden top file is the top-level design file which contains the

design, pin assignment, and I/O connection for each defined pin. No changing or

modification is needed to be done. Other than that, DE10 nano SoC development kit

Rootfs can be found and downloaded from the TERASIC website.

3.10 ADDING NEW CORE TO SWQS DESIGN

It is easy to add the core of Nios II with no more modifications required to the design.

In the Platform Designer, all the connections of the Nios II core can be made internally,

as shown in Figure 3.34.

Figure 3.34 Nios II Core Connections

88

The clock source will then feed the clock connection; furthermore, the reset

connection should be communicated with the rest of the master source. Avalon

Memory-Mapped bus interface is the data master. All the peripheral devices must be

connected to the Nios II processor using this master. When developing the firmware in

the system.h file, the Nios II processor should have the connection of any IP or

peripheral to the data master. Note that Avalon Memory-Mapped is the instruction

master responsible for the firmware instructions transactions. This master should be

communicated to the memory of the firmware only. The Interrupt Request (IRQ)

connection represents the interrupt master. When any interrupt source exists in any IP

or peripheral device connected to the processor by the data master, it can then be shown

in the IRQ master. When this additional procedure is done, the Platform Designer

should generate the .sopcinfo and .qsys files required for both software and hardware

flows.

3.11 SUMMARY

This chapter showed the technical guidelines for Heterogeneous System Architecture

(HSA). The chapter contained the flow design of the FPGA at both software and

hardware levels. Furthermore, the Linux development with all commands required to

create a completed Linux image has been explained briefly in this chapter. In addition,

the process of adding more cores to the proposed design was elaborated on in this

chapter. This chapter presented the hardware design and how the sensors will be

connected to the FPGA board. In addition, how the data will be transmitted to the ARM

processor and why the ARM processor is used in the proposed design. Moreover,

software domains were also elaborated on in this chapter. This illustrates the importance

of using more than one core for each sensor.

89

CHAPTER FOUR

RESULT AND ANALYSIS

4.1 INTRODUCTION

In this chapter, the results of the proposed design at each level are illustrated in Section

4.1. The discussion of the results is elaborated in Section 4.2, while Section 4.3 shows

a benchmark of the proposed design with previous works. Finally, a summary of the

chapter is presented in Section 4.4.

4.2 RESULTS

This study has proposed a new Smart Water Quality System (SWQS) hardware data

acquisition system design based on the heterogeneous Field Programmable Gate Array-

System-on-Chip (FPGA-SoC) platform. The system levels are the design level, design

verification level, prototype implementation, data validation, and system integration.

There is an intersection between the level and its item that has specific information; for

example, the design level has an action item that is the design flow of FPGA hardware.

Subsequently, the operation item has the results of the Quartus project compilation. In

the end, the output item implementation of the hardware on the FPGA board.

4.2.1 The Results of the Quartus Project Compilation

Quartus prime lite version, a free software, has been used to develop the proposed

design of Nios II processors’ systems on FPGA. The result of the system compilation

can be shown in Figure 4.1. It can be demonstrated from the figure that the design has

consumed 9% of the logic elements available for the Cyclone V SoC device, which is a

tiny portion of the available logic elements. Local memory for each processor core has

utilized 57% of the available On-Chip Internal Memory. More processor cores can be

added to this design based on design requirements.

90

Figure 4.1 The Result of the System Compilation

4.2.2 The Implementation of Prototype

The prototype was tested on different types of liquids for real-time testing. The

prototype design can be found in Figure 4.2. The following components were used for

this experiment: Raspberry Pi 3 development kit, DE10 Nano FPGA-SoC development

kit, pH sensor, TDS sensor, turbidity sensor, as well as a few wires and cables.

Figure 4.2 System Setup Components

91

Figure 4.3 illustrates the proposed design block diagram. Firstly, it presents the

pH sensor, Total Dissolved Solids (TDS) sensor, and turbidity sensor are analog

sensors. Therefore, the sensors need to be connected to ADC with an internal reference

circuit and the sample-and-hold circuit to decrease the noise that might affect the data

stability. The input signals of the pH sensor, TDS sensor, and turbidity sensor have been

connected to the ADC_IN0 pin, ADC_IN1 pin, and ADC_IN3 pin, respectively. Once

the data is collected and transferred to SoC, it can be viewed using the Raspberry Pi by

accessing the Linux application of SoC. Therefore, USB Mini-B was utilized to connect

Raspberry Pi with SoC. In addition, the Linux image has been burned on an SD card

which can be used to display the data collected from the sensors on the screen connected

to Raspberry Pi. Finally, each sensor must be connected to a 5V and ground pin.

Figure 4.3 Design Block Diagram

The above figure demonstrates that the Raspberry Pi has another component,

Liquid-Crystal Display (LCD), used in this experiment to avoid any use of a laptop or

92

PC and make the system portable and can be functioned using a power bank. The LCD

is utilized to access both Raspberry Pi and FPGA terminals. The Raspberry Pi board

was used for system augmentations. These augmentations are LCD, keyboard, and

mouse. These augments can be considered proof of system configurability and the

ability to integrate easily with any system or augment.

4.2.3 Design Verification Method

There are nine tests have been done on the proposed design for the verification process.

They are:

i. Core 0 data packetize test.

ii. Core 0 DMA run test.

iii. Core 1 pH test.

iv. Core 1 data transfer test.

v. Core 2 TDS test.

vi. Core 2 data transfer test.

vii. Core 3 turbidity test.

viii. Core 3 data transfer test.

ix. Mutex functionality test.

The data was printed out on the console to test the functionality of each core

before sending the data to the Linux application on the ARM terminal. This step was

done for 60 seconds for each sensor. It is essential to trace the errors on each embedded

C code to avoid the debug when the system gets more complicated.

Figure 4.4 presents the block diagram of the core 1 pH test as well as the core 0

data transfer test. Core 1 was used to read data from pH sensors and send it to a shared

memory. However, the shared memory is available once the mutual exclusion (mutex)

is unlocked. When the system is idle, the data will be written to shared memory.

93

Figure 4.4 Core 1 pH Data Collection and Data Transfer Test Block Diagram

Figure 4.5 shows the core 1 pH test and the data transfer test result. The output

of core 1 indicates that elaborate pH functionality and pH data transfer have been done

successfully. Other than that, pH results on the pure water were measured to check the

functionality of the system before sending it to the Linux application. It can be shown

from the figure below that the pH value varies from 6.85 to 7.03, which is an acceptable

range.

Figure 4.5 Readings of pH Sensor

Figure 4.6 illustrates the core 2 TDS data collection and transfer test diagram.

The below diagram presents all the needed components for success in core 2 tests. Core

2 was utilized to get TDS data and write it to shared memory. On the other hand, the

shared memory is available once the mutex is unlocked. When the mutex is available,

the data will be written to the shared memory.

94

Figure 4.6 The Block Diagram of Core 2 TDS Data Collection and Data Transfer Test

The TDS sensor measured the TDS value of pure water, which was between

63.54 ppm and 71.34 ppm. However, when adding salt to the water, the value increased

approximately between 1769 ppm and 1874 ppm. The results have been printed out by

core 2. Figure 4.7 shows the TDS readings of the water with more salt.

Figure 4.7 Readings of TDS Sensor

Figure 4.8 presents the block diagram of core 3 turbidity data collection as well

as the tests of the data transfer. Core 0 has been utilized by core 3 to test the data transfer.

In addition, core 3 has been connected to the turbidity sensor to achieve a data collection

test and to prove the functionality of the sensor.

95

Figure 4.8 The Block Diagram of Core 3 Turbidity Data Collection and Data Transfer

Test

Core 3 output can be observed in below Figure 4.9. The data of the turbidity

sensor has been collected by core 3 and transferred through DMA to core 0. To check

the functionality of the turbidity sensor, little dust was added to the pure water.

Therefore, the turbidity value increased to reach between almost 1060 to 1180 mNTU.

Figure 4.9 Readings of Turbidity Sensor

Once the test of each core is done separately, the next and final step is to send

the data that was gotten from each core to the ARM terminal. The ARM terminal will

read the data in parallel from each core to prevent latency. The experiment was done on

pure water, lemon juice, and milk to test the pH sensor. Meanwhile, to test the TDS

sensor, pure water and water with salt and the turbidity sensor were tested on pure water,

water with little dust, and water with more dust. Note that the system has been tested

successfully with good readings. The test was done several times on different time

96

periods to make sure the system was functioning well. In addition, the line graphs below

for each sensor were measured for 60 seconds only.

The pH value was almost 7 for pure water; however, it decreased when

measuring the pH of lemon juice and acidic liquid. Nevertheless, when measuring the

pH value of milk, the values were above an alkaline liquid. Figures 4.10 and 4.11

present the installation of a pH sensor to measure different liquids.

Figure 4.10 Line Graph of pH Values of Pure Water, Lemon Juice, and Milk

Figure 4.11 Testing the pH Sensor

For TDS, a sensor has been used to measure it. Two liquids, pure and salted

water, have been utilized to measure TDS. Results show the purer the water, the less

TDS value. TDS value is measured by ppm, which is parts per million. Pure water

values were between 60 ppm and 70 ppm. However, adding salt to the water will

increase the TDS values to nearly 1700 ppm, as presented in Figure 4.12. However,

more particles in the water mean a great TDS value; therefore, it is crucial to the

97

parameter that needs to be measured to distinguish pure water from a not pure one.

Figure 4.13 illustrates the real installation of the turbidity sensor.

Figure 4.12 Line graph of TDS Values of Pure Water and Water with Salt

Figure 4.13 Testing of the TDS Sensor

Turbidity is the measure of the relative clarity of a liquid. It is an optical

characteristic of water and measures the amount of light scattered by material in the

water when a light is shined through the water sample. The higher the intensity of

scattered light, the higher the turbidity. The turbidity is measured by Nephelometric

Turbidity Units (NTU). Pure water showed a value of nearly 600 mNTU to 800mNTU.

Nevertheless, the water with some dust showed more than 1100 mNTU, as shown in

Figure 4.14. The measurements show that the more the turbidity value, the more

particles in it, making it unsafe to drink. Figure 4.15 demonstrates the real installation

of the turbidity sensor.

98

Figure 4.14 Line graph of Turbidity Values of Pure Water, Water with Little Dust, and

Water with More Dust

Figure 4.15 Testing the Turbidity Sensor

4.2.4 The Results of the SWQS Linux-Based Application

SWQS Linux-based application was developed on Linux kernel SystemCalls C

programming. After compiling the executable format of this application, it was

converted to a Linux Terminal command. Therefore, the (-h) option must be familiar

with the command arguments to run the Linux-based application.

All the execution possibilities of the Linux application have been tested

successfully to make validation to the functionality of the application. The behavior of

the system in case of the system cores controlling, system status monitoring, application

behavior in case of the wrong command is used, and finally, printing usage message in

case the user types of false arguments.

For instance, running the command “swqs –r 0”, the expectation is to run all the

system cores. However, if the user specifies one of the cores of the sensors like “swqs

–r 3”, core 0 and core 3 will be executed, showing the turbidity sensor’s data.

99

The SWQS Linux application was tested in a real-time environment to control

the cores of processing elements on FPGA, decode the message sent from core 0, and

finally show the data collected from sensors on the Linux Terminal, as shown in Figure

4.16. After integrating the sensors with the cores, the above test verifies the system’s

functionality.

Figure 4.16 SWQS Results on Linux-Based Application

Raspberry Pi has another component, LCD, used in this experiment to avoid

using a laptop or PC and make the system portable and function using a power bank.

The LCD is utilized to access both Raspberry Pi and FPGA terminals. Meanwhile, the

Raspberry Pi board was used for system augmentations. These augmentations are LCD,

keyboard, and mouse. These augments can be considered proof of system

100

configurability and the ability to integrate easily with any system or augment. The

proposed water quality system was proved as a smart system since it incorporates

functions of sensing and controlling a system to describe or analyze a situation. Other

than that, the proposed system provides a wide space of flexibility for developers to

design and develop their applications from hardware (FPGA platform) and software

(SoC) perspectives. The proposed platform is not tied to any programming language. It

has an embedded Linux running on an SoC sub-system to give full adaption with any

programming language or artificial intelligence (AI) platforms like TensorFlow and

Caffe. The data can be streamed to the AI platform in a real-time environment.

4.3 DISCUSSION

After getting all the results and testing the proposed SWQS, this section discussed the

proposed system's novelty and uniqueness in terms of software and hardware design.

4.3.1 Motivations of the Middleware Layer

This research design has invented a new layer between software and hardware known

as the middleware layer. Software services to the application layer are provided in the

form of API. There are two layers in the system: software and hardware layers.

However, more knowledge is needed in hardware design skills, including Very High-

Speed Integrated Circuit Hardware Description Language (VHDL), Verilog, and

Verilog system, design constraints, etc. Moving toward the hardware layer will raise

the complexity of the design. Also, when moving toward the software layer, the

developer requires more skills in developing the software that contains the operating

system, services of the systems, programming languages, etc. The design limitations

will grow when moving to hardware design because of the controllers, buses, interfaces,

and system components. Nevertheless, these limitations will decrease as moving to the

software layer because everything will be controlled on the software level.

The middleware layer will make the work of the developers easier since there is

less access to the hardware, and most access will be done via the middleware layer. The

proposed design has derived APIs, which will assist the application layer in accessing

101

the hardware and sensor layers with less complexity. The proposed heterogeneous

design provides software and hardware engineers with an excellent opportunity to

design SWQS applications.

4.3.2 System Flexibility

FPGA was utilized to design the proposed system, providing more design flexibility.

The designer might face the most common issue: the limited number of input/output

peripherals on most boards. This is a critical issue when multiple sensor interfaces are

needed to design the system. FPGA is a programmable board. Therefore, the developer

may design the interfaces, controllers, and peripherals using Intellectual Property (IP),

a pre-made component available on FPGA. For example, Figure 4.17 presents the

components and interfaces needed for a single core in the proposed SWQS application.

However, it can be easily added when a new interface is required. In addition, the new

interfaces could be wired with external FPGA pins.

Figure 4.17 SWQS Proposed Single Design Core

102

4.3.3 Applications of the Design

The proposed design has been developed based on SWQS data acquisition and the

system functionality. Achieving high-quality SWQS needs multiple sensors and sub-

systems to be added to the design. Many applications can be extended to data

processing, decision-making, performance analysis, machine learning, and deep

learning. Using the embedded Linux operating system in the SWQS proposed system

will simplify the application development. Note that any programming language could

be used for developing the application.

4.4 SWQS DESIGN COMPARED TO PREVIOUS WORK

The full testing of the SWQS was done based on the testing plan, and the test has been

done several times to ensure that it works well under different situations. However, it is

strongly necessary to evaluate the SWQS design to ensure it is working well. SWQS

design was evaluated by comparing it with previous work to prove that the SQWS

design has increased the performance of monitoring the water quality. In addition, the

proposed design will be benchmarked with (Myint et al., 2017), as both use the FPGA

board.

The proposed design has applied Verilog language for the hardware design,

which is more accessible than VHDL. It has been used by (Myint et al., 2017) as it is

less complex and requires fewer coding lines. Other than that, Verilog is almost like the

C language, which makes Verilog user-friendly (Digilant Blog, 2022).

In addition, both designs have utilized the Platform Designer tool to create the

Nios II softcore, a configurable processor with an internal Central Processing Unit

(CPU). Nevertheless, the proposed design used one Nios II processor for each to employ

the option of parallelism, which is getting the data of all sensors simultaneously to

decrease the time consumption. The proposed design used four cores. Core 0 is

responsible for data synchronization, while core 1, core 2, as well as core 3 are

responsible for collecting raw data from each sensor, calibrating the readings,

segmenting the data in a format, and finally making it ready for the user application

running on the ARM processor.

103

The proposed system used the Linux application to display the sensors’ water

quality data. The Linux application gives the ability to get the data easily on excel or

connect with other software for machine learning or performance analysis. Nonetheless,

(Myint et al., 2017) used eclipse Grafana software to display the data only.

The proposed prototype utilized a small screen for real-time displaying and

saving the data in the SD card provided. In contrast, (Myint et al., 2017) used the XBee

transmitter model to transfer the data remotely, which might be lost if the connection is

disturbed.

4.5 SUMMARY

This chapter showed the proposed design’s results, and the collected data from the

system sensors were analyzed and discussed. Each test was done more than twice to

check the system’s functionality. In addition, this chapter discusses the application and

results in terms of the middleware layer and the system's flexibility. In the end, the

proposed system was compared to (Myint et al., 2017) in terms of functionality and

results.

104

CHAPTER 5

CONCLUSION AND FUTURE WORK

Chapter Five: Conclusion and Future Wor k

5.1 CONCLUSION

Contaminated or polluted water is one of the leading causes of mortality. According to

the World Health Organization (WHO), 2.2 billion people drank water without any

safety-management services in 2017, with 144 million collecting water from untreated

water bodies such as lakes, streams, and rivers (“2.1 Billion People Lack Safe Drinking

Water at Home, More than Twice as Many Lack Safe Sanitation,” 2017). As a result,

measuring water quality becomes an important issue. A conceptual layout of the project

is given by stating the background, statement of the problem, and research objectives.

A critical literature review is done to do the groundwork of what a Smart Water Quality

System (SWQS) is to justify why this research is essential.

By the end of Chapter 2, objective one, which was investigating and analyzing

the previous and related works on designing an SWQS and categorizing it in groups, is

already achieved. This research methodology is divided into hardware and software

design of the proposed SWQS using Heterogeneous System Architecture (HSA), a new

computer platform infrastructure and associated software. This allows processors of

different types and architectures to work efficiently and cooperatively in shared

memory from a single source program.

The project proposed a new and novel SWQS hardware acquisition system

design based on a heterogeneous platform using the System-on-Chip (SoC) and Field

Programmable Gate Array (FPGA) platforms. The proposed design was tested from the

hardware compilation and ended with the system integration testing. The design was

utilized to provide an excellent data acquisition system validated using three water

quality parameter sensors: pH sensor, Total Dissolved Solids (TDS) sensor, and

turbidity sensor. The hardware design was implemented successfully on FPGA to take

advantage of the flexibility and configurability of FPGA; however, the software

application was implemented on the SoC platform to take advantage of the performance

and programmability of the SoC platform. Hence, Quartus Prime was used to compile

105

the hardware design. Subsequently, we implement the prototype for real-time testing.

The final step is to connect the prototype to a Raspberry Pi processor, which was

connected to a screen to display the data. The system was portable, and it was powered

using a power bank. Therefore, the design can measure water quality anywhere without

worrying about the power source. The proposed design can be used as a heterogeneous

multi-core system for many applications, one of which is the SWQS data acquisition

system.

5.2 FUTURE WORK

This study showed the initial research challenges and provided an excellent solution to

develop and implement an SWQS system in a heterogeneous computing platform based

on FPGA-SoC architectures. Some future recommendations that can be used to improve

the system are listed below:

 System integration: performance is the main requirement for the

embedded system. Further design cycles must be considered in future

studies, especially data integration, analysis, and decision-making. In

addition, power consumption and the associated thermal management are

essential issues that must be considered.

 Application development: the proposed design is a Linux-based

application to control and monitor the hardware system. In addition, the data

were read by the proposed design in real-time. For SWQS, many previous

studies employed different sensors, and how to add them to the proposed

design is a fundamental issue that needs to be focused on in the future.

Additionally, several artificial intelligence (AI) could be integrated with the

proposed system for many AI applications in terms of object detection,

segmentation, and classification.

 Optimization and analysis: optimization and performance analysis are

considered important issues that need more work to improve the overall

system performance. For instance, it can be done by optimizing other

indices like power, energy, or both to enhance the heterogeneous system

performance.

106

 Involve other sensors: the main aim of the proposed design was to prove

that the heterogeneous computing platform FPGA-SoC could implement

SWQS with high performance and efficiency. Therefore, only three sensors

have been used. However, more water quality sensors could be integrated

into the proposed SWQS to measure other important water quality

parameters.

107

REFERENCES

2.1 billion people lack safe drinking water at home, more than twice as many lack safe

sanitation. (2017, July 12).

Aaruththiran, M., Yujia, Z., & Bagherian, M. A. (2019). Smartphone-based Real-Time

Water Quality Monitoring System. The University of Nottingham.

AN 311: Standard Cell ASIC to FPGA Design Methodology and Guidelines. (2009,

April). Intel. Altera Corporation.

Besta, M., Stanojevic, D., Licht, J. D. F., Ben-Nun, T., & Hoefler, T. (2019). Graph

Processing on FPGAs: Taxonomy, Survey, Challenges.

Billah, M. M., Yusof, Z. M., Kadir, K., Ali, A. M. M., & Ahmad, I. (2019). Real-time

Monitoring of Water Quality in Animal Farm: An IoT Application. 2019 IEEE

International Conference on Smart Instrumentation, Measurement and

Application (ICSIMA), 1–6. IEEE.

https://doi.org/10.1109/ICSIMA47653.2019.9057320

Birje, Miss. S. v., Bedkyale, Miss. T., Alwe, Miss. C., & Adiwarekar, Mr. V. (2016).

Water pollution detection system using pH and turbidity sensors. International

Journal of Advanced Research in Computer and Communication Engineering,

5(4).

Brackenbury, L. E. M., Plana, L. A., & Pepper, J. (2010). System-on-Chip Design and

Implementation. IEEE Transactions on Education, 53(2), 272–281.

https://doi.org/10.1109/TE.2009.2014858

Burgio, P., Bertogna, M., Olmedo, I. S., Gai, P., Marongiu, A., & Sojka, M. (2016). A

Software Stack for Next-Generation Automotive Systems on Many-Core

Heterogeneous Platforms. 2016 Euromicro Conference on Digital System

Design (DSD), 55–59. IEEE. https://doi.org/10.1109/DSD.2016.84

CC3200 is the industry’s first single-chip microcontroller unit with built-in Wi-Fi.

(2015, February 15).

108

Cloete, N. A., Malekian, R., & Nair, L. (2016). Design of Smart Sensors for Real-Time

Water Quality Monitoring. IEEE Access, 4, 3975–3990.

https://doi.org/10.1109/ACCESS.2016.2592958

Danh, L. V. Q., Dung, D. V. M., Danh, T. H., & Ngon, N. C. (2020). Design and

Deployment of an IoT-Based Water Quality Monitoring System for Aquaculture

in Mekong Delta. International Journal of Mechanical Engineering and

Robotics Research, 1170–1175. https://doi.org/10.18178/ijmerr.9.8.1170-1175

Dhaker, P. (2020, February). Wireless Water Quality Monitoring System.

EC/TDS/PPM Meter On Limited Budget. (2008).

Encinas, C., Ruiz, E., Cortez, J., & Espinoza, A. (2017). Design and implementation of

a distributed IoT system for the monitoring of water quality in aquaculture. 2017

Wireless Telecommunications Symposium (WTS), 1–7. IEEE.

https://doi.org/10.1109/WTS.2017.7943540

Geetha, S., & Gouthami, S. (2016). Internet of things enabled real time water quality

monitoring system. Smart Water, 2(1), 1. https://doi.org/10.1186/s40713-017-

0005-y

Gerstlauer, A., Haubelt, C., Pimentel, A. D., Stefanov, T. P., Gajski, D. D., & Teich, J.

(2009). Electronic System-Level Synthesis Methodologies. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 28(10), 1517–

1530. https://doi.org/10.1109/TCAD.2009.2026356

Giesemann, F., Paya-Vaya, G., Blume, H., Limmer, M., & Ritter, W. (2014). A

comprehensive ASIC/FPGA prototyping environment for exploring embedded

processing systems for advanced driver assistance applications. 2014

International Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation (SAMOS XIV), 314–321. IEEE.

https://doi.org/10.1109/SAMOS.2014.6893227

Gravity: Analog Turbidity Sensor For Arduino. (n.d.).

109

Hwu, W.-M. W. (2016). Introduction. In Heterogeneous System Architecture (pp. 1–5).

Elsevier. https://doi.org/10.1016/B978-0-12-800386-2.00009-2

Intel® Quartus® Prime Standard Edition Handbook Volume 1: Design and Synthesis.

(2018). Intel.

J Greaves, D. (2011). System on Chip Design and Modelling. Computer Science Tripos,

p. 130. England: University of Cambridge.

Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal Solid Waste

Generation, Composition, and Management: The World Scenario. Critical

Reviews in Environmental Science and Technology, 42(15), 1509–1630.

https://doi.org/10.1080/10643389.2011.569871

Khatri, P., Gupta, K. K., & Gupta, R. K. (2020). Assessment of Water Quality

Parameters in Real-Time Environment. SN Computer Science, 1(6), 340.

https://doi.org/10.1007/s42979-020-00368-9

Kraxner, F. (2015, February 3). How will ocean acidification impact marine life?

Lezzar, F., Benmerzoug, D., & Kitouni, I. (2020). IoT for Monitoring and Control of

Water Quality Parameters. International Journal of Interactive Mobile

Technologies (IJIM), 14(16), 4. https://doi.org/10.3991/ijim.v14i16.15783

Li, L. Y., Jaafar, H., & Ramli, N. H. (2018). Preliminary Study of Water Quality

Monitoring Based on WSN Technology. 2018 International Conference on

Computational Approach in Smart Systems Design and Applications

(ICASSDA), 1–7. IEEE. https://doi.org/10.1109/ICASSDA.2018.8477627

Myint, C. Z., Gopal, L., & Aung, Y. L. (2017). Reconfigurable smart water quality

monitoring system in IoT environment. 2017 IEEE/ACIS 16th International

Conference on Computer and Information Science (ICIS), 435–440. IEEE.

https://doi.org/10.1109/ICIS.2017.7960032

Ngom, B., Diallo, M., Gueye, B., & Marilleau, N. (2019). LoRa-based Measurement

Station for Water Quality Monitoring: Case of Botanical Garden Pool. 2019

110

IEEE Sensors Applications Symposium (SAS), 1–4. IEEE.

https://doi.org/10.1109/SAS.2019.8705986

Niswar, M., Wainalang, S., Ilham, A. A., Zainuddin, Z., Fujaya, Y., Muslimin, Z., …

Fall, D. (2018). IoT-based Water Quality Monitoring System for Soft-Shell Crab

Farming. 2018 IEEE International Conference on Internet of Things and

Intelligence System (IOTAIS), 6–9. IEEE.

https://doi.org/10.1109/IOTAIS.2018.8600828

O’Donnell, D. (2017, November 29). Understanding Conductivity Cell Constants.

Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-

effective using IoT. Heliyon, 6(7), e04096.

https://doi.org/10.1016/j.heliyon.2020.e04096

pH Meter. (2022, November 6).

Pujar, P. M., Kenchannavar, H. H., Kulkarni, R. M., & Kulkarni, U. P. (2020). Real-

time water quality monitoring through Internet of Things and ANOVA-based

analysis: a case study on river Krishna. Applied Water Science, 10(1), 22.

https://doi.org/10.1007/s13201-019-1111-9

Purkayastha, A. A., Shiddhibhavi, S. A., & Tabkhi, H. (2018). Taxonomy of Spatial

Parallelism on FPGAs for Massively Parallel Applications. 2018 31st IEEE

International System-on-Chip Conference (SOCC), 55–60. IEEE.

https://doi.org/10.1109/SOCC.2018.8618501

Raju, K. R. S. R., & Varma, G. H. K. (2017). Knowledge Based Real Time Monitoring

System for Aquaculture Using IoT. 2017 IEEE 7th International Advance

Computing Conference (IACC), 318–321. IEEE.

https://doi.org/10.1109/IACC.2017.0075

Saravanan, K., Anusuya, E., Kumar, R., & Son, L. H. (2018). Real-time water quality

monitoring using Internet of Things in SCADA. Environmental Monitoring and

Assessment, 190(9), 556. https://doi.org/10.1007/s10661-018-6914-x

111

Staff, F. (2020, December 2). The Pros and Cons of Optical Dissolved Oxygen Sensors.

FishSens Magazine.

Ultrasonic Level Sensor. (2022, April 15).

Vijayakumar, N., & Ramya, R. (2015). The real time monitoring of water quality in IoT

environment. 2015 International Conference on Circuits, Power and Computing

Technologies [ICCPCT-2015], 1–4. IEEE.

https://doi.org/10.1109/ICCPCT.2015.7159459

What is a Raspberry Pi? (2015, August 20).

What is Arduino? (2018, February 5).

William D., M., & Dennis A., S. (2000). System-on-chip Design Methodologyin

Engineering Education. International Conference Engineering Education.

Taipei, Taiwan.

Zhong, G., Niar, S., Prakash, A., & Mitra, T. (2016). Design of Multiple-Target

Tracking System on Heterogeneous System-on-Chip Devices. IEEE

Transactions on Vehicular Technology, 65(6), 4802–4812.

https://doi.org/10.1109/TVT.2016.2546957

Ziener, D. (2018). Improving Reliability, Security, and Efficiency of Reconfigurable

Hardware Systems.

What is FPGA. (2020).

https://www.intel.com/content/www/us/en/products/programmable/fpga/newto

-fpgas/resource-center/overview.htm

Gravity: Analog Turbidity Sensor For Arduino - DFRobot. (2021, January 12). Dfrobot.

https://www.dfrobot.com/product-1394.html?search=turbi

A. (2022a, March 7). Water level sensor types and works. Apure.

https://apureinstrument.com/blogs/water-level-sensor-types-and-works/

https://www.dfrobot.com/product-1394.html?search=turbi
https://apureinstrument.com/blogs/water-level-sensor-types-and-works/

112

USA. Intel. (2020). AN 307: Intel® FPGA Design Flow for Xilinx Users.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/

an/an307.pdf

Intel. (2021a). Intel FPGA and Programmable Devices.

https://www.intel.com/content/www/us/en/products/programmable.html

Intel. (2021b). Skylake (microarchitecture). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Skylake_(microarchitecture)&oldid

=998421085

Intel Corporation. (2014). Booting and Configuration Introduction.

https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/hb

/arria-10/a10_5400a.pdf

Intel Corporation. (2015). Instantiating the Nios II Processor. Instantiating the Nios II

Processor Intel PSG website. (2020).

https://www.intel.com/content/www/us/en/prog

https://www.intel.com/content/www/us/en/products/programmable.html

