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ABSTRACT

Electrocoagulation (EC) is a simple, environmentally friendly and cost effective
process, when integrated with membrane filtration, becomes very attractive for
developing a sustainable water reclamation system. The critical parameters namely
initial pH, time and current density largely impact the EC process efficiency. Few works
have been done on observing the interaction of these critical parameters and the possible
combined effect on the overall pollutant removal efficiency. Also, with membrane pore
blocking study, the efficiency of the overall integrated process can be enhanced by
determining the dominant fouling mechanism. Therefore, the knowledge of the
combined effect of critical parameter interaction followed by membrane fouling study
would enhance the overall efficiency of the integrated process to sustainably reclaim
water. Using aluminum electrodes with interelectrode distance of 10 mm, with a set
range of initial pH, current density, and time of 3-8, 40-160 mA/cm? and 15-60 minutes,
respectively, the effect of the three critical variables were investigated on synthetic
wastewater, representing biotreated palm oil mill effluent (BPOME). Next, a pore
blocking study was undertaken with the EC treated BPOME after crossflow membrane
filtration process with transmembrane pressure of 0.5 bar and pore size of 1 kDa. The
optimum Chemical Oxygen Demand (COD) removal of 71.5% was determined at pH
6, current density of 160 mA/cm? (with current 1.75 A) at EC time of 15 minutes. The
experiment was validated with real BPOME, resulting in the removal efficiency of
60.7% COD, 99.91% turbidity, 100% total suspended solids (TSS) and 95.7% color.
The interaction of parameters observed in this study indicated a synergistic contribution
of initial pH and current density in removing maximum wastewater COD in 15 minutes
of EC. After following with membrane ultrafiltration process, the COD removal
increased to 71.7%, and the dominant fouling mechanism prevailing was cake formation
as determined by fitting with Hermia’s pore blocking models. EC with activated carbon
(AC) addition, run with the optimized parameters, significantly improved the final
treated quality with a 100% TSS, 99% of both color and turbidity and 84.6% COD
removal. The best permeate quality was achieved with 1 wt. % addition of AC in EC
reactor, and the removal of TSS, turbidity and color was nearly 100% and COD was
removed 99.7% with final value of 5+1 mg/L, which are within the range of reusable
process water standard. Also, addition of AC in EC, sustainably enhanced the final
treated effluent quality with fouling mitigation in the subsequent membrane
ultrafiltration.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND
Rising scarcity of fresh water is a global concern. According to the World Economic
Forum (WEF), the global water crisis ranks as the number four risk in terms of impact
on the society till date. A significant decrease in the available freshwater quality and
quantity is raising concerns on consequent impact on not only human health and
ecosystem but also the world economy (WEF, 2020). Besides, the United Nations (UN)
realizing the importance and urgency of freshwater crisis mitigation, placed “Clean
Water and Sanitation” as the number six goal to be achieved by 2030 under the
movement of Sustainable Development Goals (SDG). Therefore, Target 6.3 under goal
6 (SDQG) is to improve water quality, wastewater treatment and safe reuse. By UN
definition, the accomplishment of Target 6.3 (one of the eight targets to achieve SDG
goal 6) is visualized by breaking it down to the following four measures (SDG 6
Synthesis Report, 2018):
1. Reducing pollution
2. Abolishing dumping and minimizing the emission of hazardous materials and
chemicals

3. Cutting down the quantity of untreated wastewater by half
4. Substantially increasing recycling and safe reuse globally.

It is evident that emerging industries and urban societies are major drivers for
global economic boost. However, disregarding the environmental consequences strictly

on appropriate waste treatment and disposal, will sooner or later, not only tax the world



economy, but also can build up to the collapse of the ecosystem sustainability, even
impacting climate change in the long run.

For instance, Malaysia being one of the top global palm oil producers, generated
19.86 million tons of crude palm oil (CPO) in 2019 alone, which is a marginal increase
by 1.8% (Malaysian Palm Oil Board, 2020). With every ton of CPO produced, huge
amount of water is employed for extraction processes on fresh fruit bunches (FFB) and
about 50% of the water is disposed as effluents (Ahmad et al., 2003). Besides, the
effluents are high in organic matter and nutrients that are nontoxic but carry potential
to induce algal growth and eutrophication overtime (Reilly et al., 2019), while the
conventional treatment methods fail to meet the environmental discharge standards set
by Department of Environment (DOE) of Malaysia (Kamyab et al., 2018). Similarly,
most wastewater effluents besides treated palm oil mill effluents (POME) (Bashir et al.,
2019; Daud et al., 2013; Kamyab et al., 2018; Othman et al., 2014), from several
industries such as cheese whey effluent (Tirado et al., 2018), municipal wastewater
(Nawarkar & Salkar, 2019), mineral processing wastewater (Wu et al., 2019) and many
other types of wastewater are discharged into rivers after conventional treatments.
Typical treatments before discharge into rivers involve physical, biological and/or
chemical processes.

The type of treatment varies depending on the different types of wastewater and
pollutants. The conventional processes involved in wastewater treatment include
advanced oxidation processes (Boczkaj & Fernandes, 2017), biological processes
(Huang et al., 2017; Iskandar et al., 2018; Liew et al., 2014), physico-chemical
processes (Bhuptawat et al., 2007; Lin & Chen, 1997; Sher et al., 2013), and emerging
technologies namely membrane filtration (Teng et al., 2018) and adsorption (Amosa et

al., 2016). Advanced oxidation processes require strong oxidants making the



wastewater treatment taxing in terms of safety and cost. Biological processes on the
other hand, demand strictly controlled conditions with long retention times, larger
footprint, and unwanted by-products generation (Abu Hasan et al., 2020; Deveci et al.,
2019). Chemical processes need extensive chemical dosages that not only adds to
process cost, but also makes downstream processes complex, with increased risk of
secondary contamination (Jiang, 2015). Membrane filtration and adsorption alone
cannot efficiently treat wastewater, unless integrated with thorough pre-treatment
processes (Khan & Boddu, 2021; Saleem et al., 2019). Or else, the processes become
unproductive overtime due to pore blocking with pollutants and loss of flux (flowrate
of clean treated effluent per unit surface area). Therefore, wastewater treatment research
is greatly allured to electrochemical processes (Hakizimana et al., 2017). In 1889,
electricity employed water treatment was first proposed in UK, while electrocoagulation
(EC) achieved its first patent in the US in 1909 (Chen, 2004). Even though EC was
successfully applied in the US in large scale drinking water treatment in 1946, it failed
to gain global popularity for wider applications limited by power supply costs and huge
capital investment (Chen, 2004).

However, constant progress in EC research remarkably upheld the significance
of EC and its promising impact in wastewater treatment. Amongst all electrochemical
processes, EC stands out as the most sustainable alternative to treat wastewater due to
its simple setup, small footprint, ability to treat large quantity of water with no extensive
chemical treatment (Moussa et al., 2017; Sahu et al., 2014). Moreover, the versatility of
the process and its setup enables EC to treat a wide range of wastewater across industries
and domestic works with different types of pollutants. Many researchers worldwide had
conducted several EC studies till date, to treat various types of wastewater and achieved

promising outcomes. Some EC studies were taken further by integrating with other



processes, progressing into advanced wastewater systems to produce cleaner effluents.
Some of the notable works on EC are carried out by Bashir et al. (2019), Changmai et
al. (2019), Deveci et al. (2019), Dimoglo et al. (2019), Khemila et al. (2018), Nasrullah
et al. (2020), Nawarkar & Salkar (2019), Sher et al., (2020) and more.

Of all the current processes employed in the POME and wastewater treatments
namely aerobic/anaerobic digestion, adsorption, chemical coagulation, etc., EC is an
attractive alternative as it does not require heavy chemical extensive processes and is
relatively quick and inexpensive and a simple process that has immense potential to
sustainably treat large quantities of water at once (Naje et al., 2017). EC is an attractive
electrochemical process with simple set up, inexpensive, environmentally friendly
procedure requiring less carbon footprint in terms of space and chemical requirement
and therefore, carries a promising potential to be scaled up to treat huge amount of
POME at the industrial level. However, it is important to understand the critical
parameters of EC and the parameter interaction effect on wastewater treatment
efficiency. Determining the synergistic or antagonistic influence of possible parameter
interaction on pollutant removal, contributes to deliver an enhanced EC performance.

To treat the wastewater to the standard of water reclamation for reusability, EC
needs an effective integration with an additional separation process (Afanga et al.,
2020). Strictly considering the environmental and economic sustainability, along with
the simplicity in set up, in situ operation and maintenance, EC is a desirable fit as a pre-
treatment for the booming membrane technology, greatly mitigating membrane fouling.
Typically, strong oxidants such as peroxides are added to enhance wastewater treatment
efficiency with EC (Bashir et al., 2019). Even though, oxidants can breakdown colloidal
pollutants in the wastewater, they are hazardous and not environmentally friendly.

Hence, combining activated carbon (AC), a relatively green support (compared to



peroxides), has been found to work very well to enhance EC performance with
remarkable reduction in the wastewater pollutant quantity (Barhoumi et al., 2019; Sher
et al., 2021).

Membrane technology is popular for producing consistent permeate quality to
meet more stringent water requirements such as for drinking, urban reuse, industrial
reuse etc. (Ezugbe & Rathilal, 2020). To tackle the issue of membrane pore blocking
(fouling) over time, that declines membrane performance and reduces membrane
integrity, hybrid membrane systems are increasingly being studied for an overall
enhancement of treatment efficiency (Khan & Boddu, 2021). The emerging studies of
hybrid membrane-based processes with integrated EC depict immense potential for
treating wastewater for water reclamation for specific applications such as irrigation,
industrial or urban reuse. Therefore, integration of EC with membrane process, for
water reclamation from BPOME is a promising direction as EC is able to sustainably
remove a huge amount of pollutants as colloidal particles, that can significantly reduce
membrane fouling. Hence, the EC-membrane hybrid process is not only a promising
treatment process for contributing to mitigating environmental pollution from the final
industrial effluents, but also would lead to freshwater scarcity mitigation with the

resulting water reusability.

1.2 PROBLEM STATEMENT AND SIGNIFICANCE

This study focuses on EC-membrane process as post treatment for BPOME and
investigation of its ability to sustainably reclaim process water for industrial reuse.
BPOME is the final discharge effluent of the palm oil industries, that hold the potential
to be reused in the industry with a sustainable water reclamation system, mitigating

fresh water scarcity and environmental pollution. To study the hybrid process, the



optimization of critical operational parameters of EC are mandatory to establish for
BPOME treatment. Many researchers have studied the effect of operational parameters
on EC efficiency. However, few studies are found that investigate the parameter
interaction and the combined parametric effect on pollutant removal % in EC for
BPOME. Therefore, observing the effect of critical operating parameters namely
current density, initial pH and time, and their combined effect on pollutant removal
efficiency and EC optimization in this study, propels the advancement of this
sustainable technology in the palm oil industries. Besides, the fouling studies of the
following membrane filtration is necessary to explain the pore blocking mechanism in
play while purifying the EC treated effluent that started with BPOME, and providing
information for industrial scale up and specific fouling mitigation strategies. As another
stepping stone for sustainably producing cleaner effluents for discharge and potential
water reclamation, this study paves a way to the direction of accomplishing the SDG 6,
that strongly aims to reduce and reuse industrial effluents with its Target 6.3 (SDG 6
Synthesis Report, 2018).

The effluent from the proposed EC-membrane process is expected to not only
meet the discharge standards, but also to be reusable in the palm oil industry as process
water. EC process involves application of current on the wastewater through metal
electrodes, destabilising the charge of the pollutants and separating them in the form of
flocs. In the process of EC, the electrodes (anodes) reduce in size due to metal
dissolution. Therefore, the electrodes need to be replaced from time to time. Besides
EC, membrane technology is a booming field for separation processes. However, the
COD, turbidity, color and TSS in BPOME are too high to be treated with membrane

leading to instant fouling and membrane dysfunctionality. To combat this issue, EC-



membrane for BPOME stands out as the most suitable, sustainable and environmentally
friendly alternative.

Studies have shown promising outcomes employing EC-membrane process for
treating various types of wastewater namely textile wastewater, oily wastewater and
bilge water. However, a gap remains in exploring the integrated process for treating
BPOME. The EC critical process parameters vary with different wastewater types.
There is a need to understand the critical parameter (current density, pH and time)
interaction effects on pollutant removal efficiency. Also, in the studies relating EC-
membrane integrated processes, there is a lack of membrane fouling study, which is
important to understand the dominant fouling mechanism for EC treated BPOME. The
resulting fouling constants determined contribute as raw materials for industrial scale
up of the membrane filtration system and also enable strategic development of
appropriate antifouling strategies. Also, it is interesting to investigate the potential
enhancement of the EC-membrane process by coupling EC with powdered activated
carbon (AC). A consequent improved flux and potential fouling mitigation along with
improved permeate quality can support a long term membrane integrity, maintaining
low footprint, easy maintenance and environmental sustainability, besides enhanced

treatment efficiency.

1.3 RESEARCH OBJECTIVES

The overall aim of this research is to propose a sustainable water reclamation process
for BPOME reusability in the palm oil industry. Therefore, by exploring the potential
of the EC-membrane integrated process, to achieve the aim, this research can be broken

down to the following objectives:



1. To optimize the operational conditions namely current density, initial pH and time

of EC process on synthetic wastewater using RSM and verify with real BPOME

2. To establish the best pore blocking model on the crossflow ultrafiltration process

for the EC treated BPOME

3. To enhance EC-membrane process by coupling EC with the addition of

commercially available adsorbent and investigating its effect on final effluent

quality and membrane fouling

1.4 SCOPE OF RESEARCH

This research focuses on EC process followed by membrane filtration as hybrid process

for water reclamation.

1.

First, optimization of operational variables was carried out on synthetic
wastewater which was prepared in the laboratory to model BPOME with COD,
nitrogen and phosphorus ratio adapted from Nopens et al. (2001). This approach
of employing synthetic POME preparation for this research led to a more solid
characterization, reliability and repeatability of results for optimization of
operational variables compared to BPOME as their values vary from time to
time due to natural degradation and irregular effluent discharge.

Then, the optimized parameters were verified with EC-membrane hybrid
process on actual BPOME. The BPOME was stored at 4°C to prevent
biodegradation.

This research concentrated on modification of initial pH (3-8), EC time (15-60
min) and current density (40-160 mA/cm? i.e. 0.44-1.75 in terms of applied
current) for optimization using Al electrodes, following the experimental runs

designed via Design Expert software version 13.0.



