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ABSTRACT 

An all-solid-state ion-selective electrode (AS- NH4
+ISE) for ammonium-ion-sensing 

based on stable conductive polymer (CPs) as a solid contact transducer and ionophore-

free ion-selective membrane for mobile sensor application was fabricated. Poly(3,4 

ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electropolymerized 

onto screen-printed carbon electrodes (SPCEs), and screen-printed platinum electrodes 

(SPPEs) as solid contact transducer was characterized for its morphology and 

electrochemical performance and was studied for stability – the ability of the sensing 

solid contact transducer to adhere to the working electrode surface and maintain 

electrochemical cycle stability. The stability of the solid contact transducer was studied 

in static measurements condition – a condition where the electrodes are submerged in 

aqueous solution and not moving, and there is no water flow on the electrode surface 

when the measurements are taken, and dynamic measurements condition – a condition 

where an aqueous solution flows across the electrode surface and the sensor is not 

moving when measurements are taken. Cyclic voltammetry (CV) showed that the 

electron transfer ability of SPCEs and SPPEs was significantly improved when 

electropolymerized PEDOT:PSS was used as the transducer. Moreover, the CVs' redox 

peak current showed that both electrodes could maintain the electrode’s mechanical and 

electrochemical functional integrity for over 30 days. The results suggest that the 

electropolymerized PEDOT:PSS had good adhesion to SPCEs and SPPEs working 

electrode surfaces. There was no significant change in the cycle stability curve in PBS, 

pH 7.1, after 3000 cycles conducted over 12 hours, compared to the initial cycle. 

Furthermore, no significant change in the cycle stability curve was observed after 30 

days of undergoing CV cycles in PBS, pH 7.1, compared to the first day for both 

electrodes. The results suggest that electrode stability of PEDOT:PSS/SPCEs and 

PEDOT:PSS/SPPEs was maintained after repetitive CV cycles in aqueous media. After 

characterisation of solid contact transducer, the PEDOT:PSS/SPCEs were integrated 

into a sensing cell to investigate the electrochemical behaviour of electropolymerized 

PEDOT:PSS in dynamic measurement conditions. The results showed that the 

PEDOT:PSS/SPCEs maintained their peak potential (Ep) and peak current (Ip) after they 

were exposed to different flow rates of 10, 20, 30 and 40 ml/min. Furthermore, the effect 

of the flow rates on the Ep and Ip was investigated. The results showed that flow rates 

range between 0 to 40 ml/min did not affect the Ep and Ip value of the 

PEDOT:PSS/SPCEs. Finally, o-phenylenediamine (o-PD) as an ammonium ion-

selective membrane (ISM) was electropolymerized to poly(o-phenylenediamine) and 

deposited simultaneously on top of the PEDOT:PSS/SPCEs solid contact transducer to 

fabricate AS-NH4
+ISEs. The ISM's electropolymerization deposition was obtained by 

cyclic voltammetry (CV) with potential from 0.0 V to 0.8 V and a scan rate of 50 mV/s. 

The fabricated AS-NH4
+ISEs can detect ammonium ions (NH4

+) as low as 5.7×10-5 M 

with a slope of 58.49 mV/decade (R2 > 0.99) and a linear  detection range from 10-3 M 

to 1 M. These results provide an initial insight into the applicability of the stable 

PEDOT:PSS/SPCE solid contact transducers for the development of AS-NH4
+ISEs with 

high potential for scaling-up purposes and the ability for miniaturization and integration 

into a mobile sensor platform. 

    



خلاصة البحث 
ABSTRACT IN ARABIC 

+ISEsتصنيع قطب كهربائي انتقائي للأيونات كامل الحالة الصلبة ) تم  
4NH-AS   )  بناءً على بوليمرالأمونيوم  لجس أيونات

المجسات  اتلتطبيقكمحول طاقة اتصال صلب وغشاء انتقائي للأيونات خالٍ من الأيونات    ( CPs)  كمحول صلبثابت  و    ناقل
الناقل المستعمل هو   .ةالمحمول  :PEDOTستايرين سلفونات( )-4إيثيلين ديوكسي ثيوفين( بولي )الصوديوم  -3،4)  البولمر 

PSS  )  بلمرته و   حيث تمت  أقطاب كربون  هبيرستكهربائيًا  )SPCEs )ية  على  بلاتينية  وأقطاب   ،  )SPPEs  )دراسة تم  يل
بسطح القطب    الجيد  على الالتصاق   ته قدر   للمحول هو   داء الكهروكيميائي استقرار الأالكهروكيميائي.    ه أداءاستقرار  مورفولوجيته و 

ةال الحفي    المحول الصلبدراسة استقرار    . تم مائي لمدة طويلة في محلول    الكهروكيميائية   ته الكهربي العامل والحفاظ على استقرار دور 
وهي حالة    -ديناميكية  ال  ة الالحو   القطب، حالة لا تتحرك فيها الأقطاب الكهربائية، ولا يوجد تدفق للمياه على سطح    - ثابتة  ال

الدوري الجهد  قياس  أظهر  القطب.  مائي عبر سطح  محلول  فيها  الثابتة (  CV)   يتدفق  الحالة  ين  العامل  ئيينالكهربا  ينلقطبل  في 
بعد  تنقل الإلكترونال تهماأن قدر   والبلاتينيالكربوني   .  عليهما  PEDOT:PSSترسب  بلمرة و   قد تحسنت بشكل ملحوظ 

أن كلا القطبين يمكن أن يحافظا على السلامة الوظيفية الميكانيكية والكهربائية    ( CV)  أظهر قياس الجهد الدوري  ذلك، علاوة على  
النتائج إلى أن    30للقطب لأكثر من   التصاق جيد بأسطح القطب    PEDOT: PSSيومًا. تشير  المبلمر كهربائيًا كان له 

درجة    PBS  محلول  لدورة في طفيف في منحنى استقرار اتغير  هناك    لوحظ  كما .  SPPEsو    SPCEs  لـ  الكهربائي العامل 
ساعة ، مقارنة بالدورة الأولية. علاوة على ذلك، لوحظ تغيير طفيف    12دورة أجريت على مدى   3000، بعد    7.1  الحموضة 

،  7.1درجة الحموضة    ،   PBS  محلول   فييوميا    (CV)   قياس الجهد الدوريل   همايومًا من خضوع  30  الاستقرار بعد في منحنى  
 :PEDOTو    PEDOT: PSS / SPCEs    الكهربائيين   ينالنتائج إلى أن القطب  أكدتمقارنة باليوم الأول لكلا القطبين.  

PSS /    الجهد الدوري  اتقياسبعد    استقرارهما   على  حافظا قد  (CV )    ول الصلبالمحالمتكررة في الوسائط المائية. بعد توصيف
 ميائى يالكهروكمن اداءه  استشعار للتحقيق    غرفةفي    PEDOT: PSS / SPCEs، تم دمج    على القطب الكربونيت  بالمث

ذروة  و (  pE)فرق الكمون  حافظ على ذروة    PEDOT: PSS / SPCEsفي ظروف القياس الديناميكية. أظهرت النتائج أن  
التحقق  تم    ذلك،مل / دقيقة. علاوة على    40و    30و    20و    10( بعد تعرضها لمعدلات تدفق مختلفة تبلغ  pI)  الكهربائيالتيار  

ؤثر على قيمة  يمل / دقيقة لم    40إلى    0تراوح بين  ي  ذي ال  . أظهرت النتائج أن التدفق pIو    pEتأثير معدلات التدفق على    من
pE    وpI    لـPCEsPEDOT: PSS / S    تمت    أخيراً، .  لول البوتاسيىوم فيروسيانيدلمحتدفق  العلما ان القياسات اخذت أثناء

)   o-phenylenediamine (o-PD)بلمرة   الأمونيوم  لأيون  انتقائي  إلى  ISMكغشاء   )poly(o-

phenylenediamine)  المحول الصلب   في وقت واحد على  يبهوترس  PEDOT: PSS / SPCEs    لتصنيعAS -

ISEs+
4NHلـ  ترسب الكهربائيال و البلمرة    ت . تمISM  ( عن طريق الجهد الدوريCV  )فولت    0.0من    بنافذة فرق كمون

نتقائي لأيونات الأمونيوم  الاكهربائي  ال  ان القطباظهرت النتائج    ملي فولت / ثانية.  50فولت ومعدل مسح قدره    0.8إلى  
+ISEsكامل الحالة الصلبة  

4NH-AS أيونات الأمونيوم ) يمكنه تحسس  المصنع+
4NH  )  5.7منخفضة تصل إلى بقيمة   ×

1إلى    ولم  3-10نطاق كشف خطي من مع   ( وR2> 0.99ملي فولت / عقد )  58.49  حساسية تصل ل ـمع    ولم  10-5

ة الصلب  الحالة ذات    PEDOT: PSS / SPCEتوفر هذه النتائج نظرة أولية حول قابلية تطبيق محول الطاقة الثابت    ولم
+ISEsصناعة  لتطوير

4NH-AS  عالية والقدرة على التصغير والتكامل في منصة مستشعر متنقل.  بإمكانية
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

Ammonium ions (NH4
+) are one of the indicators of water quality and can be in the 

form of dissolved nitrogen generated by heterotrophic bacteria in water bodies. 

Ammonium can be a primary nitrogenous end-product from the decomposition of N-

organic compounds such as proteins. The concentration of NH4
+ can increase rapidly in 

water as these ions are photosynthetically assimilated, stored, transformed, and excreted 

by aquatic organisms (Han L, 1985). Furthermore, high NH4
+ concentration in natural 

water can cause eutrophication and result in water algal bloom and red tide releasing 

the toxin, killing aquatic biota. Large amounts of continuous water consumption with 

high ammonium content can also cause cell death in the human body's central nervous 

system (Kan et al., 2016). Therefore, high NH4
+ concentrations can indicate high 

biogeochemical activity zones; thus, real-time and continuous ammonium monitoring 

using sensors is required at such places. 

Ion-sensors, ion-selective electrodes (ISE), or potentiometric ion sensors (PIS) 

form an essential subgroup for electrochemical sensors widely used for ammonium ion 

sensing (Radomska et al., 2004; Schwarz et al., 2000). However, conventional ISEs 

have several limitations: complicated maintenance, complex operations, and high costs. 

Furthermore, ISEs contain liquid as the inner filling solutions that separate the sensing 

membrane from the inner reference element. The filling solution is sensitive to 

evaporation, especially when there are changes in the measured solution’s temperature 

or pressure. Therefore, conventional ISEs must be well maintained and used with care 
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and frequent calibration. Moreover, reducing the volume of a measurement sample to a 

value much lower than the millilitre level is difficult, which poses challenges for sensor 

miniaturization (Ghosh et al., 2017; Hu et al., 2016). The ISEs are classified into three 

groups, depending on the nature of the membrane material, which are glass, polymeric 

or liquid, and crystal or solid (Faridbod et al., 2007). 

All-solid-state ion-selective electrodes (AS-ISEs) replace the internal 

electrolyte filling with a solid ion-to-electron transducer (solid contact transducer) (Bieg 

et al., 2016). AS-ISEs can be used in next-generation sensor devices due to the ease of 

integrating AS-ISEs with electronics. Signal stability has been improved, and detection 

limits were lowered through various research efforts (Hu et al., 2016; Wu et al., 2013). 

The advancement in screen-printed electrode technology also played a significant role 

in the research on the application of AS-ISEs in various fields requiring continuous 

monitoring (Cuartero & Crespo, 2018). Critical components of AS-ISEs are the ion-

selective membrane (ISM) and the solid contact transducer, deposited on a conductive 

electrode made from carbon, platinum, or gold. The ISM's role is to recognize and select 

the target ion. Simultaneously, the solid contact transducer converts the target-ion 

concentration to an electrical potential (voltage) measured against a reference electrode 

(Hu et al., 2016). 

An ion-selective membrane (ISM) cocktail consists of four components: a 

polymeric matrix, an ionophore which is a membrane-active recognition material, a 

membrane solvent or plasticizer, and ionic additives. The standard composition of an 

ISM is 33% (w/w) polymeric matrix, 66% (w/w) plasticizer, 1% (w/w) ionophore, and 

0.5% (w/w) ionic additives; each component of the ISM depends on the target ion, 

especially for its ionophore (Faridbod et al., 2008). However, the AS-NH4
+ISEs can be 
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ionophore-based or ionophore-free (Cuartero et al., 2020). Recent research showed that 

AS-NH4
+ISEs without ionophores have the potential for environmental applications, 

owing to their long lifetime and stability in liquid media (Kan et al., 2016). The o-

phenylenediamine (o-PD) is one of the polymers used as an ISM to replace conventional 

ionophore-based ISMs. The results were insightful and promising due to its sensitivity 

toward the NH4
+ and its ease of fabrication through one-step electropolymerization 

deposition, which could provide ways to scale up the fabrication of AS-ISEs for 

industrial use (Benoudjit, Abd-Wahab, et al., 2020; Cuartero et al., 2020; Kan et al., 

2016).   

Conventionally, the solid contact transducer is a conductive polymer (CP) 

deposited on the electrode surface via drop-casting. However, the drop-casting method 

suffers from weak adhesion of the drop-casted material to the WE surface, especially 

when the deployment conditions for measurements are different, which could limit the 

application of the sensor (Benoudjit et al., 2018; Cuartero & Crespo, 2018). Hence, a 

CPs as a solid contact transducer with the following favourable characteristics is needed 

in the fabrication of AS-NH4
+ISEs for mobile sensor application in aqueous media:  

1.  displays strong mechanical adhesion to electrode surfaces; and 

2.  operates with stable cyclic voltammetry (CV) profile after repetitive CV 

cycles.  

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is one 

of the CPs used as the solid contact transducer for AS-ISE development. It is less 

sensitive to atmospheric gases (O2  and CO2) than a polypyrrole (PPy) solid contact 

transducer (Bobacka, 2006). However, PEDOT:PSS comes with its limitations; the 

presence of hydrophilic PSS chains in PEDOT:PSS can lead to weak adhesion onto the 
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electrode surface, which results in film degeneration and peeling from the electrode 

(Wang et al., 2014; Zhang et al., 2015). For this reason, previous research has focused 

on enhancing PEDOT:PSS’s adhesion and water stability to electrodes by adding 

polyvinyl alcohol (PVA) (Wang et al., 2014), nafion (Wen et al., 2012), or sodium 

carboxymethyl cellulose as a binding reagent (Li et al., 2015). However, most of the 

tests conducted on PEDOT:PSS adhesion on electrode surfaces were measured in 

solution in a typical laboratory setting – static measurements condition in which the 

electrodes are submerged in measurement solution, the electrodes are not moving, and 

without water flow on the electrode surface. Moreover, our initial work demonstrated 

that PEDOT:PSS deposited by electropolymerization deposition technique on screen-

printed platinum electrodes (SPPEs) could overcome the problem by enhancing the 

adhesion PEDOT:PSS to the electrode surface (Benoudjit et al., 2018). 

However, few studies have been made on understanding the stability of 

electropolymerized PEDOT:PSS on screen-printed carbon electrodes (SPCEs) as solid 

contact transducers for applications in static and dynamic measurements conditions and 

their applicability for AS-NH4
+ISEs. Therefore, this work aims to develop a stable AS-

NH4
+ISEs-based on PEDOT:PSS as a solid contact transducer and Po-PD as an ion-

selective membrane (ISM) ionophore-free for mobile sensor application in aqueous 

media. 

1.2 PROBLEM STATEMENT 

The key components of all-solid-state ammonium ion-selective electrodes (AS-

NH4
+ISEs) are the solid contact transducer and the ion-selective membrane (ISM). The 

stable performance of the AS-NH4
+ISEs for prolonged measurements in aqueous media 

requires a stable solid contact transducer and ISM. However, solid contact transducer 
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and ISM tend to deteriorate in liquid media by losing their electrochemical capabilities 

and can be easily peeled off from the surface of electrodes after prolonged storage or 

use in liquid media which lead to unstable sensor performance. Therefore, in this work 

the poly (o-phenylenediamine) (Po-PD) as an ISM and poly (3,4-

ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as solid contact 

transducer were selected. The poly (o-phenylenediamine) (Po-PD) as an ISM has shown 

good stability for up to 5 months (Kan et al., 2016), and I have shown such ISM can be 

fabricated by a one-step process (Benoudjit, Abd-Wahab, et al., 2020). Moreover, my 

preliminary work on investigating the stability of poly (3,4-ethylenedioxythiophene): 

poly(styrene sulfonate) (PEDOT:PSS) as solid contact transducer on screen-printed 

platinum electrodes (SPPEs) (PEDOT:PSS/SPPEs) has shown that PEDOT:PSS/SPPEs 

possessed good stability in static measurements conditions -in which the electrodes are 

not moving when measurements are made in aqueous media, and there is no water flow 

on the electrode surface, and also dynamic conditions, in which an aqueous solution 

flows across the electrode surface at a fixed flow rate (Benoudjit et al., 2018).  

Few studies have been made on understanding the stability of 

electropolymerized PEDOT:PSS on screen-printed electrodes (SPEs) as solid contact 

transducer in static and dynamic measurements conditions and its applicability in AS-

NH4
+ISEs. Therefore, this work aims to develop stable AS-NH4

+ISEs based on 

electropolymerized PEDOT:PSS as the solid contact transducer on screen-printed 

carbon electrodes (SPCEs) for the purpose of integration in a mobile sensor platform 

for prolonged and real time-time measurements in aqueous media. The future end goal 

is to develop a mobile sensor platform that can be deployed in rivers or coastal areas for 

water quality monitoring. As NH4
+ ions play a critical role in the occurrence and 


