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ABSTRACT 

In 2017, about 144 million people collected water from untreated water bodies, such as 

lakes, streams, and rivers. One of the major causes of death is consuming contaminated 

or polluted water. Measuring and monitoring water quality are usually done using two 

methods. The conventional method occurs by taking samples of water and then 

transferring them to the laboratory. The second method is real-time water quality by 

integrating the Internet of Things (IoT). This method is preferable as it only requires 

smart sensors and processors to monitor the water quality. Among the widely used 

processors are the Arduino and Raspberry Pi. However, these two processors have a 

limitation, including a limited number of hard-coded input/output pins, unlike the Field 

Programmable Gate Array (FPGA) processor, which has many input/output pins not 

hard-coded to allow different interfacing of multiple sensors. Based on the literature, an 

FPGA platform provides more flexibility and reconfigurability features when compared 

with the Arduino and Raspberry Pi. This research mainly focuses on designing a 

reconfigurable multi-core Smart Water Quality System (SWQS) measuring the pH, 

Total Dissolved Solids (TDS), and turbidity parameters. The hardware design was 

developed based on the system-on-chip (SoC) design methodology on an FPGA to 

parallelize the SWQS functionality. A Liquid-Crystal Display (LCD) display has been 

incorporated into the Raspberry Pi to show real-time data. The Platform Designer on 

Quartus II has been used to instantiate four cores to integrate all functions into one 

processor. The Eclipse tool on Quartus II, on the other hand, was used to program the 

sensors using embedded C language. The proposed design has been implemented on 

DE10 Nano FPGA-SoC consuming 9% of logic resources and 57% of internal memory. 

To verify the proposed system functionality, the sensors were tested on different liquids. 

To test the pH level, the pH sensor was tested on pure water, lemon juice, and milk to 

show the acidity and alkalinity. The pH sensor showed 7, less nearly 2, and less than 8 

for pure water, lemon juice, and milk, respectively. The TDS sensor successfully 

detected the salt added to the water, and the TDS values increased to approximately 

1800 ppm. Finally, the turbidity sensor revealed the dust inserted in the solution. The 

more dust in the liquid, the more TDS value there was recorded. Additionally, results 

showed that the processing time of all the sensors using FPGA is approximately 300 ms 

for ten readings; on the other hand, the processing time of using other processors, such 

as Arduino, took 2 s for ten readings. This is because FPGA is functioning at 100 MHz, 

while Arduino’s frequency is not more than 24 MHz. All real-time sensor readings were 

shown on a Linux Terminal. In conclusion, the proposed FPGA-based system can be 

utilized as a heterogeneous multi-core system for many applications, including the 

SWQS. 
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 ملخص البحث 
ABSTRACT IN ARABIC 

 

 نهارلاا مثل معالجة غير مصادر من المياه من احتياجاتهم ياخذون انسان مليون واربعون واربع مائة من اكثر

 بالقرب المياه يجعل وهذا المياه في الفضلات برمي تقوم المصانع معظم ,النامية الدول بعض في .والبحيرات

 سلبي بشكل تؤثر المواد هذه .الثقيلة المواد الى بالأضافه كيميائيه مواد تحمل لأنها تلوثا اكثر المصانع من

 هذه في .والبكتيريا الفايروسات تنشر الثقيلة المواد لان المياه في تعيش التي الحية الكائنات وعلى البيئة على

 ونقلها المياه من عينات اخذ عن عبارة وهي التقليدية الطريقة اما هما بطريقتين المياه جودة قياس يتم الايام

 ,ذلك الى بالاضافة .اكثر وتكلفه وقت الى تحتاج الطريقة هذه ولكن ,جودتها قياس ثم ومن المختبر الى

 بأستخدام المياه جودة قياس فهي الثانية الطريقة اما .النقل عملية خلال تتغير ان الممكن من المياه حالة

 الطريقة من مفضلة بشكل اكبر الطريقة ههذ .مختلفة بطرق البيانات ونقل المعالجات مع الذكية الحساسات

 .وقت كل في المياه جودة لقياس المعالج الى بالاضافة الذكية الحساسات الى تحتاج فقط لانها التقليدية

 يركز المشروع هذا فأن لهذا .المفاجأة الحالات في بسرعة القرار اتخاذ على المستخدم ستساعد الطريقة هذه

 المواد كمية الى بالأضافة والعكورة الهيدروجيني الأس لقياس حساسات استخدام على اساسي بشكل

 عرضها لأجل وارسالها البيانات بمعالجة  للبرمجة القابلة المنطقية البوابات مصفوفة قومت ذلك بعد .بةئالذا

 وسوف .المياه جودة قياس في المستخدمة الأخرى الأجهزة تعقيد من سيقلل المشروع هذا .الشاشة على

 اخيرا .الذكي المياه متحسس جهاز تطوير في المستخدم الوقت لتقليل البرمجة مع الأجهزة بأستخدام تقوم

 معالج سيقوم .به المتربطة الشاشة على البيانات لعرض فقط سيستخدم باي الراسبري جهاز ,اخرا وليس

 الجهاز .الشاشة على عرضها ثم ومن بداخله مبرمج تطبيق طريق عن البيانات بأستلام باي الراسبري

 .الهيدروجيني الأس لقياس الحليب ,الليمون عصير ,النقية المياه مثل مختلفة سوائل على اختباره تم قد المصمم
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الرواسب ومياه مع الكثير اما نسبة العكورة فقد تم استخدام المياه النقيه بالاضافه الى مياه مع القليل من 

من الرواسب. اخيرا فقد تم استخدام المياه النقية ومياه تحتوي على الملح لقياس المواد المذابة في الماء. عن 

طريق هذا المشروع يمكن استخدام البيانات عن طريق ربطها ببرامج اتخاذ القرار, تحليل البيانات وغيرها من 

 البرامج.
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Chapter One:  IntroductioIntroduction  

CHAPTER ONE 

 

 

INTRODUCTION 

1.1 OVERVIEW 

Water quality is an important factor that needs to be considered as it is directly related 

to people’s lives. Therefore, this research focuses on designing a Smart Water Quality 

System (SWQS) Field Programmable Gate Array (FPGA)-based to eliminate the 

problems and drawbacks of previous works. This chapter illustrates the work by giving 

a brief background and defining the research problem. The chapter then presents the 

research motivation. Finally, it emphasizes the research scope.  

Section 1.3 defines the research problem statement. Then, in Sections 1.4 and 

1.5, the research objectives and research scope are presented, respectively. In addition, 

an outline of the main structure of the thesis is briefly reported in Section 1.6. Finally, 

Section 1.7 summarizes Chapter 1. 

1.2 RESEARCH BACKGROUND 

One of the major causes of death is consuming contaminated or polluted water. 

According to the World Health Organization (WHO), in 2017, 2.2 billion people were 

drinking water without any safety management services, and 144 million collected 

water from untreated water bodies, such as lakes, streams, and rivers (“2.1 Billion 

People Lack Safe Drinking Water at Home, More than Twice as Many Lack Safe 

Sanitation,” 2017). To reduce the death rate due to contaminated and polluted water, 

measuring water quality, especially for consumption, becomes important. Water quality 

indicators can mean differently. It shows the suitability of any water body used for 

different uses, such as drinking, cooking, and cleaning. Water usage has different 

chemical, biological, and physical acceptance levels. For instance, drinking water has 

specified water quality parameters, such as pH levels ranging from 6.5 to 8.5. As many 

parameters need to be measured, thus, several sensors must be employed for the water 

quality test. To this date, the water safety management services that utilize a system that 
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support large computational loads need a huge amount of power, not portable, and big 

devices, making it impossible to be commercialized. 

Hence, it is pertinent to establish a new smart system considering the latest 

technological advancement that can carry out the huge computational load at lower 

power but with high performance. Therefore, this research proposes a water quality 

system that utilizes the FPGA platform and the Adcanced RISC Machine (ARM) 

processor. 

1.2.1 Field Programmable Gate Array (FPGA) 

FPGA is a reconfigurable computing device with several programmable units that could 

solve any computational issues (Giesemann, Paya-Vaya, Blume, Limmer, & Ritter, 

2014). This device is an integrated circuit made of semiconductor material, and the main 

feature of FPGA is the device’s electrical functionality can be reconfigured even by the 

customer. As a result, these powerful devices can be customized to accelerate key 

workloads and enable design engineers to adapt to emerging standards or changing 

requirements.  

Figure 1.1 illustrates the common design flow for an FPGA platform, beginning 

with hardware design specifications. The hardware design specifications consist of the 

needed hardware design’s functionality, memory size, the number of input/output ports, 

speed, and finally, how the data transfers. The next step is the architecture design, in 

which the hardware design can be further split into system and sub-system modules, 

i.e., the micro-architecture level design (Gerstlauer et al., 2009). 
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Figure 1.1 Hardware Design Flow of FPGA (Intel, 2020) 

Once the architecture and the micro-architecture level of the needed hardware 

design are completed, the Register Transfer Level (RTL) will begin. At this level, 

Hardware Description Language (HDL) will be used to translate the system and sub-

system blocks into a Hardware netlist (“AN 311: Standard Cell ASIC to FPGA Design 

Methodology and Guidelines,” 2009). Synthesis and implementation processes will 

begin when the digital module design is done. These two steps will translate the HDL 

design into a physical netlist prepared for timing analysis. Timing analysis is the process 

of ensuring the hardware design is working from a time perspective. In other words, it 

will check whether the design is the speed requirements of the system or not (Gerstlauer 

et al., 2009). In the end, the hardware design will be executed on an FPGA board.  

1.2.2 Heterogeneous System Architecture (HSA) 

A Heterogeneous System Architecture (HSA) is a computer platform that functions 

with associated software that makes different kinds of processors with different 

architectures work in shared memory efficiently and cooperatively from a single source 

program (Kyriazis, 2012). Integrating multiple computing elements at low frequencies 

leads to high performance with low power consumption; architectural heterogeneity 

improves platform flexibility (Burgio et al., 2016). This heterogeneous platform, such 

as FPGA-System-on-Chip (SoC), improves the performance of embedded using 



 

4 

hardware containing more than one type of processor. This approach has shown 

improved performance, particularly in artificial intelligence (AI), in which 

computationally demanding models must be trained and executed. 

SWQS utilizes different sensors to measure water parameters such as pH, 

turbidity, and Total Dissolved Solids (TDS) and then processes the data on FPGA-SoC. 

The proposed design methodology reduces the complexity of the FPGA-SoC 

heterogeneous platform by adding a middleware layer for software developers to 

interact with the FPGA system in the form of an application program interface. 

Therefore, heterogeneous architecture is the best choice for complex systems with 

multiple input and output ports to enhance the overall system performance.  

1.3 PROBLEM STATEMENT 

Currently, in Malaysia, water quality monitoring is done by traditional methods, 

consisting of taking samples from the area under test and then driving them back to a 

laboratory to analyze them. The analysis usually is for detecting chemicals and 

microbial that cause the water’s pollution. This method is not only time-consuming but 

requires significant human interaction. As a result, important data may be lost because 

of the manual collection process. In addition, the water quality analysis is not done 

within a short time, so determining a real-time water condition is not plausible. This 

traditional method is only good if the samples are taken and analyzed simultaneously 

(Geetha & Gouthami, 2016). Moreover, the water might get contaminated, making it 

very difficult and costly to recover (Billah, Yusof, Kadir, Ali, & Ahmad, 2019). 

Moreover, the technicians cannot take samples from all locations, which may lead to 

inaccurate data (Lezzar, Benmerzoug, & Kitouni, 2020). Besides the issues arising from 

the manual sample collection, the chemical materials used in water quality testing are 

usually toxic and very expensive (Khatri, Gupta, & Gupta, 2020).   

Even though the research on water quality monitoring systems have been applied 

many times, the current system is still expensive, has short-distance data transmission, 

and is not easy to use (Geetha & Gouthami, 2016). Most current SWQS is costly (Pasika 

& Gandla, 2020), and there should be a big effort by researchers to reduce the cost to 

make the system more affordable for everyone. Performance is also an important issue 
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that needs to be considered. SWQS must have high performance and accuracy to reduce 

errors that might cause poor health conditions and death for the people who consumed 

the water if the measurements are incorrect. 

While FPGA has high processing power, developing an FPGA can be complex 

and requires more effort than configuring the same design on the Central Processing 

Unit (CPU) (Besta, Stanojevic, Licht, Ben-Nun, & Hoefler, 2019). In addition, it 

provides less specialized components (i.e., floating point) operations. It is for this reason 

that FPGA remains to be a prototype platform for embedded systems. That said, the use 

of heterogeneous platforms mesh with FPGA has recently gained popularity for design 

applications that need performance and programmability offered via a processor and 

flexibility and configurability accomplished using the FPGA fabric (Zhong, Niar, 

Prakash, & Mitra, 2016). The SoC heterogeneous platforms improve the performance 

of embedded systems using a hardware design that contains more than one processor.  

In addition, when comparing FPGA with other processors such as Arduino and 

Raspberry Pi, in terms of configurability and implementation, FPGA is reconfigurable 

based on the user’s requirements. However, Arduino and Raspberry Pi are configured 

and implemented during manufacturing. Additionally, FPGA can process the data in 

parallel to overcome the latency issue when many inputs are used. On the other hand, 

there is no way to perform pipelines using processors such as Arduino and Raspberry 

Pi. In addition, the processing rate of the SWQ data using an FPGA processor is high 

as its frequency reaches 1 GHz. However, the frequency is slightly lower in other 

processors, for instance, 16 MHz and 400 MHz for Arduino and Raspberry Pi, 

respectively. Last but not least, the pins of FPGA are 40 pins that are not hardcoded as 

their interface can be modified based on the sensor’s data exchange protocol, unlike the 

pins of Arduino and Raspberry Pi, which are hardcoded during the manufacturing 

process. Moreover, FPGA-SoC is a heterogeneous platform that can work with shared 

memory for more cooperativity and efficiency. In addition, a heterogeneous platform 

such as FPGA-SoC improves the performance of embedded using more than one 

processor. 
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For these reasons, the main objective of this project is to design SWQS using an 

FPGA-SoC platform to monitor different water parameters, namely; pH, TDS, and 

turbidity parameters, rather than relying on the conventional way of measuring water 

quality parameters. 

1.4 RESEARCH OBJECTIVES 

The main objectives of the project are as below: 

i. To design a reconfigurable hardware-based Smart Water Quality System 

(SWQS) via using a Field Programmable Gate Array-System-on-Chip 

(FPGA-SoC) heterogeneous platform. 

ii. To implement a real-time prototype for the proposed Smart Water Quality 

System (SWQS). 

iii. To evaluate the proposed Smart Water Quality System (SWQS) based on 

pH, Total Dissolved Solids (TDS), and turbidity parameters. 

1.5 RESEARCH SCOPE 

The scope of this research mainly concentrates only on the hardware design of SWQS 

by utilizing the heterogeneous platform of FPGA-SoC to process signals obtained from 

water quality sensors. The system design integrates FPGA with the SoC to create a 

customizable heterogeneous platform that segments the system functionality into tasks. 

The proposed design in this study will utilize two development kits, the DE10 Nano 

FPGA-SoC development kit from Intel and the Raspberry Pi development board. The 

utilized boards will not impact the proposed system design since the design flow is the 

same for any FPGA development board. The system has two SoC sub-systems: an 

external one (Raspberry Pi) and an internal one (ARM SoC). The external sub-system 

will provide the system with all the required augments to ease prototype 

implementation, like LCD, mouse, and keyboard. The internal SoC will be part of the 

SWQS as the main system processor. 
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In addition, testing the proposed system will only be based on three water quality 

parameters to verify and validate the functionality and reliability of the proposed FPGA-

SoC platforms. The utilized sensors in this design will be the pH, TDS, and turbidity 

sensors. These sensors were used as a proof-of-concept to validate the system’s 

functionality. However, other sensors related to SWQS can be adapted to any future 

system based on the user’s requirements.  

1.6 DISSERTATION LAYOUT  

This dissertation is composed of five chapters; a brief introduction and overview of the 

research are provided in Chapter 1. In Chapter 2, an in-depth investigation was 

conducted about the previous studies in the SWQS development field. Chapter 3 

elaborates on the proposed system, and the design steps needed to develop an SWQS 

hardware design based on a heterogeneous platform are presented as well as presenting 

the flow of software to program the system. Furthermore, the proposed system test 

results and the collected data, were discussed in Chapter 4. Finally, in Chapter 5, the 

summary of the research findings, contribution, claims, and comparative analysis was 

reported. 

1.7 SUMMARY  

This chapter presented a detailed overview of the research topic, known as SWQS. First, 

the problem statement of this study was illustrated. Then, the research objectives are 

presented in this chapter. Furthermore, the scope was explained. Finally, the thesis 

layout and the relation between each chapter were discussed. 
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CHAPTER TWO 

 

 

LITERATURE REVIEW 

2.1 OVERVIEW 

This chapter describes the academic literature correlated with Smart Water Quality 

System (SWQS) hardware implementation. The main objective of this chapter is to find 

out and elaborate on the latest research achievements in the field of SWQS design and 

development. In addition, this chapter highlighted the drawbacks and problems 

encountered by researchers in their designs, as well as obstacles in providing suitable 

SWQS solutions.  

In Section 2.2, a brief overview of water quality approaches is presented. Then, 

Section 2.3 explains some sensors that measure water quality parameters such as pH, 

temperature, turbidity, electrical conductivity (EC), and dissolved oxygen (DO). In 

Section 2.4, previous studies have been presented based on the controller or the 

processor. They have been used to collect data on water quality parameters and 

summarize the related studies' motivations and drawbacks. Section 2.5, on the other 

hand, shows the proposed SWQS FGPA-based followed by Section 2.6. It presents 

general information about FPGA in terms of architecture, such as memory, speed, 

interfaces, etc., and software tools, such as Quartus, Platform Designer, etc. Finally, 

Section 2.7 summarizes this chapter. 

2.2 DIFFERENT WATER QUALITY APPROACHES  

There are two ways of measuring water quality. The first is the traditional method 

involving samples from the river, lake, or any water source, while the second uses 

sensors to measure water quality. In the following subsections, both conventional and 

Internet of Things (IoT) methods will be discussed in detail. 
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2.2.1 Conventional Approach  

The traditional way of measuring water quality parameters, such as the water pH, 

turbidity, DO, and EC, starts with several samples for testing. Note that sampling selects 

a small portion of the water to be handled and transported to the laboratory (Ngom, 

Diallo, Gueye, & Marilleau, 2019). After transporting the samples to the laboratory, 

specific materials or solutions must be added to measure a specific parameter. For 

example, to measure the level of phosphorus, one of the crucial water parameters, 

samples must be transferred to the lab as soon as possible to minimize any external 

effects that might change the measurement of the total phosphorus. Potassium per-

sulfate should be mixed with the water sample before heating it for 30 minutes. After 

the heating process, the mixture must be cooled to room temperature. Before measuring 

the total phosphorus, sodium hydroxide is added and mixed with the sample gently. The 

last step is to measure the total phosphorus using a spectrophotometer device 7 minutes 

after mixing. Sometimes, the process can take more than five working days (Li, Jaafar, 

& Ramli, 2018).  

Besides the elaborated identification process, the sampling process is not easy 

as the samples must be taken from the specified location and involve a highly complex 

process. Additionally, water samples should be transferred to the laboratory and tested 

as soon as possible to avoid water pollution. Moreover, this method is time-consuming 

and costly, requiring equipment cleaning, measuring procedures, and recording. 

Finally, due to human interaction, many errors might occur during the process, and that 

will affect the accuracy of the reading.  

To conclude, this method is inefficient, and more research should be conducted 

to develop alternative methods to avoid the challenges mentioned above. Figure 2.1 

shows an example of measuring water quality using the traditional method. 
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Figure 2.1 Conventional-Based Water Quality Monitoring Example  

(Tucsonaz, 2015) 

2.2.2 Internet of Things (IoT) Approach  

With the advancement in technology, many alternative methods have been designed 

and developed to measure water quality parameters incorporating the IoT and machine 

learning to solve the problems of water quality assessment (Geetha & Gouthami, 2016). 

The IoT involves using a smart sensor connected to a processor to process the data for 

monitoring. It can also be connected to a communication tool such as Wi-Fi, LoRa, and 

Bluetooth to send the data remotely to the main station for real-time monitoring. This 

way, data can be sent from over a few meters to thousands of meters away, depending 

on the communication tool’s capacity.  

This method costs less money when compared to the conventional method, as 

the sensors and controller are comparatively cheap. More importantly, it provides real-

time measurement and monitoring to help the user detects any changes immediately.  

That said, SWQS needs more exploration since the sensors are expensive with 

good quality or cheap with bad quality. Furthermore, the sensors need regular 

maintenance to avoid damage, as the sensors can be poorly affected by the materials in 

the liquid. In addition, some communication tools can be expensive, and some can only 

send data at a lower range, making them unsuitable for big water sources. Figure 2.2 

shows an example of measuring water quality using the IoT method. 
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Figure 2.2 IoT-Based Water Quality Monitoring Example Using Arduino  

(Pinterest, 2017) 

2.3 SENSORS USED IN MONITORING WATER QUALITY PARAMETERS  

Sensors convert the physical parameter into equivalent measurable electrical quantity, 

which is given as input to controllers through an optional wireless communication 

device and parameters.  

2.3.1 pH Sensor  

The pH represents the number of hydrogen ions in the water. It can be calculated using 

the negative base of 10 logarithms of the hydrogen ions per liter (Sensorland, 2019). 

For most water sources, the pH value should be from 6 to 9; if it is more or less, most 

sea creatures, such as mussels and clams, would be affected negatively (Kraxner, 2015).   

pH probe, as shown in Figure 2.3, contains inner and outer tubes. The outer tube 

contains a Potassium Chloride (KCl) solution, which considers the controller, while the 

inner tube has a buffer solution with pH 7. The bottom of the inner tube is usually made 

of a glass overlay that allows the hydrogen ions to move between the probe and test 

solution. The inner and outer tubes have a silver wire covered with silver chloride 

connected to the sensor amplifier circuit. Once the probe is placed in the water, the glass 

membrane will allow the hydrogen ions to go through it and replace the wire’s ions 

which will allow current to flow, causing EC. Figure 2.3 shows the configuration of the 

pH probe. The voltage values will vary according to pH value; for example, 0 to 0.4 V 

is equivalent to pH 7 to pH 0, and so on. The pH value will then be obtained when the 

microprocessor processes the value. If the water or the solution pH is less than 7, this 
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means a high concentration of hydrogen ions, implying it is an acidic solution. Once the 

pH value reaches more than 7, the solution is a base. As the pH values might be minimal 

and unreadable, an amplifier circuit must be added to obtain clear pH values (“PH 

Meter,” 2022).   

 

Figure 2.3 Configuration of pH Probe (Aaruththiran, Yujia, & Bagherian, 2019) 

2.3.2 Temperature Sensor  

The temperature sensor is made of a probe and built-in Integrated Circuit (IC) 

containing a register and alarm that will show a warning when the temperature is high 

or not in the range. A pull-up resistor is used so the microcontroller will reduce the 

resistance when the sensor sends the data. This sensor can function without additional 

power as it has a capacitor that stores energy from high signals. However, an external 

power source is needed to prevent any outbreak of the sensor. The temperature sensor 

is essential as it affects the conductivity and turbidity as the ions move in the water 

when the temperature is high (Thermometer, 2019). Figure 2.4 shows the configuration 

of the temperature probe. 
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Figure 2.4 Configuration of Temperature Probe (Dhaker, 2020) 

2.3.3 Turbidity Sensor  

Turbidity is the measuring of water clarity and cloudiness. It indicates whether the water 

has suspended particles or not. It is an important factor that should be measured in most 

water treatment and supply stations as it might cause harm to aquatic life, not to mention 

human health.  

The concept of a turbidity sensor is a light-transmitting and scattering rate that 

relies on the total amount of particles in the water. If the light is sent to the water and 

scattered, the water has many particles that cause the light to scatter. On the other hand, 

if the phototransistor receives the light, then the water is clear. A phototransistor is 

connected to a resistor; when the voltage is high, the water is clear of particles 

(“Gravity: Analog Turbidity Sensor For Arduino,” n.d.). Figure 2.5 shows a turbidity 

sensor.  
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Figure 2.5 Turbidity Sensor 

2.3.4 Conductivity Sensor  

The ability of water to allow current through it is known as EC. Current relies on the 

number of electrons that conduct electricity. The parameters that can affect the 

conductivity are the solution temperature and ions concentration, as well as the EC 

parameter, which can affect other parameters such as DO (Acmasindia, 2019). In the 

conductivity sensor, two electrodes are placed against each other. Once a current is 

applied to the outer pair, the inner pair potential can be measured. As a result, the current 

will switch charge electrodes, finally leading the ions to pull the oppositely charged 

electrodes. As a result, the electrode will carry many charges proportional to the water 

conductivity (“EC/TDS/PPM Meter On Limited Budget,” 2008). An EC sensor is used 

in various applications such as cooling tower water treatment, boiler water treatment 

and reverse osmosis monitoring. The sensor selection is based on the required 

application to ensure lifetime and accuracy. It is measured in “mS” (milliSiemens) or 

“μS” (microSiemens) per centimeter (“Gravity: Analog Turbidity Sensor For Arduino,” 

n.d.). Depreciating or appreciating water conductivity may indicate that the water is 

polluted, as some materials might increase conductivity, such as chloride, nitrite, and 

phosphate ions (O’Donnell, 2017). Not to mention, the conductivity can be 

proportionally increased when the temperature is high. However, the conductivity 

sensor suffers from some practical drawbacks. For example, the user cannot determine 

what ions are dissolved in the water, and the sensor should be cleaned properly before 

using it again in another solution. Figure 2.6 shows an EC sensor.  
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Figure 2.6 Electrical Conductivity Sensor 

2.3.5 Dissolved Oxygen Sensor  

DO is an instrumental water parameter that is measured in mg/l. Electrolysis and optics 

are the methods that are used to measure DO. However, the optic method is better in 

terms of accuracy and time. The DO sensor consists of a photodetector, two blue and 

red LEDs, and a luminescent dye between the LEDs, as shown below in Figure 2.7. 

Once the blue light reaches the dye, the electrons will get energy and let the light emit 

until it becomes stable. On the other hand, the photodetector will receive the light and 

destroy it if the solution contains oxygen because there is an interaction between the 

dye and the oxygen.  

  

Figure 2.7 Dissolved Oxygen Optical Sensor (Staff, 2020) 



 

16 

2.3.6 Total Dissolved Solids (TDS) Sensor 

It is a smart sensor that measures the total dissolved materials in a liquid such as water. 

The Total Dissolved Solids (TDS) sensor measures the solution conductivity as solids 

that are ionized in liquid-like minerals and salt raise the conductivity of the liquids. 

Therefore, the TDS sensor mainly measures conductivity; the TDS value could be 

estimated from these readings. The unit that measured the values is Parts Per Million 

(PPM). In addition, the sensor’s cost starts at $10 only, but with limited features. For 

instance, a basic one can measure only the TDS of a liquid. However, expensive one 

can measure the temperature, salinity, and even more.  

It is essential to measure the TDS value, as it indicates that the water has many 

dissolved solids when the value is high. As time pass, these materials might cause 

damage and decrease the devices’ and water pipelines’ lifetime. Therefore, it is 

important to find a way to solve this issue, like using a water filter (Aquasana, 2022). 

Figure 2.8 presents an example of a TDS sensor. 

 

Figure 2.8 Total Dissolved Solids Sensor 

2.3.7 Free Chlorine Sensor 

Free chlorine is one of the most important water quality parameters that need to be 

measured to ensure water quality. Free chlorine is known as Residual Chlorine (RC). It 

shows the indication for the water potability level. It measures the amount of RC, which 



 

17 

exists in the liquid as dissolved gas, such as Chlorine (Cl2) and hypochlorite ion (ClO−), 

which might measure hypochlorous acid (HOCl) as well. Free chlorine sensor could be 

utilized to measure the total amount of three materials Cl2, OCl−, and HOCl. Note that 

Mg/L is the unit that is used to measure the free Cl2 parameter.  

Cl2 is commonly used to disinfect and clean the contaminated water source. Free 

Cl2 in the water can be tested using a different kit, such as digital colorimeters or color-

wheel test kits. The sensor read indicates that the water containing free Cl2 is free of 

contamination. Figure 2.9 shows an example of a free Cl2 sensor (Karak, Bhagat, & 

Bhattacharyya, 2012). 

 

Figure 2.9 Free Chlorine Sensor (Karak et al., 2012). 

2.3.8 Water Level Sensor 

The water level is an essential parameter that needs to be measured in real-time so fast 

action can be taken before something happens. A water quality sensor is a device that 

is utilized to measure the low and high levels of water in a calm situation. The water 

level sensor is a contact sensor that is used to convert the water level, which is an analog 

read, into an electrical signal that a microcontroller can process. Different kinds of 

sensors could be used to measure the water level, such as optical water level sensor, 

magnetic flap level, hydrostatic level transmitter, ultrasonic sensor, etc.  

The water level can be measured by placing the sensor into the liquid at the 

surface, and then the pressure of the liquid will be converted into the height of the liquid 

using the following equation:  
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    𝑃 =  ρ. g. H + Po,                    (2.1) 

where P is the pressure of water measured at the surface, ρ is a fixed value which 

is the density of the water, g is the gravity, Po is the pressure of the atmosphere at the 

surface of the liquid, and finally, H is the depth where the sensor was placed. Figure 

2.10 shows the ultrasonic sensor, one of the sensors that can be used to measure the 

water level (“Ultrasonic Level Sensor,” 2022).  

 

Figure 2.10 Ultrasonic Level Sensor for Liquids 

2.4 RELATED RESEARCH  

2.4.1 Arduino as a Processing Platform  

Arduino is an electronic device that utilizes an open-source platform based on easy-to-

use hardware and software. Arduino microcontroller could be used to process data from 

different sensors and devices by sending a set of programming codes to the board. 

Arduino Software (IDE) is an easy-to-use software that the programmer can use to 

control the Arduino board. The board has sixteen digital pins and six analog pins, all 

hard-coded. In addition, Arduino has a built-in clock frequency that reaches up to 16 

MHz. Arduino board has been used in many water quality systems with different 

sensors. The below graphs conclude some of the studies that have used Arduino to 

design water quality systems (“What Is Arduino?,” 2018). 
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In (Ngom et al., 2019), the author presents a water quality monitoring system 

that uses the LoRa transmission system to send the data to be visible on a website. The 

system used an Arduino Mega 2560 microcontroller to get and process the sensors’ 

data. Water quality was monitored using four sensors: pH sensor, oxidation/reduction 

potential (ORP) sensor, EC sensor, and water temperature sensor. Moreover, the 

Arduino microcontroller was used because it was easy to handle due to the hardware 

and software flexibility. In addition, the LoRa transmission system transmits the signals 

using industrial, scientific, and medical (ISM) bands. Therefore, there is no need to pay 

for the local telecommunication operator. The prototype is a low-power consumption 

system as all sensors may operate using 5 V, and it is recharged using a solar panel. 

However, this system did not measure other important water parameters such as water 

level, turbidity, etc. In addition, the LoRa transmission system is the low range, 

transmitting data within 2 km to 3 km at a high price because it needs a gateway for 

transmission. The complexity and cost are the main problems in water quality 

monitoring systems. Figure 2.11 shows the overall water quality monitoring system. 

 

Figure 2.11 Overall Water Quality Monitoring System (Ngom et al., 2019) 

Moreover, (Li et al., 2018) have designed a wireless water quality system to 

measure water quality parameters, send it through Wireless Sensor Network (WSN) 

technology, and finally display the obtained data on a website platform. Arduino Uno 

microprocessor is used to process the obtained data from the smart sensors and direct 

the data into the transmission unit to transmit the data. The pH sensor, temperature 

sensor, and TDS sensor are connected to the processor. TDS is a water quality parameter 
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used to show the inorganic salts and small amounts of organic matter present in solution 

in water. The obtained data is transferred to the IoT platform through a Wi-Fi shield. 

Then, the data will be stored and displayed on the screen using ThingSpeaker software, 

providing immediate visualization of data simultaneously to ensure that the 

transmission is done successfully without any loss. A Wi-Fi shield is used as it can 

transmit a high amount of data, and the transmission rate of a Wi-Fi shield is high 

compared to other communication mediums. The pH sensors used in this project can 

function in temperatures between 0 to 60℃ without damage within the same range of 

temperature needed. In addition, this sensor is used to measure the pH value without 

delay. Furthermore, the TDS sensor has very high accuracy and is waterproof to be used 

in water. On the other hand, the above system requires calibration before collecting the 

data. Therefore, data transmission might delay or even lost with a poor Wi-Fi 

connection. Figure 2.12 presents the prototype of a water quality monitoring system. 

 

Figure 2.12 Prototype of Water Quality Monitoring System (Li et al., 2018) 

Additionally, (Chowdury et al., 2019) have developed SWQS to measure the 

quality of the water remotely. Conductivity, pH, temperature, and turbidity are the 

parameters that were measured in this project, as seen in Figure 2.13. Arduino Mega 

2560 was used to be the processing unit for the data obtained from the sensors because 

it has several ports, which make it suitable for many sensors to be connected and then 

display the results on LCD to monitor the data in real-time. The obtained data is just a 

number; the user might not understand it, which is why a classification method was 



 

21 

required to classify the data of each sensor into good or bad along with the real-time 

numbers. Thus, big data analytics was integrated with IoT because of its high speed, 

reliability, and scalability. IoT application was utilized to help the user get the 

visualized data on a mobile, laptop, and Personal Computer (PC), easing the 

visualization. Users can get daily/monthly/ even yearly reports as the system has a data 

management layer to provide the client with the reports. The designer had utilized an 

Arduino board limited to the interfaces, such as Inter-Integrated Circuit (I2C) and Serial 

Peripheral Interface (SPI), even Arduino Mega has many pins, but still, the interfaces 

cannot be changed as it is hard-coded and cannot be reconfigured.  

 

Figure 2.13 Overall Water Quality Scheme (Chowdury et al., 2019) 

Moreover, (Lezzar et al., 2020) have designed and developed an IoT system that 

measures specific water quality parameters to achieve high accuracy. The system has 

five sensors to measure parameters that indicate if the water is contaminated with pH, 

temperature, turbidity, ORP, and Cl2. ORP is an essential environmental water 

parameter that reflects the clearness of the liquid and could remove the pollutants in 

ponds. Meanwhile, the Cl2 sensor measures the Cl2 concentration in the water, which 

needs to be kept at a low level to keep drinking water healthy. The Arduino 

ATmega1281 microcontroller is the main processing unit to which all sensors are 

connected. The system solves the problem of the power supplies as it is attached to solar 

cells to recharge the batteries. All obtained data was sent to the user and stakeholders 

using the Message Queuing Telemetry Transport (MQTT) protocol via the SIM800c 
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module to achieve quick data transfer. The system can monitor the water quality in a 

fixed tank or mobile water source. Moreover, it can localize where the water is 

contaminated exactly. Thus, a decision can be made accordingly. The designed system 

consists of a cloud infrastructure to get the parameters remotely. It is a lifespan system 

that was designed to avoid short-term maintenance. SIM800c module is a GSM/GPRS 

solution that supports different frequency bands instead of Wi-Fi because Wi-Fi is 

unavailable everywhere. Figure 2.14 presents the overall system architecture. 

  

Figure 2.14 Overall System Architecture (Lezzar et al., 2020) 

Additionally, (Saravanan, Anusuya, Kumar, & Son, 2018) have proposed a 

Supervisory Control and Data Acquisition (SCADA) system that cooperates with IoT 

for real-time water quality monitoring in India. Several sensors measure physical and 

chemical water parameters such as water temperature, flow, pressure, pH, and color. A 

color sensor is utilized to discover whether the water is contaminated. When the water 

is mixed with dust, it will be shown in the RGB value within the range of 0 - 255. GPRS 

module was connected to Arduino ATmega 368 microcontroller to connect the latter 

with the internet. The water contamination status was sent to the server through a 

personal computer or mobile device to be displayed on the website. The data obtained 

from the sensors were viewed on the web platform, and there was an LCD for viewing 

data on-site. 

Moreover, after the data was obtained from each sensor, it was compared with 

the threshold values to inform authorized users via SMS of any abnormal sensing to 
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take action needed as fast as possible. SCADA system was used to get the sensor 

reading from different stations for real-time monitoring. In addition, the primary 

advantage of the SCADA system is the report generation available to the operator in 

each station. The system is designed to make the operation easier, reduce size, weight, 

and cost, and improve sensitivity. Using the General Packet Radio Services (GPRS) 

module has many advantages, such as high-speed communication between a mobile 

device and the main network. Arduino microprocessor is used instead of a 

Programmable Logic Controller (PLC) controller to accelerate the SCADA system 

speed. Furthermore, the most exciting systems were standalone devices that were not 

connected to any IoT platform, while this system utilized IoT to avoid taking the results 

on-site. However, the proposed SCADA system cannot be implemented in areas not 

covered by Wi-Fi; hence, the GPRS module constantly needs Wi-Fi. Figure 2.15 shows 

hardware implementation for water quality monitoring devices in the pipeline. 

 

 Figure 2.15 Hardware Implementation for Water Quality Monitoring Device in 

Pipeline (Saravanan et al., 2018) 

An IoT system was designed by (Mukta, Islam, Barman, Reza, & Khan, 2019) 

to measure four different parameters: pH, conductivity, temperature, and turbidity. 

Arduino Uno is used as a microcontroller to process the data obtained from the sensors. 

The Arduino microcontroller is connected to a desktop directly, so the obtained data 

can be displayed on it. An application was developed in the .NET platform to check the 

obtained data with the World Health Organization (WHO). The sixty-water sample was 

taken from three sources: drinkable, unclear, and natural. Fast forest binary classifiers 

are machine learning algorithms for training and testing the module, which has been 

used to classify whether the test water sample is drinkable or not. In the end, it was 
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concluded that the fast forest algorithm is the best in terms of accuracy, and the F1 

score, which measures the model's accuracy, was used for the overall system 

performance. In addition, the system is not real-time based, meaning samples need to 

be collected, which is time-consuming. Apart from that, some water features might be 

affected when transferring it. Additionally, Figure 2.16 illustrates the experimental 

setup of the SQWM system. 

 

Figure 2.16 Experimental Setup of SQWM System (Mukta, Islam, Barman, Reza, & 

Khan, 2019) 

Furthermore, (Pujar, Kenchannavar, Kulkarni, & Kulkarni, 2020) have 

developed a real-time water quality system to monitor six water parameters like pH, 

EC, nitrate, Biochemical Oxygen Demand (BOD), Total Dissolved Oxygen (TDO), and 

temperature. The sensors are connected to Arduino Mega 2560 controller to process the 

sensors’ data, as shown in Figure 2.17. A total of thirty-six (36) samples were randomly 

collected from six different stations. Note that the samples were taken in different 

seasons throughout the year to check whether the weather impacts water quality or not. 

After data obtaining, it was sent through the ESP8266 Wi-Fi shield to the main station 

for monitoring. One-way and two-way Analysis of Variance (ANOVA) analysis tools 

were used to evaluate the system, and it has been found that one-way ANOVA is the 

most suitable tool for training data, such as an IoT system. Furthermore, this research 

found that different seasons have different results. In other words, temperature, DO, 

conductivity, BOD, and nitrate parameters were impacted in the winter.  
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Figure 2.17 Circuit and Block Diagram of IoT System (Pujar et al., 2020) 

(Encinas, Ruiz, Cortez, & Espinoza, 2017) proposed a real-time water quality 

system to monitor three water quality parameters, namely pH, temperature, and DO. 

Arduino microcontroller was implemented for processing the data into Zigbee wireless 

communication tool for transmitting the data obtained from the sensor remotely to the 

main station. An application was developed using the C# programming language, in 

which its database was designed using the MySQL platform. While the readings were 

obtained from the sensor, it was directly sent to the database for local storing and sent 

to a web server to visualize the data on the application. The overall system costs less 

compared to other designs, and it is portable and has low power consumption.  

Additionally, the C# programming language was used because it allows giving 

a request to the sensors to send their readings through the microcontroller along with a 

multiplexer. The Zigbee tool will transmit the data obtained from the sensors to the 

computer for display on the application. A multiplexer is a device that is used to raise 

the efficiency of the communication system by collecting the data from each sensor and 

transmitting via a single line only. However, the system was designed to display data 

without alerting the end user if the water condition was bad. Developing an artificial 

intelligence (AI) module to alert when the data is not within the standards set in the 

database has been recommended. Figure 2.18 presents the system’s general blocks and 

data flow. 
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 Figure 2.18 System General Blocks and Data Flow  

(Encinas et al., 2017) 

2.4.2 Raspberry Pi as Processing Platform  

The Raspberry Pi is another low-cost and small-size controller that could function as a 

computer along with other peripheral devices, such as a mouse and keyboard. It helps 

developer to design any device using Python or Scratch programming languages. Note 

that Raspberry Pi has the capability of being connected to other devices, such as sensors. 

Since the Raspberry Pi controller has been used in many smart devices to process the 

sensors' data, it has an inbuilt Wi-Fi module for remote access. Thus, there is no need 

for external equipment. In addition, the Raspberry Pi controller can function on 12 V 

only; thus, it can be implemented easily. Many water quality systems have utilized the 

Raspberry Pi controller to collect the data from water quality sensors and send it through 

different transmission devices for monitoring (“What Is a Raspberry Pi?,” 2015). The 

below studies show the main advantages and disadvantages of using Raspberry Pi in 

water quality designs.  

(Khatri et al., 2020) invented a real-time water quality system in India that 

measures water quality parameters using different sensors, such as pH sensor, EC 

sensor, ORP sensor, DO sensor, and temperature sensor, as mentioned in Figure 2.19. 

ORP is a water quality measurement that indicates if the water is oxidizing or reducing. 

ORP parameter should be measured when its value is low, indicating that the water has 

less DO. It then leads to an increase in the toxicity of certain materials, which increases 
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water contamination. The obtained data from the sensor was processed using a 

Raspberry Pi 3 controller, which collects data, analyzes it, and makes decisions since 

the controller is programmed using python. Finally, the system’s performance was 

validated by comparing the results with another work using Absolute Percentage 

Relative Error (APRE). Raspberry Pi has an inbuilt Wi-Fi module for remote access. 

Thus, there is no need for external equipment. In addition, the Raspberry Pi controller 

can function on 12 V only; therefore, it can be implemented easily. The system has very 

high accuracy in measuring the parameters compared to other work. However, Linux 

operating systems must be used when implementing a system using Raspberry Pi, which 

is not popular among users. In the future, it has been recommended to implement a 

water quality monitoring system using fuzzy logic in the IoT environment and 

distribution networks.  

  

Figure 2.19 Block Diagram of Developed (Khatri et al., 2020) 

(Niswar et al., 2018) proposed a water quality monitoring system using an IoT 

platform to measure water quality for crab farming in Indonesia. The system has three 

sensors to measure pH level, temperature, and salinity. The sensors are connected to 

Raspberry Pi and Arduino processors for processing the data into the mobile phone 

using the MQTT protocol. LoRa wireless communication system is the middle way to 

transfer data long distances. The user has designed a web-based application for the 
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mobile phone to remotely monitor water quality using the node-red platform. This open-

source programming tool can be used to communicate with IoT devices. The system 

was designed to alert the crab farmer if the farm water quality is not acceptable for all 

water parameters. The system is essential for crab farmers to monitor the water quality 

parameters as water quality can affect their survival. However, the system can measure 

only pH, salinity, and temperature and neglects other parameters such as DO, which 

might have a bad impact if it is not within the acceptable level. In addition, the LoRa 

system and the sensors are connected to the Arduino microprocessor and Raspberry Pi, 

making it complicated. Furthermore, the data was transferred using 3G and 4G 

networks, which are not available everywhere, which might delay data transfer or cause 

data loss. The author recommended adding this system to the water circulation to reduce 

human intervention for improving water quality. In addition, it has been recommended 

to reduce the energy consumption for all devices used to design the system. Figure 2.20 

shows an IoT-based Monitoring System. 

  

Figure 2.20 IoT-based Monitoring System (Niswar et al., 2018) 

A real-time water quality monitoring system has been proposed for aquaculture 

farmers to alert them if the water body is polluted (Raju & Varma, 2017). The system 

consisted of several sensors to measure different water quality parameters. The water 

quality sensor: DO, temperature, carbonates, nitrate, pH, ammonia, and salt, are 

connected to a Raspberry Pi 3 controller that contains an inbuilt Wi-Fi module. The 

system was powered using a solar panel to reduce power consumption. The system 
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always stores data and alerts the farmers if the water conditions are not in the allowable 

range. In addition, a mobile application was designed to allow the user to monitor the 

data remotely in real-time so the farmer can view the historically obtained data. Using 

solar panels will overcome the problem of electricity breakdown as the farmers face a 

lot of power cuts. When the farmer receives a message alerting him of abnormal water 

conditions, the message also states how to solve the faced issue. Nevertheless, the 

overall system’s initial cost is high compared to other systems. The cost and energy 

consumption can be reduced when the system is developed to be automated using an 

internet network. The system architecture is shown in Figure 2.21. 

 

 Figure 2.21 System Architecture (Raju & Varma, 2017) 

(Vijayakumar & Ramya, 2015) designed a low-cost water quality monitoring 

system that used smart sensors to measure five water quality parameters; pH, 

conductivity, turbidity, DO, and temperature. These sensors are connected to a 

Raspberry Pi B+ controller to process the sensors’ data to the USR-WIFI232-X-V4.4 

module that transfers the obtained data to the cloud using a gateway. A mobile 

application was provided to view the data obtained from the sensors. Raspberry Pi 

controller can be connected to several sensors and interfaces simultaneously, making it 
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suitable for systems with many inputs and outputs. The controller and the used wireless 

communication module were the best choice for such a system as it is portable, low 

cost, and capable of processing, analyzing, sending, and finally viewing data on a 

mobile phone. Thus, it was more efficient compared to other systems. It has been 

suggested to measure biological parameters as the system measured only physical 

parameters and implement the design in many areas to collect more data about the 

condition of the water body. The overall block diagram is presented in Figure 2.22. 

  

Figure 2.22 Overall Block Diagram (Vijayakumar & Ramya, 2015) 

2.4.3 TI CC3200 as Processing Platform  

The Texas Instrument CC3200 microcontroller is a single chip with an internal Wi-Fi 

chip invented for IoT applications. It allows the developer to design a completed 

application using only a single chip. It contains software, tools, and sample applications 
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and is easy to program. It has different peripherals, such as I2C, Serial Peripheral 

Interface (SPI), Universal Asynchronous Receiver-Transmitter (UART), and Analog-

to-Digital Converter (ADC) channels (“CC3200 Is the Industry’s First Single-Chip 

Microcontroller Unit with Built-in Wi-Fi,” 2015). TI CC3200 has been used to design 

some water quality to process the data obtained from the sensors. 

Additionally, (Geetha & Gouthami, 2016) have designed a cheap system for 

water quality monitoring. To check water quality, the design uses five sensors to 

measure pH, turbidity, temperature, water level, and EC. The data is collected using a 

TI CC3200 controller, a single chip with Wi-Fi built into it for wireless communication 

purposes, as presented in Figure 2.23. The controller, as mentioned above, is 

programmed to store the data in the cloud using the Ubidots platform to analyze the 

data after storing it.  Testing WHO’s data is added to the module to compare it to the 

obtained data from sensors. In addition, once readings from sensors reach abnormal 

values, the user will get an alert that a problem needs to be solved. TI CC3200 controller 

is easy to use, and its speed is high compared to other processors with external Wi-Fi 

chips (Texas instrument CC3200 Simple Link, 2017). The controller works in four 

modes; Hibernate, Sleep, Deep Sleep, and Active. Thus, the consumed power will be 

reduced because the controller is not always functioning. However, using a Wi-Fi 

module is not a good choice as it consumes high power. Still, its range of 

communication is high compared to other communication protocols, not to mention the 

need for external hardware chips that are not needed anymore when using a Wi-Fi 

module. It has been recommended to improve the system by implementing machine 

learning algorithms for detecting abnormal water quality parameter values.  
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Figure 2.23 Overall Block Diagram (Geetha & Gouthami, 2016) 

Furthermore, a new system has been developed to monitor the water quality 

parameters in real-time to reduce human intervention (Billah et al., 2019). This system 

was designed to allow the farmers to monitor their waterways to take the actions needed 

when the water parameters are not good. Thus, three sensors were used to measure 

temperature, pH, and turbidity. TI CC3200 microcontroller is the main chip used to 

process the data from the sensors and send it through the Wi-Fi network. Finally, the 

data was displayed on LCD using graphs, charts, etc. Then, data is transmitted using 

MQTT to the end-user for monitoring purposes. CC3200 microcontroller has built-in 

Wi-Fi. Hence, there is no need for outer Wi-Fi equipment. Furthermore, the MQTT 

protocol is used to make the communication between the microprocessor and end-user 

easier as it is not complicated. However, the MQTT protocol was low in data rate 

transmission, and that caused the system to be slow. On the other hand, some challenges 

have been faced during real implementation, such as the turbidity parameters being 

unstable most of the time as it is susceptible to the water flowing; this sensor needs 

some time to get a more stable reading. Besides, the turbidity sensor can only measure 

the quality, not the quantity. Therefore, the user cannot get the turbidity reading like 

other sensors. Figure 2.24 presents the overall block diagram. 
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Figure 2.24 Overall Block Diagram (Billah et al., 2019) 

2.4.3.1 FPGA as Processing Platform   

FPGA is a reconfigurable device that contains many programmable units (Giesemann 

et al., 2014). This device is an integrated circuit made of semiconductor material. The 

main advantage of FPGA is any user can reconfigure the device’s electrical 

functionality as it is not hard-coded. These powerful devices can be customized to 

accelerate key workloads and enable design engineers to adapt to emerging standards 

or changing requirements. In Section 2.5, we will elaborate more on the architecture of 

an FPGA. 

In (Myint, Gopal, & Aung, 2017), water quality parameters have been 

monitored using IoT technology using five smart sensors to measure water quality 

parameters; pH, water level, turbidity, temperature, and carbon dioxide (CO2). They 

were measured on the water’s surface, as illustrated in Figure 2.25. A Very High-Speed 

Integrated Circuit Hardware Description Language (VHDL) and C language using the 

Quartus II tool were used to program the FPGA controller. It is the core system used to 

collect the data obtained from the sensor and process it to a personal computer. The 

Zigbee-based wireless communication system was applied to transfer the data remotely 

from the water location into the main station, where the user can see the water 

parameters in real-time. The carbon dioxide sensor was SEN0219, which is the best 

choice for detecting the CO2 level due to its high stability and sensitivity. The power 
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consumption is very low, and finally, it is waterproof and does not cause any poisoning. 

In addition, the Zigbee communication tool is easy to use, install and upgrade. Selecting 

Nios II was to get the best performance of the processing unit. Moreover, the designed 

system decreased water quality measurement costs and time consumption. In addition, 

the work did not maximize the potential of an FPGA by utilizing only one softcore 

(Nios II) processor. This increases the time to collect the data as it will collect in series 

instead of parallel. However, the author suggested increasing the number of nodes to 

cover more areas and measure the water quality for a wide area.  

 

Figure 2.25 The Block Diagram of Smart Water Quality Monitoring System  

(Myint et al., 2017) 

2.4.4 Other Processing Platforms  

Besides the above-mentioned platforms, such as Arduino, Raspberry Pi, TI CC3200, 

and FPGA, there are some works published during the last few years utilizing other 

microcontrollers. The below studies will mention some of these studies. 

(Birje, Bedkyale, Alwe, & Adiwarekar, 2016) developed a new system to 

monitor two parameters that show if the water is safe for the life of aquatic or not. Note 

that pH sensors, pH meter, and turbidity sensors were used to measure the mentioned 

parameters in the water. The sensors were connected to Analog-to-Digital Converter 
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(ADC) to convert the analog readings of the sensors, as the Peripheral Interface 

Controller (PIC) microcontroller cannot process analog signals. Finally, the PIC 

microcontroller was connected directly to the LCD to display the data obtained from 

the sensors. The system is cost-effective, portable, and easy to set up by the user. The 

pH meter is a commercially available voltmeter, but it is not suitable because it has very 

high resistance, so it cannot be used to measure the voltage of the pH electrode. Thus, 

it is necessary to design a pH meter to overcome the problem mentioned above. PIC 

microcontroller has the advantage of using software control for self-reprogramming 

along with a power-saving mode, making it suitable for such a system. However, the 

system is not real-time monitor the water quality parameters. Plus, it has many hardware 

modules, such as resistors, capacitors, amplifiers, LEDs, photodiodes, and voltage 

regulator IC, making it impossible to redesign it again. LCD is not a good choice for 

monitoring water quality parameters due to its limited size and display. Thus, it is 

essential to monitor the water quality parameters using a mobile application or a 

website. The author suggested using the Gobal System for Mobile communication 

(GSM) module to view the data remotely on smartphones. Figure 2.26 shows the block 

diagram of the system. 

 

Figure 2.26 Block Diagram of Proposed System (Birje et al., 2016) 
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(Cloete, Malekian, & Nair, 2016), proposed a low-cost sensor to measure water 

quality parameters; temperature, pH, ORP, flow, and conductivity. As the sensors were 

designed locally, adding a signal conditioning circuit was necessary to interface the 

sensor to the controller. Zigbee wireless communication module was connected to the 

microcontroller, allowing the obtained data to be sent remotely. Water quality 

parameters were then displayed on LCD. A buzzer option was added to the system, and 

the buzzer went off whenever the measurements were out of the allowable range. The 

sensors were designed locally as most of the water quality parameters are commercially 

available and cost-effective. The turbine used to design the flow sensor was cheap and 

could do digital readings. The two-electrode way was used to design the conductivity 

sensor and was easy to maintain, and its cost was cheap. The Zigbee module uses less 

power and does not need additional infrastructure, but the sending and receiving range 

is very small, from 10 m to 70 m. However, some sensors, such as ORP, required 

additional signal conditioning circuits, which increased the system's complexity. In 

addition, historical data was unavailable because it is a real-time system. Thus, it is 

important to add such a function to estimate the water quality over the year. It has been 

recommended to design a turbidity sensor because it is an essential parameter that needs 

to be measured to get a low-cost design rather than using expensive sensors.  

 

Figure 2.27 (a) Module 1: The Measurement and Sensing Module Block Diagram  

(b) Module 2: The Notification Module Block Diagram 

(Cloete et al., 2016) 
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(Danh, Dung, Danh, & Ngon, 2020) established a new system known as the 

Aquaculture system that monitors water quality in the Mekong River. The system used 

four sensors to measure temperature, pH, DO, ORP, and salinity. When the readings are 

detected directly, they will be sent to ThingSpeak, an IoT platform, to save the data on 

the server. The master control unit received updated data measured by the sensors every 

minute. The system application is available on the App Store on iOS devices and the 

Play Store for Android users to view the data in real-time. The system has the option of 

sensor automatic cleaning to remove dust and algae because such dirt may cause 

unstable sensor measurement; thus, automatic cleaning will increase the system’s 

effectiveness. The master control unit has a built-in wireless communication system to 

transfer data to the user. An SMS message will alert the user if the data is above or 

below acceptable levels. However, the system is complicated with many electronic 

devices for controlling, measuring, data transferring, etc., making it heavy for the user 

to carry and set up from one place to another. In addition, even with the automatic 

cleaning system, some of the sensors have been damaged due to dust. Therefore, it is 

important to use sensors of good quality and waterproof to prevent any damage. Figure 

2.28 shows the architecture of the E-Sensor AQUA system. 

 

Figure 2.28 Architecture of the E-Sensor AQUA System (Danh et al., 2020) 
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2.4.5 Summary of Related Works 

Table 2.1 shows the conclusion of all related studies by listing drawbacks, motivation, 

and future work. Meanwhile, Table 2.2 shows the sensors used in each study to measure 

physical and chemical water quality parameters. 

Table 2.1 Summary Table 

No. Author and 

year 

Motivation  Drawbacks Future work Processor 

1 (Vijayakumar 

& Ramya, 

2015) 

 

1) Low cost 1) Wi-Fi 

module is 

not inbuilt 

1) Measuring 

biological 

water quality 

parameters  

Raspberry 

Pi 

2) It is portable 2) It is 

complex 

2) 

Implementing 

the design in 

many areas 

3) Displaying 

data on the 

mobile app 

2 (Khatri et al., 

2020) 

1) No need for 

an external Wi-

Fi module as 

Raspberry Pi 

has an internal 

one 

1) Raspberry 

Pi with 

Linux 

operating 

system is not 

user-

friendly. 

1) 

Implementing 

a new system 

using fuzzy 

logic in an 

IoT 

environment 

Raspberry 

Pi 

2) Easy to 

function as 

Raspberry Pi 

needs only 12 

V 

3) High 

accuracy  

4) Cost-

effective 

3 (Ngom et al., 

2019) 

1) No payment 

for LoRa 

transmission 

band. 

1) Most 

water quality 

parameters 

were not 

measured. 

Unavailable Arduino 

2) Low power 

consumption. 

2) Low 

transmission 

rate. 
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3) Solar panel 

alternated 

power source. 

3) System is 

costly. 

4 (Li et al., 

2018) 

1) pH sensor 

can function at 

0 to 60℃. 

1) System 

requires 

calibration 

before 

starting. 

Unavailable Raspberry 

Pi 

2) TDS sensor 

is waterproof 

and has high 

accuracy. 

2) Data 

might lose 

or delay due 

to weak Wi-

Fi. 

5 (Chowdury et 

al., 2019) 

1) User can get 

a report about 

the water 

condition at 

any time. 

1) Data is 

only a 

number.       

Unavailable  

 

Arduino 

6 (Lezzar et al., 

2020) 

1) It is a 

lifespan system 

that does not 

require short-

term 

maintenance  

1) SIM800c 

requires  

GSM/GPRS 

network to 

transfer the 

data 

Unavailable Arduino 

7 (Saravanan et 

al., 2018) 

1) Less cost, 

weight, and 

size 

1) SCADA 

system 

cannot be 

implemented 

in areas that 

have no Wi-

Fi cover 

Unavailable Arduino 

 2) GSM 

provides high-

speed 

communication 

3) Using 

Arduino 

processor 

accelerated 

SCADA 

system 

4) Utilizing 

IoT to control 

the system 

remotely. 

8 (Mukta, 

Islam, 

Barman, 

Reza, & 

Khan, 2019) 

1) F1 score 

showed that 

the system's 

overall 

1) System 

measures 

only 

physical 

parameters. 

Unavailable Arduino 
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performance 

was high 

2) Not a 

real-time 

system 

9 (Pujar et al., 

2020) 

1) System 

measure water 

parameters in 

different 

seasons 

1) Wide 

range of data 

collection 

Unavailable Arduino 

10 (Encinas et 

al., 2017) 

1) The system 

is portable  

1) No user 

alert in the 

system. 

1) 

Developing 

an AI module 

for providing 

alerts to the 

user when 

water is in 

bad 

condition.  

Arduino 

2) Less costly 

and power 

consumption. 

11 ((Niswar et 

al., 2018) 

1) Monitoring 

water quality 

remotely 

 

1) 

Complexity 

of the 

system 

1) Adding the 

system to the 

water 

circulation to 

reduce 

human 

intervention 

 

Raspberry 

Pi  

2) Alert the 

user of any 

shortcomings  

 

2) Needs 

good 

coverage of 

3G and 4G 

networks 

2) Reducing 

power 

consumption 

12 (Raju & 

Varma, 2017) 

1) System 

works all day 

and stores data 

1) Overall 

cost is high 

1) Reducing 

power 

consumption 

by 

automating it 

using the 

internet. 

Raspberry 

Pi  

2) Solar panel 

is used to 

overcome 

power problem 

3) User 

receives a 

message on 

how to solve 

any issue 

13 (Geetha & 

Gouthami, 

2016) 

1) TI CC3200 

processor is 

easy to use and 

fast 

1) Adding 

Wi-Fi 

increases 

1) 

Implementing 

machine 

learning  

TI 

CC3200 
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2) It has four 

functioning 

modes 

power 

consumption 

3) Consume 

less power 

4) High range 

of 

communication 

14 (Billah et al., 

2019) 

1) Has a built-

in Wi-Fi 

module 

1) Turbidity 

sensor 

readings 

were mostly 

unstable 

Unavailable TI 

CC3200 

2) MQTT 

protocol is user 

friendly 

2) Turbidity 

sensor does 

not show 

numbers. 

15 (Myint et al., 

2017) 

1) Carbon 

dioxide has 

high stability 

and sensitivity 

and uses low 

power 

1) VHDL is 

not easy to 

use 

1) Increasing 

the number of 

nodes to 

cover more 

areas 

FPGA 

2) Nios II 

provides high 

performance of 

processing unit 

 3) Low cost 

16 (Birje et al., 

2016) 

1) The system 

is cost-

effective, 

portable as 

well as easy to 

set up by the 

user 

1) System is 

not real-time 

1) Using 

GSM to view 

data remotely  

PIC 

2) PIC 

microcontroller 

has software 

control for 

self-

reprogramming 

and power-

saving mode 

2) Many 

hardware 

modules 

make it 

difficult to 

be 

redesigned  

3) LCD is 

small 



 

42 

17 (Cloete et al., 

2016) 

1) Less cost  1) Sending 

data 

remotely 

with a range 

from 10 m to 

70 m 

1) Design a 

low-cost 

turbidity 

sensor  

Unavailable 

2) Zigbee 

module uses 

less power 

2) ORP 

sensors 

require 

additional 

signal 

conditioning 

circuits 

3) No need for 

external 

infrastructure 

3) It is only 

displaying 

data with 

storing it 

18 (Danh et al., 

2020) 

1) Sensor can 

be 

automatically 

cleaned 

1) System is 

complicated 

as it has 

many 

controlling, 

measuring, 

data 

transferring 

devices 

Unavailable Unavailable 

2) User is 

updated 

through SMS if 

there is any 

shortcoming 

2) Not 

portable 

3) Even with 

automatic 

cleaning, 

some 

sensors had 

been 

damaged 

due to the 

dust 
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Table 2.2 Summary of All Sensors Used in Each Study Given in Table 2.1 

 
 

2.5 PROPOSED FPGA-BASED SWQS  

Based on the findings from the literature review, as summarized in Section 2.4, it is 

concluded that there are several processors have been used to design SWQS, such as 

Arduino, Raspberry Pi, FPGA, TI CC3200, and others. However, Arduino, Raspberry 

Pi, TI CC3200, and other processors are limited by the number of pins that are hard-

coded. The FPGA platform, on the other hand, could reconfigure the interface of each 

pin, as well as it has a large number of pins. This means it allows the FPGA to be used 

for the real end product and not just as a prototyping platform. In addition, when it 

comes to speed, FPGA surpassed other processors with a frequency reach of up to 1 

GHz. Speed is an important factor that needs to be considered, as it can affect the system 

performance when many sensors are connected to the processor. Additionally, any 

sensor with any interface could be easily connected to an FPGA.  

The selection of sensors used in this work as a proof-of-concept was based on 

the importance of the water quality parameters and the availability of the sensors. From 
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Table 2.2, it can be seen that the pH sensor and temperature are most commonly used. 

Unfortunately, the temperature sensor is not widely available. The TDS sensor could 

measure the total dissolved materials in a liquid, and the conductivity could be easily 

extracted from the TDS sensor; it will be two parameters in one sensor. Finally, the 

turbidity sensor, which measures the clarity of the water, is also selected as one of the 

parameters to be measured, given that it is one of the most commonly used sensors after 

pH and temperature.  

 Furthermore, the number of sensors used in previous studies varies between two 

(2) and five (5). Therefore in this proposed work, three (3) parameter sensors will be 

put to the test-taking, i.e., the mid-point number of parameters. The next section will 

look at the architecture of an FPGA to understand how FPGA can be used in 

heterogeneous systems. 

 

 

2.6 UNDERSTANDING THE FPGA-SOC HETEROGENEOUS SYSTEM 

FPGA-SoC is a heterogeneous platform that can improve the performance of an 

embedded system using more than one processor. This section will explain the 

architecture of an FPGA, followed by the software development tools used in this 

research.   

2.6.1 FPGA Chip 

FPGA is a semiconductor IC where the design engineers may reconfigure most of the 

electrical functionality inside the device, whether during the Printed Circuit Board 

(PCB) assembly process or after the FPGA platform has been shipped out to customers 

(What Is FPGA, 2020). FPGAs benefit designers of many types of electronic 

equipment, including smart energy grids, aircraft navigation, medical ultrasounds, and 

data center search engines (What Is FPGA, 2020). Figure 2.29 demonstrates the 

Cyclone V SoC FPGA solution from intel. 
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Figure 2.29 Cyclone V SoC FPGA from Intel (Intel PSG Website, 2020). 

 

 

2.6.2 System-on-Chip 

On the other hand, System-on-Chip (SoC) is a hardware platform containing many 

different microprocessor subsystems, memories, and Input/Output interfaces (J 

Greaves, 2011). The design of a modern SoC is a complex task involving a range of 

skills and a deep understanding of a hierarchy of perspectives on design, from processor 

architecture down to signal integrity (Brackenbury, Plana, & Pepper, 2010). Other than 

that, the SoC design methodology is a new model for electrical and computer 

engineering education in digital logic and microelectronics (William D. & Dennis A., 

2000). FPGA-SoC is one of the powerful SoCs used in the proposed SWQS. Section 

2.6.4 presented in detail all the features of the FPGA-SoC heterogeneous platform. 

2.6.3 Heterogeneous Platform 

As described in Section 1.2.2, a heterogeneous platform is a new computer platform 

infrastructure that presents a next-generation hardware platform and associated 

software that allows processors of different types to work efficiently and cooperatively 
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in shared memory from a single source program (Hwu, 2016). Architectural 

heterogeneity improves platform flexibility by exploiting more than one processor.  

2.6.4 Features of FPGA-SoC Heterogeneous Platform 

The DE10-Nano Development Kit is one type of FPGA-SoC that provides a robust 

hardware design platform utilized by Intel FPGA-SoC, which combines the latest dual-

core Cortex-A9 embedded cores with industry-leading programmable logic for ultimate 

design flexibility. Intel’s SoC integrates an ARM-based Hard Processor System (HPS) 

consisting of processor, memory interfaces, and peripherals tied with the FPGA fabric 

using a high-bandwidth interconnect backbone. The DE10-Nano development board is 

equipped with Ethernet networking, high-speed, analog to digital capabilities, and 

DDR3 memory (Terasic, 2017a) 

Unlike application-specific integrated circuits (ASICs), which can only be 

implemented once through manufacturing, FPGAs can be reconfigured following the 

customer's needs. This feature allows the user to make improvements and change the 

architecture of the FPGA, allows fixing bugs, or uses FPGAs to rapidly prototype 

hardware designs, which can later be manufactured as ASICs. In addition, FPGA can 

be reconfigured quickly to finish different tasks (Ziener, 2018). However, the flexibility 

and reconfigurability increase cost and design complexity and provide less specialized 

components such as floating-point operations. Hence, the main purpose of using FPGA 

is to utilize its huge parallelism, i.e., its ability to perform pipelines to overcome latency 

issues (Purkayastha, Shiddhibhavi, & Tabkhi, 2018). ASICs approach can offer very 

high performance and huge power efficiency; however, it lacks flexibility and the eco-

system offered by Programmable Logic Devices (PLD) (Burgio et al., 2016). FPGAs 

have many advantages over other processors, such as reconfigurability, and by default, 

it provides software flexibility. In addition, more complex water quality systems are 

demanded as they do not require image processing. They also require communicating 

with other devices and offer a usable user interface. 

While the FPGA-SoC heterogeneous platform enhances the performance of any 

design, it is not as popular as it costs higher when compared to processors like Arduino. 

In addition, the design complexity increases when moving to the hardware level. 
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Nevertheless, when it comes to speed, the FPGA has a higher processing speed in which 

the frequency can reach up to 1 GHz, while a processor like Arduino is at 24 MHz. 

FPGA can be used not only for designing a small prototype but also to design a real end 

product. It is interconnected, and reconfigurable features allow flexibility and additional 

functions to be included without changing the main processor. 

2.6.5 Memory Management on FPGA-SoC 

There are three layers of the memory models in the FPGA-SoC. Figure 2.30 shows an 

example of a memory model of the proposed SWQS, and it can be described below: 

i. Level 1 Memory (L1) is the local memory for each core. Each core’s 

firmware will be stored in built-in memory for each core. When the ARM 

processor configures the FPGA, each level 1 memory and its firmware will 

be loaded, allowing the processor core to run. 

ii. Level 2 Memory (L2): this level of the shared memory among all cores. 

This memory will be utilized to store the obtained data from each sensor by 

cores. The ARM processor will format this data with a timestamp ready for 

collection. 

iii. Level 3 Memory (L3): this is a Double Data Rate type 3 memory (DDR3 

memory) of an ARM processor that will be utilized to run the Linux 

operating system. It is the global memory for the user applications’ data 

processing.  
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Figure 2.30 Example of a Memory Model of the Proposed SWQS Design 

2.6.6 Quartus II Development Software 

Quartus II is a tool provided by intel to implement the hardware design on Intel FPGA 

products. It offers a full range of features for each phase of the hardware design flow of 

intel FPGA to enhance the design cycle and achieve the highest performance on FPGA 

(Intel® Quartus® Prime Standard Edition Handbook Volume 1: Design and Synthesis, 

2018). These features can be summarized below:  

 Project setup: Quartus Prime helps the designers to create new projects, 

add/create design files, specify the target FPGA device, and design 

constraints files. This allows the designer to create multiple design versions 

that run on multiple FPGA devices to achieve the highest performance 

possible.  

 Design planning tools: plan for initial I/O pin layout, power consumption, 

and area utilization in the Early Power Estimator, the Power Analyzer Tool. 

 Integrated Synthesis: it provides efficient synthesis support for VHDL 

(1987, 1993, 2008), Verilog Hardware Description Language (HDL) (1995, 

2001), and SystemVerilog (2005) design entry languages.  
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 System and IP Integration: this defines and generates a complete system 

in much less time than using traditional, manual integration methods with 

Platform Designer. 

 Platform Designer: Platform Designer is the latest generation system that 

integrates hardware and software designs. Platform Designer will save time 

and big effort in the design process of FPGA via generating logic 

interconnection automatically to connect Intellectual Property (IP) 

functions and other subsystems. The Platform Designer utilizes a robust 

hierarchical framework that offers a swift response to connect large 

systems. In addition, it gives support to Blackbox entities. This will enable 

the Platform Designer to provide a quick response time in starting systems 

and creating new connections by generating and operating on IP functions 

that changed. Furthermore, the tool of Platform Designer supports different 

design entryways, like blocked-based design entry, block boxes, Register 

Transfer Level (RTL), and schematic entry (Intel, 2021a). 

 

2.6.7 Quartus Intellectual Property Libraries 

FPGA design contained components from softcore invented by intel, known as the IP 

library. These components are built in multiple processing cores architecture. Each core 

consists of a processor along with some necessary components to run the core. Each 

core contains the following items that have the advantage of accessibility for each 

processing core individually: 

i. Nios II softcore processor is an Intel processor that is softcore configurable 

32-bit. It can be implemented and programmed to the FPGA. This processor 

comes with two types: f/core (for fast) and e/core (for economics). The 

proposed design will only utilize the f/core due to licensing. Quartus Prime 

software will be used to design the water quality system and compile the 

design on FPGA.  

ii. On-chip memory: it is a Random-Access memory (RAM) that is utilized 

to store Nios II processor firmware. Furthermore, the details of the firmware 
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and its benefits will be elaborated in Chapter 4, Section 4.2.2.1. It is L1; 

hence, it can only be accessed through one core. This type of memory is 

situated inside an FPGA chip.  

iii. Avalon System Interconnect: it is a bus system that was developed by Intel 

Programmable Solutions Group. This bus system connects all system 

components to the memory-mapped interface type. 

iv. System Timer: it is a softcore internal timer. It was used to synchronize the 

collection and transfer of the data among system cores.  

v. System ID: this component is utilized to provide each core Identifier 

number. The ID number will help identify which core should be running.  

vi. I2C Controller: I2C is a data transfer protocol that uses two serial wires. 

This controller can be used to control I2C sensors. 

vii. SPI Controller: Serial Peripheral Interface (SPI) is a data transfer protocol 

to control SPI sensors. 

viii. ADC Controller: Analog-to-digital controller (ADC) is used to control the 

flow of data of ADC-type sensors. 

Some shared peripherals subsystem is a combination of IPs design that several 

processing cores can access as shared resources. These IPs give system-level services 

for the processing cores, such as mailbox, mutual exclusion (mutex), shared memory, 

Advance eXtensible Interface (AXI)-Avalon translation (for ARM SoC interface and 

handshaking), and a clock that can be synchronized using Phase Lock Loop (PLL). 

Elaboration on shared peripherals is shown below: 

i. Mutex is a mutual exclusion peripheral that will be used to control the 

cores’ operation. In addition, it helps in arranging the accessibility of cores 

to each shared peripheral. In the proposed design, mutex IP is required as 

it is a multi-core system. Therefore mutex is required for controlling the 

access to shared memory and peripheral between cores. For example, when 

the mutex is idle, the collected data from the pH sensor will be written to 

the shared memory. However, if the mutex is not idle because the shared 
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memory access is given to the TDS sensor or turbidity sensor, then the 

firmware will be waiting for the mutex to be free. 

ii. PLL: for synchronizing the operation clock of the cores of the processors, 

PLL is utilized. 

iii. Mailbox: it is a softcore IP that is utilized to send messages among cores. 

iv. Shared Memory: it is the L2 of the system. When mutex approves the 

access, shared memory can be used by multiple processing cores.  

2.6.8 Linux Terminal Interface 

An embedded Linux application is a special version of the Linux operating system 

running on the embedded computer system, like FPGA. This requires a processor to be 

part of this FPGA, such as a  hard-core processor. Note that a hard-core processor is a 

hard IP integrated into FPGA. Generally, a hard-core processor runs at 600 MHz to 1 

GHz, such as an ARM processor. The entire system will be controlled through this 

application as the application reads segmented and analyzed data from all sensors stored 

in the shared memory. PC, laptop, or any screen can be connected to FPGA directly and 

display the data from shared memory. However, this does not make the system portable. 

Therefore, Raspberry Pi was used to be connected ARM terminal for accessing it, 

reading the water quality data, and displaying it. Raspberry Pi was chosen as Linux 

operating system. Further, from the Linux Terminal in the Raspberry Pi operating 

system, the ARM terminal can be accessed. Linux application has been used as it can 

be implemented on Raspberry Pi processor as well as ARM terminal could be accessed 

using Linux Terminal on Raspberry Pi. 

2.6.8.1  Linux Kernel Compilation 

While there are various selections of Linux compilation software, the Ubuntu 20.02 

machine is used to compile the Intel Angstrom distribution. Some packages must be 

installed on the host PC to permit the compilation of Angstrom distribution. The 
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packages listed down are not fixed lists since the installation depends on the 

requirement of each machine.  

 

In addition, it is necessary to make a setting for the /bin/sh point of bash instead 

of a dash by running a command of the terminal. 

 

The root filesystem and Linux kernel can be compiled using recipes from 

Angstrom. The Yocto Project (YP) is building the embedded Linux when the recipes 

are cloned. YP is an open-source collaboration project that helps developers create 

custom Linux-based systems regardless of the hardware architecture. The project 

provides a flexible set of tools and a space where embedded developers worldwide can 

share technologies, software stacks, configurations, and best practices. These can be 

used to create tailored Linux images for embedded, and IoT devices or anywhere a 

customized Linux Operating System is needed. YP can be run using the below 

commands: 
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Images directory will then contain all the generated images after the compilation 

of the YP. Table 2.3 presents the important files list of the YP. 
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Table 2.3 Files Generated After the Yocto Compilation 

 
 

Linux kernel and U-boot are then compiled from the git trees in 

https://github.com/altera-opensource. Finally, the git source can be cloned, and the 

Linux kernel and U-boot can be compiled using the below instructions. 
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Therefore, after doing all the above steps, the Linux image is ready to be burned on the 

SD card. Plus, the SWQS Linux application is ready on the ARM processor. 

2.7 SUMMARY  

In this chapter, the literature review of water quality monitoring systems has been 

explored and investigated. This chapter summarized some studies developed to measure 

physical and chemical water quality parameters by identifying gaps in the current 

studies and showing the weakness, challenges, and critical analyses. The challenges and 

motivations of each design were conducted in this chapter, followed by the description 

of the proposed FPGA-based SWQS. Later, the chapter provides a general overview of 

the FPGA platform along. 
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CHAPTER THREE 

 

 

METHODOLOGY 

3.1 OVERVIEW 

The primary objective of designing and developing in situ Smart Water Quality System 

(SWQS) Field Programmable Gate Array (FPGA)-based kit is to enhance and improve 

the safety of the water. This can be realized using the integration of sensors and 

processors to detect the materials that cause water contamination. The liquid quality 

parameters will be measured using different sensors to reach high quality. 

This chapter describes the methodology proposed to develop the SWQS engine 

and derive the data acquisition procedure from this system. Furthermore, this chapter 

elaborates on the experimental details and how sensors will be set up along with FPGA 

to measure the water quality. Section 3.2 introduces the research methodology phases 

based on four main phases and then specifies the methodology for designing SWQS. In 

addition, Sections 3.3 and 3.4 illustrate the hardware and software design of the 

proposed SWQS, respectively. Section 3.5 discusses the proposed design power cycle, 

while Section 3.6 proposes the testing plan of the design. This chapter elaborated on the 

technical guideline for an SWQS system utilizing multiple processing cores covering 

both software and hardware design. Section 3.7 covers the FPGA design cycle that 

contains the hardware design flow by including all components required to design a 

processing core and all the processing elements. In addition, the flow of the software 

design for both core firmware development, as well as the Linux applications 

development will also be explained.  

The embedded Linux design cycle and all the system components to design a 

Linux image will be demonstrated in Section 3.8. On the other hand, Section 3.9 

elaborates on the steps of adding the processing cores to the proposed hardware design 

based on the designer’s preferences. 
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3.2 RESEARCH METHODOLOGY 

The research methodology of this study was developed based on four phases; these 

phases are summarised in Figure 3.1. Each phase has its description and what outcome 

is derived.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase I was accomplished in Chapters 1 and 2. The problem statement, 

objectives, and scope were discussed in Chapter 1. Furthermore, the research literature 

review, motivation, challenges, and design aspects were discussed in Chapter 2. Phase 

II and Phase III were covered in Chapter 3. All the design considerations, methodology, 

implementations, and testing scenarios were discussed. Finally, Phase IV was covered 

in Chapter 5. All the results of the system design, data collection, system reliability, 

data validity, and testing scenarios were discussed. 

Figure 3.1 Research Methodology Phases 
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The investigation that has been done on the water quality parameters was done 

by reading books and articles. From that, the literature has been elaborated with related 

works. Next, motivations, challenges, and recommendations have been derived and 

concluded. The proposed design was chosen based on the issues and problems of the 

literature; however, there are many of them. Therefore, the scope of the research was 

designed to focus on the hardware design and make SWQS that eliminates the issue of 

performance and reconfigurability. In addition, based on the scope of the research, three 

objectives have been set to reach SWQS with high performance, high efficiency, less 

power use, and a system that can be reconfigured. Figure 3.2 shows the research 

methodology of the proposed SWQS. 

 

 

 

 

 

Figure 3.2 Research Methodology of the Proposed SWQS 
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The Hardware design flow on FPGA starts with building the embedded system 

architecture using Platform Designer in Quartus Prime. Platform Designer is the next-

generation system integration tool of Quartus Prime. Once the design is done in 

Platform Designer, a design compilation is needed to transfer the Verilog system files 

to the programmable file used to configure the FPGA. The compilation must be 

successful in passing this step. Subsequently, assign the pins in another tool called Pin 

Planner from Quartus Prime. After that, the Quartus Prime project can be compiled to 

generate the software object file (sof), which can be used to program the FPGA. 

Once the hardware flow is done, the developer can start the software flow. The 

software flow generates the executable link and format file (.elf), which is the processor 

firmware. Once the .elf file is ready, it can be stored in the processor’s core memory.  

Linux application development flow starts after the completion of the hardware 

flow and firmware development flow. In this research, the SWQS application was 

developed using C++ programming language. The development starts with the memory 

management step, defining the memory layout. After that, the address of the Advance 

eXtensible Interface (AXI) bridge should be defined. Consequently, this address will 

be added to the hardware registers span of Intel FPGA. Therefore, the result address 

will be used to access the FPGA-related design registers by adding the offset of each 

register. After that, a virtual memory must be created in any Linux-based application to 

avoid segmentation faults due to the memory protection unit of Linux, which restricts 

any direct access to an address in the system.  

Next is the generation of the Bootloader and the Linux image. The tool used to 

generate the Bootloader is Embedded Software and Tools for Intel System-on-Chip 

(SoC) FPGA software (SoC EDS). After finishing the Quartus Prime project, the 

Handoff folder was created. This folder contains information about the hard processor 

system components and connections. This folder is used with the SoC EDS to generate 

the pre-loader and U-boot. Once the Bootloader folder is created, a compilation is 

required to generate the binary files of the Bootloader. 
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Raspberry Pi was used to run Linux operating system on it, and then the Linux 

application in the ARM processor was accessed using the Linux Terminal on the 

Raspberry pi. Figure 3.3 summarizes the entire methodology of this work toward 

designing and developing an FPGA-based SWQS. 

 

3.3 PROPOSED DESIGN DEVELOPMENT AND SYSTEM REQUIREMENT 

3.3.1 Smart Water Quality System (SWQS) 

The proposed design was built on a DE10 Nano FPGA-SoC development kit, which 

was connected to three water quality sensors named pH, Total Dissolved Solids (TDS), 

and turbidity. The selection of sensors may be added depending on the requirements of 

agencies. Section 3.10 of this dissertation will explain how the changes can be done at 

the software level. 

Figure 3.3 Overall methodology of the Proposed SWQS 
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Figure 3.4 presents the general overview of the proposed system and its data 

flow. In the beginning, the DE10 Nano FPGA-SoC development kit was connected to 

three water quality sensors named pH, TDS, and turbidity. Note that the main FPGA 

chip is divided into two parts. The first is the main chip, which focuses on processing 

the data from sensors and making it ready to display. On the other hand, the second part 

is the ARM processor, which has the Linux application. The ARM processor was 

utilized to run the Linux application. This application controls the entire system, reads 

the segmented, and analyzes data from sensors stored in the shared memory. The next 

step was to read the data from the ARM processor; therefore, a PC or laptop could be 

used to display the data. However, the PC and laptops or any screen are not portable, 

and for that reason, they were replaced by Raspberry Pi. The Raspberry Pi processor 

can be connected to any screen easily same as other processors like Arduino. On the 

other hand, Raspberry Pi was used as Linux operating system can be run on it. The 

Linux application in the ARM processor could be accessed using the Linux Terminal 

on the Raspberry pi. The entire system is portable and can be fed power via a 20000 

mAh power bank. 

 

Figure 3.4 Proposed System Blocks and Data Flow 

The complex requirements of developing SWQS designs and applications have been 

discussed in the literature review in terms of computation power, algorithms 

complexity, resource flexibility, and cost. To overcome this trade-off among design 

requirements and considerations, a heterogeneous platform is the critical design 
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approach in SWQS applications. The generic proposed multi-core heterogeneous 

platform can be seen in Figure 3.5. 

 

Figure 3.5 Multi-Core Heterogeneous System Architecture Design of the Proposed 

Design 

The hardware design was developed based on digital design methodology on 

FPGA to parallelize the SWQS functionality based on each developed core. In 

comparison, the software stack was developed on an ARM SoC sub-system to improve 

the computation power of the ARM processor. Figure 3.6 presents the FPGA single-

core processing element of the proposed design. 
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Figure 3.6 FPGA Single Core Processing Element of the Proposed Design 

3.3.1.1 Interfacing Multiple Sensors 

The hardware limitations in the proposed design were minimized through FPGA. The 

designer can add the preferred sensor with any data transfer protocol, like Inter-

Integrated Circuit (I2C), Universal Asynchronous Receiver-Transmitter (UART), 

General Purpose In/Out (GPIO), and Serial Peripheral Interface (SPI). All the data 

transfer protocols can be easily implemented on FPGA.  

From Figure 3.7, the processing cores will be utilized for specific SWQS 

functionality. The proposed SWQS hardware data acquisition system was developed 

based on the following functionalities: pH detector, TDS detector, and turbidity 

detector. Each of these functions was assigned to a processing core, core 1 is the pH 

detector, core 2 is the TDS detector, core 3 is the turbidity calculator, and core 0 is the 

system synchronizer. Each core is running independently, which might cause data 

synchronization issues. Hence, core 0 was utilized to synchronize collected data before 

sending it to the ARM SoC sub-system. In addition, core 0 is responsible for packetizing 

the collected data from the other cores and initializing the DMA, which is responsible 

for transferring the collected data from the FPGA domain to the ARM sub-system 

domain. Finally, the Linux Terminal on Raspberry Pi was utilized to access the ARM 

terminal and send the data to the screen. 
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Figure 3.7 Proposed SWQS Hardware Proposed Data Acquisition Design 

3.4 SWQS HARDWARE DESIGN 

The proposed SWQS hardware design has two parts: hardware and software. The FPGA 

hardware design flow begins with using Platform Designer to build the embedded 

platform architecture in Quartus Prime. Section 3.8.1 demonstrates the configuration 

steps of the SWQS. 

After the design in the Platform Designer is done, a compilation of a design is 

required for FPGA configuration by transferring the files of the Verilog system to a 

programmable file on an FPGA device. The step of compilation should be successfully 

done to pass this stage. The next step is to assign the FPGA interface pins once the Qsys 

file generated from Platform Designer is done. Other than that, the pins can be assigned 

using the Pin Planner tool in Quartus Prime software. The location of each pin is 

obtained from the user manual of the development board. After that, the Quartus Prime 

project should comply to get the sof used for FPGA programming. Figure 3.8 exhibits 

the FPGA hardware design flow of the proposed SWQS. 
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Figure 3.8 The Summary of the FPGA Hardware Design Flow 

3.5 SWQS SOFTWARE DESIGN 

The software part of the proposed design will have four firmware applications when 

separated cores are used for each firmware. As shown in Figure 3.9, system 

synchronization of data collection and the transmission between FPGA and ARM will 

be done using firmware 0. Note that firmware 1, firmware 2, and firmware 3 will be 

responsible for initializing, calibrating, controlling, and collecting data from the pH 

sensor, EC sensor, and temperature sensor, respectively.  

 

Figure 3.9 Firmware Applications for Each Core with SWQS Linux-based 

Application 
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System synchronization of data collection and the transmission between FPGA 

and ARM will be done using firmware 0. First, firmware 0 starts the system’s 

peripherals, such asDirect Memory Access  (DMA), mutual exclusion (mutex), SPI, and 

GPIO. Consequently, it configures the DMA and checks the flag of the shared memory. 

When new data is collected from the cores of the cores, the collected data is then going 

to be packetized and will be written to the source memory location of DMA. After that, 

DMA will be triggered to transfer the data to the system’s Double Data Rate type 3 

(DDR3 memory). The firmware 0 flow diagram is displayed in Figure 3.10. 

 

Figure 3.10 Flow Diagram of Firmware 0 

Firmware 1, firmware 2, and firmware 3 will be responsible for initializing, 

calibrating, controlling, and collecting data from the pH sensor, TDS sensor, and 

turbidity sensor, respectively. Calibrating the sensor is important to make sure that the 

sensors are functioning with high accuracy and to prevent uncertain measurements of 

the sensors. Apart from that, each sensor’s firmware will start the process of initializing 

the controller of the sensor, which is the process of defining and identifying the channels 

of each sensor. It is done at the first usage. In addition, calibrating the sensor is required 

to ensure high-accuracy measurements and to prevent uncertain sensor readings. Next, 

the controller will check the sensor ID whether is valid or not to confirm the sensor 

connectivity. At the moment, the sensor connectivity is confirmed. The controller will 

read data from each sensor and store the collected data in the sensor’s local memory. 



 

67 

The firmware will then check the status of the mutex to have access to the shared 

memory. When the mutex is idle, the collected data from the sensor will be written to 

the shared memory. However, if mutex is not idle because the shared memory access is 

given to other sensors, then the firmware will be waiting for the mutex to be free. Figure 

3.11 illustrates the sensor’s core firmware block diagram. 

 

Figure 3.11 The Sensor’s Core Firmware Flow Diagram 

On the Linux side, the SWQS application will be developed using Linux C++ 

libraries. The developed application will be used to control the cores that are running 

on FPGA. Each core can be individually reset, print the system’s status, and finally print 

out the collected data stored in DRR3 memory. This application will ease the interaction 

between the user and the hardware layer without the need for interaction with the 

hardware directly or frequent updating. In addition, the most important feature is that 

any runtime environment or application running on a Linux operating system can be 

easily integrated with this application. 

From a software standpoint, our proposed design will add layers between 

hardware and application layers. As can be seen in Figure 3.12, the layer is known as 

the middleware layer. Accessing and modifying the hardware will be easier with the 
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existence of this layer. Many Application Programming Interface APIs are provided by 

the middleware layer that can be used to access the hardware. Moreover, these APIs 

will ease the development because these APIs can cover multiple hardware accesses, 

and any software platform can be migrated to these APIs based on the requirements. 

 

Figure 3.12 The Proposed Design Abstraction Layers 

3.6 PROPOSED DESIGN POWER CYCLE 

There are two operations that the proposed SWQS design has, one operation for the 

FPGA side, while the other operation is for the SoC side. First, the system’s image will 

be stored on a global memory (L3) SD card mounted to the system board. The SD card 

contains the required files for FPGA configuration and running the embedded Linux 

system. These files are Linux Kernel Image, Root File System (Rootfs), FPGA 

configuration file, First Stage Bootloader (pre-loader), Second Stage Bootloader (U-

boot), Linux Device Tree, and embedded Linux C application.  
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Once the system is powered on, the pre-loader will be loaded from the SD card 

to the ARM on the memory chip to start the chip pins, DDR3 calibration, and the clocks. 

Subsequently, the U-boot is loaded to DDR3 to start the Mux pins of the Hard Processor 

System (HPS), configure FPGA, load the Rootfs and device tree to DDR3, and finally 

give the needed control to the kernel image for booting the system. At the time the 

configuration of FPGA is done, the four cores are going to be loaded and ready to start 

running. ARM will begin a test to verify the availability of the cores, L1, L2, and L3 

initialization, and the response of the sensors.  

3.7 PROPOSED DESIGN TESTING PLAN 

This research has proposed a new system design of SWQS based on a heterogenous 

platform known as the FPGA-SoC platform. The verification of the design will be done 

based on component-level testing. The design cores will be tested separately to achieve 

the needed function. Additionally, the peripheral’s sub-system functionality will be 

tested individually. The proposed verification is going to be as the following:  

i. Core 0 data packetize test. 

ii. Core 0 DMA run test. 

iii. Core 1 pH test. 

iv. Core 1 data transfer test. 

v. Core 2 TDS test. 

vi. Core 2 data transfer test. 

vii. Core 3 turbidity test. 

viii. Core 3 data transfer test. 

ix. Mutex functionality test. 

The system implementation and data collection were the second tests that will 

be required to be done. The proposed system was meant to ensure the utilization of new 

sensors is an easy task and needs less effort to add more components to the system. The 

data will be collected by the cores from pH, TDS, and turbidity sensors. In addition, the 

raw data from each sensor will be converted by the core into an understandable user 

format. In that format, a timestamp will be added to each data sample to gain the 
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system's synchronisation. Thus, L2 local memory will store the data in the form of 128-

bits divided into 32-bit to the core ID, 32-bit to the timestamp, and 64-bit to the data 

sample. Once the data is ready at the core level, the synchronizer core, core 1, will send 

the collected data to the ARM processor via DMA.  

Consequently, testing the overall system by collecting the data from each sensor 

in a real-time environment to ensure it is functioning well. The proposed design will be 

tested on different liquids for each sensor to prove that the sensors read the correct data. 

The first test will be done on pure water, lemon juice, and milk to test the validity of 

the pH sensor. At the same time, the TDS sensor will be tested on pure water and water 

with salt to verify the sensor functionality. Last but not least, the turbidity sensor will 

be tested on three liquids: pure water, water with little dust, and water with more dust. 

The liquid choice was made based on the sensor functionality. For example, to test the 

pH sensor, pure water is required to be tested as its pH value is 7, while milk will be 

used to see whether the pH sensor readings will be more than 7 or not. Correspondingly, 

lemon juice is used as an acidic liquid, and the pH value of acidic liquids is less than 7, 

as it is known. The main goal of the proposed design is a proof of concept that the 

system is usable and can be used in real life.  

3.8 THE DESIGN CYCLE OF THE PROPOSED FPGA-BASED SWQS 

The design cycle consists of the hardware flow in terms of the configuration of the 

Platform Designer. Other than that, it consists of software flow, which is the 

programming of the sensors using the Eclipse tool, and the flow of the Linux application 

development. In the subsequent subsections, the FPGA-based hardware and software 

design flow will be elaborated. 

3.8.1 The Hardware Design Flow of SWQS  

The sensors are connected to FPGA to process analog data from the sensors and convert 

it into digital for processing purposes. Each sensor is connected to a separate Nios II 

core to increase the processing speed, as the cores will function in parallel. The 

proposed SWQS design can be found in Figure 3.13. The proposed architecture contains 
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the processors, memory, clocking and synchronization, data transfer protocol system 

peripherals, and bridges.  

 

Figure 3.13 The Architecture of the Proposed SWQS 

3.8.1.1  Processors 

One ARM hard-core processor system has been utilized for the proposed SWQS design, 

along with three Nios II soft-core processors. The processor has used the AXI protocol 

to transfer the data between the FPGA and the ARM processor. There are four bridges 

to transfer the data: FPGA-to-HPS (F2H), which has 128-bit data from FPGA to ARM 

processor. However, the second bridge is HPS-to-FPGA (H2F), with 128-bit data 

transferred from the ARM processor to FPGA. In addition, the third bridge has 64-bit 

H2F control signals. Finally, Avalon Bridge is utilized for SDRAM transactions that 

transfer data from m FPGA to DDR3 memory of ARM HPS. Figure 3.14 demonstrates 

the configuration of the ARM processor. 
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Figure 3.14 The Configuration of the ARM Processor 

The Nios II processor is a soft-core processor that can be designed and 

programmed on FPGA. Figure 3.15 presents the single Nios II processor configuration. 

The settings of the Nios II processor have been kept as default. However, two factors 

need to be modified: reset vector and exception vector. When resetting the processor, 

the firmware in memory is known as the reset vector. However, the memory location 

required when executing an interrupt is known as the exception vector (Intel 

Corporation, 2015). Nios II core has a specified On-Chip Memory for reset and 

exception vectors. 

 

Figure 3.15 Nios II Processor Configuration 
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3.8.1.2 Memory  

The utilized memory for the Nios II firmware is built internally in the FPGA. The 

memory is split into three, one part for each core. Figure 3.16 displays the configuration 

of the On-Chip Memory controller. Random-Access Memory (RAM) is used with a 

size of 64 KB for each core. Note that the data bus is 32-bit for each memory when it is 

needed to be accessed by an ARM processor. 

 

Figure 3.16 The Configuration of On-chip-Memory Controller 

3.8.1.3 Clocking and Synchronization 

A crystal oscillator has been used to feed the system clock on the development board. 

50 MHz is the frequency of the oscillator. An Intellectual Property (IP) known as Clock 

Source keeps the 50 MHz clock that the Platform Designer needs, as shown in Figure 

3.17. 

 

Figure 3.17 Clock source IP in Platform Designer 
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Phase Lock Loop (PLL) is an IP from Platform Designer that is utilized to 

amplify the clock. The clock value could be divided or multiplied based on the 

designer’s requirement. The proposed system used a 50 MHz of clock frequency. The 

configuration of the PLL is presented in Figure 3.18. 

 

Figure 3.18 PPL Configuration in Platform Designer 

3.8.1.4 Data Transfer Protocols 

The proposed SWQS design utilized an I2C data transfer protocol communicated with 

the Analog-to-Digital Converter (ADC) controller as the three used sensors provide 

analog signals that needed to be converted to digital signals using an ADC (LTC2308). 

There is an 8-pin analog input that is connected to ADC. LTC2308 is 8-channel, 12-bit 

ADC that provides data with low noise. These eight input signals are connected to a 

2x5 header, as shown in Figure 3.19. The FPGA chip will read the associated register 

in the converter using the serial interface and then translate the data into a voltage value 

displayed on Nios II’s console. 
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Figure 3.19  ADC Input Signals 

3.8.1.5 System Peripherals 

Three controllers have been used for each SWQs core. The first controller is the system 

timer, which is set to 1ms with 64-bits of the size of the counter, as exhibited in Figure 

3.20. In addition, the readable snapshot feature is enabled to read the data time samples 

when the data is collected from the sensors.  

 

Figure 3.20 System Timer IP Configurations in Platform Designer 

The second controller is the Peripheral Input/output (PIO). In contrast, the third 

controller is the Modular Scatter-Gather Direct Memory Access (mSGDMA) controller 

IP that is utilized for data transferring from FPGA to DDR3 of the ARM processor 

through the bridge of Avalon SDRAM. Reducing the data overhead on the Nios II 

processor is the main purpose of using the mSGDMA controller. Nios II core 0 handles 

the software configuration of this IP, as shown in Figure 3.21. 
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Figure 3.21 mSGDMA Controller IP Configurations 

Mutex is a peripheral system used in SWQS design. This IP is needed to control 

the access of shared peripherals and memory among the cores in a multi-core system. 

Only one master at a time can access the shared peripheral. Therefore, this IP needs 

software configurations. However, there is no need for hardware configuration. Figure 

3.22 illustrates the configuration of mutex in Platform Designer. 

 

Figure 3.22 Mutex configuration in Platform Designer 

Joint Test Action Group (JTAG) IP is used to access each core individually when 

debugging is needed. The UART IP can be used only in debugging process, and it will 

be idle if there is no debug command sent by the Nios II controller. There is no software 

or hardware configuration for this IP. Figure 3.23 presents the JTAG configuration. 
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Figure 3.23 The Configuration of JTAG IP in Platform Designer 

In addition, System ID Peripheral has been added, a read-only device that gives 

the systems in Platform Designer a specific and unique ID. Nios II processor utilizes 

the system ID IP to check whether the executable program was compiled targeting the 

image of the actual hardware configured in the target FPGA. However, if the system ID 

does not match the expected executable ID, it will not be executed correctly. 

Furthermore, there are two 32-bit registers in the core interface. Figure 3.24 

demonstrates the configuration of the system ID core.  

 

Figure 3.24 The Configuration of System ID Core in Platform Designer 

Last but not least, an ADC controller has been utilized to give the ability to 

interface between the Nios II core and ADC. This is because all used sensors like pH, 

TDS, and turbidity provide analog data that should have a converter to read by FPGA. 

Therefore, this IP core is used instead of using a converter chip. It can control all the 

needed digital signals from and to the ADC controller. Additionally, it provides a 

memory-mapped register interface to read the ADC values.  
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3.8.1.6 Bridges 

There are two kinds of FPGA internal bridges that are used in the proposed design, 

which are the Avalon Memory-Mapped Pipeline Bridge, and the second one is the 

Address Span Extender (ASE) bridge. The main purpose of using Avalon Bridge is to 

handle more than one slave for one or more multiple masters with the feature of the 

pipeline. Therefore, this bridge will improve the overall system performance and reduce 

the bus’s overhead. The Avalon Bridge configuration can be seen in Figure 3.25. Since 

the Nios II processor core is a 32-bit processor, the Avalon Bridge data bus is set to 32-

bit as well. The second bridge is the ASE bridge, which extends the memory address 

view of the Nios II processor and makes it 64-bit memory. Other than that, this bridge 

will provide the ability to write/read data from/ to DDR3 system memory. Figure 3.26 

shows the ASE configuration. 

 

Figure 3.25 Avalon Memory Mapped Controller IP 
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Figure 3.26 Address Span Extender IP 

3.8.1.7 Pin Assignment 

Pin assignment can be done using the Pin Planner tool to connect the pins inside the 

FPGA chip with the pins outside. Pins must be defined; otherwise, Quartus software 

will assign the pins randomly. Pin assignment can be seen in Figure 3.27.  
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Figure 3.27 Top View of Pin Assignment 

3.8.1.8 Synthesis Report 

The synthesis report displays detailed synthesis results for each partition in the current 

project revision. It shows summary information about syntheses, such as the status, date, 

software version, entity name, device family, timing model status, and various types of 

logic utilization. From Figure 3.27, it can be observed that the full design has utilized 

6313. In contrast, around 57% of the available on-chip internal memory was utilized as 

local memory for each processor core. More processor cores can be added to this design 

based on design requirements. Figure 3.28 presents the synthesis report of the proposed 

design. 



 

81 

 

Figure 3.28 Synthesis Report of the Design 

3.8.2 The Software Design Flow of SWQS 

3.8.2.1 Firmware Development Flow 

The developer can begin with the software flow once the hardware flow is done. The 

software mainly focuses on the sensors' programming and creating the Linux 

application where the SWQS data is read. In addition, the software is used to 

communicate the ARM terminal with the Raspberry pi terminal for external access. The 

software flow starts with the generating of the .elf file, which is the firmware of the 

processor. Note that firmware is the embedded code of each water quality sensor that 

has been run on the cores designed using the Platform Designer tool. In addition, 

creating firmware for each sensor was utilized to make each core process the data from 

its firmware instead of making all cores deal with one firmware. For instance, firmware 

1 is responsible for pH sensor code; core 2 only could have access to pH firmware 

instead of making one firmware for pH, TDS, and turbidity core. Therefore, the data 

will be read in parallel instead of in series. The processor core memory stores the .elf 

file once it is generated. Figure 3.29 presents the complete software flow of the design. 
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Figure 3.29 Nios II Software Development Flow 

Once the Platform Designer is generated, a .sopcinfo file will be generated, 

which is utilized and is needed by the Nios II eclipse tool to generate the Board Support 

Package (BSP). Note that BSP is a file package containing Hardware Abstraction Layer 

(HAL), system calls, device drivers, and system header files. The developer could write 

the C code based on the design and compile it when the Nios II is generated. After the 

compilation process, a .elf file will be created that can be uploaded to the Nios II 

memory. Both hardware and software flows are needed to complete the FPGA design. 

Figure 3.30 demonstrates the entire FPGA process flow. 
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Figure 3.30 The Entire FPGA Development Flow 

3.8.2.2 The Linux Application Development Flow of SWQS 

When the hardware and firmware development flow is completed, the flow of Linux 

application development begins. Any software development language, such as C, C++, 

Python, Java, etc., can be used to design the target application. For example, the SWQS 

application is developed using the C++ programming language in this research. 

The memory management stage starts developing, where the memory address is 

defined. Figure 3.31 presents the SWQS application memory layout. 
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Figure 3.31 SWQS Application Memory Layout 

The next step is to define the AXI bridge address and make it (0xff200000). 

Subsequently, the hardware registers span of Intel that is (0x40000000) is going to be 

added with the AXI bridge address. Figure 3.32 shows the offset of each component in 

the system. Finally, the target address, the result, will be used to access the FPGA 

proposed design registers by adding each register offset, as established in equation (3.1). 

 

Target address = Bridge offset + Hardware offset. (3.1) 
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Figure 3.32 FPGA Components Base Addresses 

The next stage is creating a virtual memory in any Linux-based application 

because Linux has a production memory that prevents direct access to an address in the 

system. Without virtual memory, segmentation faults can be caused. A Linux system 

call is used to achieve this known as mmap(), as shown below: 

virtual_base = ( unsigned long *) mmap( NULL, HW_REGS_SPAN, ( PROT_READ 

| PROT_WRITE ), MAP_SHARED, fd, ALT_AXI_FPGASLVS_OFST). 

The virtual base represents the base memory address that can be utilized with 

any offset so that it can be accessed. Therefore, when the developer needs access to the 

shared memory, adding the virtual base to the shared memory base is compulsory. 

After the address configuration, the header of the frame for each dataset will be 

checked. When the frame header exists, the processor can read the data after decoding 

the frame data. However, when the frame header is not existing, the data will be rejected 

by the processor as it might be invalid or corrupted. In the end, the collected data will 

be printed out, and it can be shown in a real-time environment. 
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3.9 THE EMBEDDED LINUX DESIGN FLOW OF SWQS   

Embedded Linux is a complete distribution operating system deployed to run embedded 

devices such as the Internet of Things (IoT), tablets, smartphones, and Personal 

Assistance Devices (Salvador & Angolini, 2014). The kernel of Linux can be run on 

different processor architectures and SoC, such as Intel, ARM, and AMD. These five 

components included in the embedded Linux system are known as the Bootloader, 

Rootfs, kernel, services, and application. 

3.9.1 Bootloader Compilation 

A small software or mini operating system known as a Bootloader must be run before 

starting the Linux environment. The component of the system, such as Ethernet, 

memory, and the FPGA configuration, is initiated by the Bootloader, which gives the 

ability to start the loading and running Linux kernel environment. Note that the 

Bootloader includes platform-dependent services and responsibilities and some 

independent features. 

U-boot is the Bootloader used in the proposed design because this Bootloader 

support Intel FPGA-SoC devices (Intel Corporation, 2014). Many development 

platforms have used U-Boot to support architectures, such as MIPS, ARM, AVR32, 

Microblaze, Nios, x86, and 68K. The user can use the U-boot to give data interactively 

as it has a shell. In addition, it supports scripting, and it is distributed under the GPLv2 

license. 

Figure 3.33 presents the Bootloader Generation Flow. Embedded Software tools 

and Intel FPGA-SoC software (SoC EDS) tools are used to generate the Bootloader. 

The Handoff folder is created after compiling the Quartus Prime project. The Handoff 

folder includes the hardware processor system’s connection and components. SoC EDS 

and Handoff folder is used to generate the U-boot and pre-loader. When the Bootloader 

is generated, the “make” tool is used to create the binary files of the Bootloader.  
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Figure 3.33 U-Boot Development Flow 

3.9.2 Root File-system Creation 

In this design, the default Rootfs of the golden top reference design from TERASIC can 

be utilized as it is. The golden top file is the top-level design file which contains the 

design, pin assignment, and I/O connection for each defined pin. No changing or 

modification is needed to be done. Other than that, DE10 nano SoC development kit 

Rootfs can be found and downloaded from the TERASIC website. 

3.10 ADDING NEW CORE TO SWQS DESIGN 

It is easy to add the core of Nios II with no more modifications required to the design. 

In the Platform Designer, all the connections of the Nios II core can be made internally, 

as shown in Figure 3.34. 

 

Figure 3.34 Nios II Core Connections 
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The clock source will then feed the clock connection; furthermore, the reset 

connection should be communicated with the rest of the master source. Avalon 

Memory-Mapped bus interface is the data master. All the peripheral devices must be 

connected to the Nios II processor using this master. When developing the firmware in 

the system.h file, the Nios II processor should have the connection of any IP or 

peripheral to the data master. Note that Avalon Memory-Mapped is the instruction 

master responsible for the firmware instructions transactions. This master should be 

communicated to the memory of the firmware only. The Interrupt Request (IRQ) 

connection represents the interrupt master. When any interrupt source exists in any IP 

or peripheral device connected to the processor by the data master, it can then be shown 

in the IRQ master. When this additional procedure is done, the Platform Designer 

should generate the .sopcinfo and .qsys files required for both software and hardware 

flows. 

3.11 SUMMARY  

This chapter showed the technical guidelines for Heterogeneous System Architecture 

(HSA). The chapter contained the flow design of the FPGA at both software and 

hardware levels. Furthermore, the Linux development with all commands required to 

create a completed Linux image has been explained briefly in this chapter. In addition, 

the process of adding more cores to the proposed design was elaborated on in this 

chapter. This chapter presented the hardware design and how the sensors will be 

connected to the FPGA board. In addition, how the data will be transmitted to the ARM 

processor and why the ARM processor is used in the proposed design. Moreover, 

software domains were also elaborated on in this chapter. This illustrates the importance 

of using more than one core for each sensor.  
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CHAPTER FOUR 

 

 

RESULT AND ANALYSIS 

4.1 INTRODUCTION 

In this chapter, the results of the proposed design at each level are illustrated in Section 

4.1. The discussion of the results is elaborated in Section 4.2, while Section 4.3 shows 

a benchmark of the proposed design with previous works. Finally, a summary of the 

chapter is presented in Section 4.4. 

4.2 RESULTS 

This study has proposed a new Smart Water Quality System (SWQS) hardware data 

acquisition system design based on the heterogeneous Field Programmable Gate Array-

System-on-Chip (FPGA-SoC) platform. The system levels are the design level, design 

verification level, prototype implementation, data validation, and system integration. 

There is an intersection between the level and its item that has specific information; for 

example, the design level has an action item that is the design flow of FPGA hardware. 

Subsequently, the operation item has the results of the Quartus project compilation. In 

the end, the output item implementation of the hardware on the FPGA board. 

4.2.1 The Results of the Quartus Project Compilation 

Quartus prime lite version, a free software, has been used to develop the proposed 

design of Nios II processors’ systems on FPGA. The result of the system compilation 

can be shown in Figure 4.1. It can be demonstrated from the figure that the design has 

consumed 9% of the logic elements available for the Cyclone V SoC device, which is a 

tiny portion of the available logic elements. Local memory for each processor core has 

utilized 57% of the available On-Chip Internal Memory. More processor cores can be 

added to this design based on design requirements. 
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Figure 4.1 The Result of the System Compilation 

4.2.2 The Implementation of Prototype 

The prototype was tested on different types of liquids for real-time testing. The 

prototype design can be found in Figure 4.2. The following components were used for 

this experiment: Raspberry Pi 3 development kit, DE10 Nano FPGA-SoC development 

kit, pH sensor, TDS sensor, turbidity sensor, as well as a few wires and cables. 

 

Figure 4.2 System Setup Components 
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Figure 4.3 illustrates the proposed design block diagram. Firstly, it presents the 

pH sensor, Total Dissolved Solids (TDS) sensor, and turbidity sensor are analog 

sensors. Therefore, the sensors need to be connected to ADC with an internal reference 

circuit and the sample-and-hold circuit to decrease the noise that might affect the data 

stability. The input signals of the pH sensor, TDS sensor, and turbidity sensor have been 

connected to the ADC_IN0 pin, ADC_IN1 pin, and ADC_IN3 pin, respectively. Once 

the data is collected and transferred to SoC, it can be viewed using the Raspberry Pi by 

accessing the Linux application of SoC. Therefore, USB Mini-B was utilized to connect 

Raspberry Pi with SoC. In addition, the Linux image has been burned on an SD card 

which can be used to display the data collected from the sensors on the screen connected 

to Raspberry Pi. Finally, each sensor must be connected to a 5V and ground pin. 

 

Figure 4.3 Design Block Diagram 

The above figure demonstrates that the Raspberry Pi has another component, 

Liquid-Crystal Display (LCD), used in this experiment to avoid any use of a laptop or 
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PC and make the system portable and can be functioned using a power bank. The LCD 

is utilized to access both Raspberry Pi and FPGA terminals. The Raspberry Pi board 

was used for system augmentations. These augmentations are LCD, keyboard, and 

mouse. These augments can be considered proof of system configurability and the 

ability to integrate easily with any system or augment. 

4.2.3 Design Verification Method 

There are nine tests have been done on the proposed design for the verification process. 

They are: 

i. Core 0 data packetize test. 

ii. Core 0 DMA run test. 

iii. Core 1 pH test. 

iv. Core 1 data transfer test. 

v. Core 2 TDS test. 

vi. Core 2 data transfer test. 

vii. Core 3 turbidity test. 

viii. Core 3 data transfer test. 

ix. Mutex functionality test. 

 

The data was printed out on the console to test the functionality of each core 

before sending the data to the Linux application on the ARM terminal. This step was 

done for 60 seconds for each sensor. It is essential to trace the errors on each embedded 

C code to avoid the debug when the system gets more complicated.  

Figure 4.4 presents the block diagram of the core 1 pH test as well as the core 0 

data transfer test. Core 1 was used to read data from pH sensors and send it to a shared 

memory. However, the shared memory is available once the mutual exclusion (mutex) 

is unlocked. When the system is idle, the data will be written to shared memory.  
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Figure 4.4 Core 1 pH Data Collection and Data Transfer Test Block Diagram 

Figure 4.5 shows the core 1 pH test and the data transfer test result. The output 

of core 1 indicates that elaborate pH functionality and pH data transfer have been done 

successfully. Other than that, pH results on the pure water were measured to check the 

functionality of the system before sending it to the Linux application. It can be shown 

from the figure below that the pH value varies from 6.85 to 7.03, which is an acceptable 

range. 

 

Figure 4.5 Readings of pH Sensor 

Figure 4.6 illustrates the core 2 TDS data collection and transfer test diagram. 

The below diagram presents all the needed components for success in core 2 tests. Core 

2 was utilized to get TDS data and write it to shared memory. On the other hand, the 

shared memory is available once the mutex is unlocked. When the mutex is available, 

the data will be written to the shared memory. 
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Figure 4.6 The Block Diagram of Core 2 TDS Data Collection and Data Transfer Test 

The TDS sensor measured the TDS value of pure water, which was between 

63.54 ppm and 71.34 ppm. However, when adding salt to the water, the value increased 

approximately between 1769 ppm and 1874 ppm. The results have been printed out by 

core 2. Figure 4.7 shows the TDS readings of the water with more salt. 

 

Figure 4.7 Readings of TDS Sensor 

Figure 4.8 presents the block diagram of core 3 turbidity data collection as well 

as the tests of the data transfer. Core 0 has been utilized by core 3 to test the data transfer. 

In addition, core 3 has been connected to the turbidity sensor to achieve a data collection 

test and to prove the functionality of the sensor. 
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Figure 4.8 The Block Diagram of Core 3 Turbidity Data Collection and Data Transfer 

Test 

Core 3 output can be observed in below Figure 4.9. The data of the turbidity 

sensor has been collected by core 3 and transferred through DMA to core 0. To check 

the functionality of the turbidity sensor, little dust was added to the pure water. 

Therefore, the turbidity value increased to reach between almost 1060 to 1180 mNTU.  

 

Figure 4.9 Readings of Turbidity Sensor 

Once the test of each core is done separately, the next and final step is to send 

the data that was gotten from each core to the ARM terminal. The ARM terminal will 

read the data in parallel from each core to prevent latency. The experiment was done on 

pure water, lemon juice, and milk to test the pH sensor. Meanwhile, to test the TDS 

sensor, pure water and water with salt and the turbidity sensor were tested on pure water, 

water with little dust, and water with more dust. Note that the system has been tested 

successfully with good readings. The test was done several times on different time 
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periods to make sure the system was functioning well. In addition, the line graphs below 

for each sensor were measured for 60 seconds only.  

The pH value was almost 7 for pure water; however, it decreased when 

measuring the pH of lemon juice and acidic liquid. Nevertheless, when measuring the 

pH value of milk, the values were above an alkaline liquid. Figures 4.10 and 4.11 

present the installation of a pH sensor to measure different liquids. 

 

Figure 4.10 Line Graph of pH Values of Pure Water, Lemon Juice, and Milk 

 

Figure 4.11 Testing the pH Sensor 

For TDS, a sensor has been used to measure it. Two liquids, pure and salted 

water, have been utilized to measure TDS. Results show the purer the water, the less 

TDS value. TDS value is measured by ppm, which is parts per million. Pure water 

values were between 60 ppm and 70 ppm. However, adding salt to the water will 

increase the TDS values to nearly 1700 ppm, as presented in Figure 4.12. However, 

more particles in the water mean a great TDS value; therefore, it is crucial to the 
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parameter that needs to be measured to distinguish pure water from a not pure one. 

Figure 4.13 illustrates the real installation of the turbidity sensor. 

 

Figure 4.12 Line graph of TDS Values of Pure Water and Water with Salt 

 

Figure 4.13 Testing of the TDS Sensor 

Turbidity is the measure of the relative clarity of a liquid. It is an optical 

characteristic of water and measures the amount of light scattered by material in the 

water when a light is shined through the water sample. The higher the intensity of 

scattered light, the higher the turbidity. The turbidity is measured by Nephelometric 

Turbidity Units (NTU). Pure water showed a value of nearly 600 mNTU to 800mNTU. 

Nevertheless, the water with some dust showed more than 1100 mNTU, as shown in 

Figure 4.14. The measurements show that the more the turbidity value, the more 

particles in it, making it unsafe to drink. Figure 4.15 demonstrates the real installation 

of the turbidity sensor. 



 

98 

 

Figure 4.14 Line graph of Turbidity Values of Pure Water, Water with Little Dust, and 

Water with More Dust 

 

Figure 4.15 Testing the Turbidity Sensor 

4.2.4 The Results of the SWQS Linux-Based Application 

SWQS Linux-based application was developed on Linux kernel SystemCalls C 

programming. After compiling the executable format of this application, it was 

converted to a Linux Terminal command. Therefore, the (-h) option must be familiar 

with the command arguments to run the Linux-based application. 

All the execution possibilities of the Linux application have been tested 

successfully to make validation to the functionality of the application. The behavior of 

the system in case of the system cores controlling, system status monitoring, application 

behavior in case of the wrong command is used, and finally, printing usage message in 

case the user types of false arguments. 

For instance, running the command “swqs –r 0”, the expectation is to run all the 

system cores. However, if the user specifies one of the cores of the sensors like “swqs 

–r 3”, core 0 and core 3 will be executed, showing the turbidity sensor’s data. 
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The SWQS Linux application was tested in a real-time environment to control 

the cores of processing elements on FPGA, decode the message sent from core 0, and 

finally show the data collected from sensors on the Linux Terminal, as shown in Figure 

4.16. After integrating the sensors with the cores, the above test verifies the system’s 

functionality. 

 

Figure 4.16 SWQS Results on Linux-Based Application 

Raspberry Pi has another component, LCD, used in this experiment to avoid 

using a laptop or PC and make the system portable and function using a power bank. 

The LCD is utilized to access both Raspberry Pi and FPGA terminals. Meanwhile, the 

Raspberry Pi board was used for system augmentations. These augmentations are LCD, 

keyboard, and mouse. These augments can be considered proof of system 
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configurability and the ability to integrate easily with any system or augment. The 

proposed water quality system was proved as a smart system since it incorporates 

functions of sensing and controlling a system to describe or analyze a situation. Other 

than that, the proposed system provides a wide space of flexibility for developers to 

design and develop their applications from hardware (FPGA platform) and software 

(SoC) perspectives. The proposed platform is not tied to any programming language. It 

has an embedded Linux running on an SoC sub-system to give full adaption with any 

programming language or artificial intelligence (AI) platforms like TensorFlow and 

Caffe. The data can be streamed to the AI platform in a real-time environment.  

4.3 DISCUSSION  

After getting all the results and testing the proposed SWQS, this section discussed the 

proposed system's novelty and uniqueness in terms of software and hardware design. 

4.3.1 Motivations of the Middleware Layer  

This research design has invented a new layer between software and hardware known 

as the middleware layer. Software services to the application layer are provided in the 

form of API. There are two layers in the system: software and hardware layers. 

However, more knowledge is needed in hardware design skills, including Very High-

Speed Integrated Circuit Hardware Description Language (VHDL), Verilog, and 

Verilog system, design constraints, etc. Moving toward the hardware layer will raise 

the complexity of the design. Also, when moving toward the software layer, the 

developer requires more skills in developing the software that contains the operating 

system, services of the systems, programming languages, etc. The design limitations 

will grow when moving to hardware design because of the controllers, buses, interfaces, 

and system components. Nevertheless, these limitations will decrease as moving to the 

software layer because everything will be controlled on the software level. 

The middleware layer will make the work of the developers easier since there is 

less access to the hardware, and most access will be done via the middleware layer. The 

proposed design has derived APIs, which will assist the application layer in accessing 
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the hardware and sensor layers with less complexity. The proposed heterogeneous 

design provides software and hardware engineers with an excellent opportunity to 

design SWQS applications.  

4.3.2 System Flexibility 

FPGA was utilized to design the proposed system, providing more design flexibility. 

The designer might face the most common issue: the limited number of input/output 

peripherals on most boards. This is a critical issue when multiple sensor interfaces are 

needed to design the system. FPGA is a programmable board. Therefore, the developer 

may design the interfaces, controllers, and peripherals using Intellectual Property (IP), 

a pre-made component available on FPGA. For example, Figure 4.17 presents the 

components and interfaces needed for a single core in the proposed SWQS application. 

However, it can be easily added when a new interface is required. In addition, the new 

interfaces could be wired with external FPGA pins.  

 

Figure 4.17 SWQS Proposed Single Design Core 
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4.3.3 Applications of the Design 

The proposed design has been developed based on SWQS data acquisition and the 

system functionality. Achieving high-quality SWQS needs multiple sensors and sub-

systems to be added to the design. Many applications can be extended to data 

processing, decision-making, performance analysis, machine learning, and deep 

learning. Using the embedded Linux operating system in the SWQS proposed system 

will simplify the application development. Note that any programming language could 

be used for developing the application.  

4.4 SWQS DESIGN COMPARED TO PREVIOUS WORK 

The full testing of the SWQS was done based on the testing plan, and the test has been 

done several times to ensure that it works well under different situations. However, it is 

strongly necessary to evaluate the SWQS design to ensure it is working well. SWQS 

design was evaluated by comparing it with previous work to prove that the SQWS 

design has increased the performance of monitoring the water quality. In addition, the 

proposed design will be benchmarked with (Myint et al., 2017), as both use the FPGA 

board. 

The proposed design has applied Verilog language for the hardware design, 

which is more accessible than VHDL. It has been used by (Myint et al., 2017) as it is 

less complex and requires fewer coding lines. Other than that, Verilog is almost like the 

C language, which makes Verilog user-friendly (Digilant Blog, 2022).  

In addition, both designs have utilized the Platform Designer tool to create the 

Nios II softcore, a configurable processor with an internal Central Processing Unit 

(CPU). Nevertheless, the proposed design used one Nios II processor for each to employ 

the option of parallelism, which is getting the data of all sensors simultaneously to 

decrease the time consumption. The proposed design used four cores. Core 0 is 

responsible for data synchronization, while core 1, core 2, as well as core 3 are 

responsible for collecting raw data from each sensor, calibrating the readings, 

segmenting the data in a format, and finally making it ready for the user application 

running on the ARM processor. 
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The proposed system used the Linux application to display the sensors’ water 

quality data. The Linux application gives the ability to get the data easily on excel or 

connect with other software for machine learning or performance analysis. Nonetheless, 

(Myint et al., 2017) used eclipse Grafana software to display the data only. 

The proposed prototype utilized a small screen for real-time displaying and 

saving the data in the SD card provided. In contrast, (Myint et al., 2017) used the XBee 

transmitter model to transfer the data remotely, which might be lost if the connection is 

disturbed.  

4.5 SUMMARY 

This chapter showed the proposed design’s results, and the collected data from the 

system sensors were analyzed and discussed. Each test was done more than twice to 

check the system’s functionality. In addition, this chapter discusses the application and 

results in terms of the middleware layer and the system's flexibility. In the end, the 

proposed system was compared to (Myint et al., 2017) in terms of functionality and 

results.  
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK  

Chapter Five:  Conclusion and Future Wor k 

5.1 CONCLUSION 

Contaminated or polluted water is one of the leading causes of mortality. According to 

the World Health Organization (WHO), 2.2 billion people drank water without any 

safety-management services in 2017, with 144 million collecting water from untreated 

water bodies such as lakes, streams, and rivers (“2.1 Billion People Lack Safe Drinking 

Water at Home, More than Twice as Many Lack Safe Sanitation,” 2017). As a result, 

measuring water quality becomes an important issue. A conceptual layout of the project 

is given by stating the background, statement of the problem, and research objectives. 

A critical literature review is done to do the groundwork of what a Smart Water Quality 

System (SWQS) is to justify why this research is essential. 

By the end of Chapter 2, objective one, which was investigating and analyzing 

the previous and related works on designing an SWQS and categorizing it in groups, is 

already achieved. This research methodology is divided into hardware and software 

design of the proposed SWQS using Heterogeneous System Architecture (HSA), a new 

computer platform infrastructure and associated software. This allows processors of 

different types and architectures to work efficiently and cooperatively in shared 

memory from a single source program. 

The project proposed a new and novel SWQS hardware acquisition system 

design based on a heterogeneous platform using the System-on-Chip (SoC) and Field 

Programmable Gate Array (FPGA) platforms. The proposed design was tested from the 

hardware compilation and ended with the system integration testing. The design was 

utilized to provide an excellent data acquisition system validated using three water 

quality parameter sensors: pH sensor, Total Dissolved Solids (TDS) sensor, and 

turbidity sensor. The hardware design was implemented successfully on FPGA to take 

advantage of the flexibility and configurability of FPGA; however, the software 

application was implemented on the SoC platform to take advantage of the performance 

and programmability of the SoC platform. Hence, Quartus Prime was used to compile 
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the hardware design. Subsequently, we implement the prototype for real-time testing. 

The final step is to connect the prototype to a Raspberry Pi processor, which was 

connected to a screen to display the data. The system was portable, and it was powered 

using a power bank. Therefore, the design can measure water quality anywhere without 

worrying about the power source. The proposed design can be used as a heterogeneous 

multi-core system for many applications, one of which is the SWQS data acquisition 

system. 

5.2 FUTURE WORK 

This study showed the initial research challenges and provided an excellent solution to 

develop and implement an SWQS system in a heterogeneous computing platform based 

on FPGA-SoC architectures. Some future recommendations that can be used to improve 

the system are listed below: 

 System integration: performance is the main requirement for the 

embedded system. Further design cycles must be considered in future 

studies, especially data integration, analysis, and decision-making. In 

addition, power consumption and the associated thermal management are 

essential issues that must be considered. 

 Application development: the proposed design is a Linux-based 

application to control and monitor the hardware system. In addition, the data 

were read by the proposed design in real-time. For SWQS, many previous 

studies employed different sensors, and how to add them to the proposed 

design is a fundamental issue that needs to be focused on in the future. 

Additionally, several artificial intelligence (AI) could be integrated with the 

proposed system for many AI applications in terms of object detection, 

segmentation, and classification.  

 Optimization and analysis: optimization and performance analysis are 

considered important issues that need more work to improve the overall 

system performance. For instance, it can be done by optimizing other 

indices like power, energy, or both to enhance the heterogeneous system 

performance. 
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 Involve other sensors: the main aim of the proposed design was to prove 

that the heterogeneous computing platform FPGA-SoC could implement 

SWQS with high performance and efficiency. Therefore, only three sensors 

have been used. However, more water quality sensors could be integrated 

into the proposed SWQS to measure other important water quality 

parameters. 
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