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ABSTRACT

An all-solid-state ion-selective electrode (AS- NH4*ISE) for ammonium-ion-sensing
based on stable conductive polymer (CPs) as a solid contact transducer and ionophore-
free ion-selective membrane for mobile sensor application was fabricated. Poly(3,4
ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electropolymerized
onto screen-printed carbon electrodes (SPCESs), and screen-printed platinum electrodes
(SPPEs) as solid contact transducer was characterized for its morphology and
electrochemical performance and was studied for stability — the ability of the sensing
solid contact transducer to adhere to the working electrode surface and maintain
electrochemical cycle stability. The stability of the solid contact transducer was studied
in static measurements condition — a condition where the electrodes are submerged in
aqueous solution and not moving, and there is no water flow on the electrode surface
when the measurements are taken, and dynamic measurements condition — a condition
where an aqueous solution flows across the electrode surface and the sensor is not
moving when measurements are taken. Cyclic voltammetry (CV) showed that the
electron transfer ability of SPCEs and SPPEs was significantly improved when
electropolymerized PEDOT:PSS was used as the transducer. Moreover, the CVs' redox
peak current showed that both electrodes could maintain the electrode’s mechanical and
electrochemical functional integrity for over 30 days. The results suggest that the
electropolymerized PEDOT:PSS had good adhesion to SPCEs and SPPEs working
electrode surfaces. There was no significant change in the cycle stability curve in PBS,
pH 7.1, after 3000 cycles conducted over 12 hours, compared to the initial cycle.
Furthermore, no significant change in the cycle stability curve was observed after 30
days of undergoing CV cycles in PBS, pH 7.1, compared to the first day for both
electrodes. The results suggest that electrode stability of PEDOT:PSS/SPCEs and
PEDOT:PSS/SPPEs was maintained after repetitive CV cycles in agueous media. After
characterisation of solid contact transducer, the PEDOT:PSS/SPCEs were integrated
into a sensing cell to investigate the electrochemical behaviour of electropolymerized
PEDOT:PSS in dynamic measurement conditions. The results showed that the
PEDOT:PSS/SPCEs maintained their peak potential (Ep) and peak current (1) after they
were exposed to different flow rates of 10, 20, 30 and 40 ml/min. Furthermore, the effect
of the flow rates on the Ep and I, was investigated. The results showed that flow rates
range between 0 to 40 ml/min did not affect the E, and I, value of the
PEDOT:PSS/SPCEs. Finally, o-phenylenediamine (0-PD) as an ammonium ion-
selective membrane (ISM) was electropolymerized to poly(o-phenylenediamine) and
deposited simultaneously on top of the PEDOT:PSS/SPCEs solid contact transducer to
fabricate AS-NH4"ISEs. The ISM's electropolymerization deposition was obtained by
cyclic voltammetry (CV) with potential from 0.0 V to 0.8 V and a scan rate of 50 mV/s.
The fabricated AS-NH4*ISEs can detect ammonium ions (NH4") as low as 5.7x10° M
with a slope of 58.49 mV/decade (R?> 0.99) and a linear detection range from 10° M
to 1 M. These results provide an initial insight into the applicability of the stable
PEDOT:PSS/SPCE solid contact transducers for the development of AS-NH4*ISEs with
high potential for scaling-up purposes and the ability for miniaturization and integration
into a mobile sensor platform.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Ammonium ions (NH4") are one of the indicators of water quality and can be in the
form of dissolved nitrogen generated by heterotrophic bacteria in water bodies.
Ammonium can be a primary nitrogenous end-product from the decomposition of N-
organic compounds such as proteins. The concentration of NH4* can increase rapidly in
water as these ions are photosynthetically assimilated, stored, transformed, and excreted
by aquatic organisms (Han L, 1985). Furthermore, high NH4* concentration in natural
water can cause eutrophication and result in water algal bloom and red tide releasing
the toxin, killing aquatic biota. Large amounts of continuous water consumption with
high ammonium content can also cause cell death in the human body's central nervous
system (Kan et al., 2016). Therefore, high NHs* concentrations can indicate high
biogeochemical activity zones; thus, real-time and continuous ammonium monitoring

using sensors is required at such places.

lon-sensors, ion-selective electrodes (ISE), or potentiometric ion sensors (PIS)
form an essential subgroup for electrochemical sensors widely used for ammonium ion
sensing (Radomska et al., 2004; Schwarz et al., 2000). However, conventional ISEs
have several limitations: complicated maintenance, complex operations, and high costs.
Furthermore, ISEs contain liquid as the inner filling solutions that separate the sensing
membrane from the inner reference element. The filling solution is sensitive to
evaporation, especially when there are changes in the measured solution’s temperature

or pressure. Therefore, conventional ISEs must be well maintained and used with care



and frequent calibration. Moreover, reducing the volume of a measurement sample to a
value much lower than the millilitre level is difficult, which poses challenges for sensor
miniaturization (Ghosh et al., 2017; Hu et al., 2016). The ISEs are classified into three
groups, depending on the nature of the membrane material, which are glass, polymeric

or liquid, and crystal or solid (Faridbod et al., 2007).

All-solid-state ion-selective electrodes (AS-ISEs) replace the internal
electrolyte filling with a solid ion-to-electron transducer (solid contact transducer) (Bieg
et al., 2016). AS-ISEs can be used in next-generation sensor devices due to the ease of
integrating AS-ISEs with electronics. Signal stability has been improved, and detection
limits were lowered through various research efforts (Hu et al., 2016; Wu et al., 2013).
The advancement in screen-printed electrode technology also played a significant role
in the research on the application of AS-ISEs in various fields requiring continuous
monitoring (Cuartero & Crespo, 2018). Critical components of AS-ISEs are the ion-
selective membrane (ISM) and the solid contact transducer, deposited on a conductive
electrode made from carbon, platinum, or gold. The ISM's role is to recognize and select
the target ion. Simultaneously, the solid contact transducer converts the target-ion
concentration to an electrical potential (voltage) measured against a reference electrode

(Hu et al., 2016).

An ion-selective membrane (ISM) cocktail consists of four components: a
polymeric matrix, an ionophore which is a membrane-active recognition material, a
membrane solvent or plasticizer, and ionic additives. The standard composition of an
ISM is 33% (w/w) polymeric matrix, 66% (w/w) plasticizer, 1% (w/w) ionophore, and
0.5% (w/w) ionic additives; each component of the ISM depends on the target ion,

especially for its ionophore (Faridbod et al., 2008). However, the AS-NH4*ISEs can be



ionophore-based or ionophore-free (Cuartero et al., 2020). Recent research showed that
AS-NH4"ISEs without ionophores have the potential for environmental applications,
owing to their long lifetime and stability in liquid media (Kan et al., 2016). The o-
phenylenediamine (0-PD) is one of the polymers used as an ISM to replace conventional
ionophore-based ISMs. The results were insightful and promising due to its sensitivity
toward the NH4" and its ease of fabrication through one-step electropolymerization
deposition, which could provide ways to scale up the fabrication of AS-ISEs for
industrial use (Benoudjit, Abd-Wahab, et al., 2020; Cuartero et al., 2020; Kan et al.,

2016).

Conventionally, the solid contact transducer is a conductive polymer (CP)
deposited on the electrode surface via drop-casting. However, the drop-casting method
suffers from weak adhesion of the drop-casted material to the WE surface, especially
when the deployment conditions for measurements are different, which could limit the
application of the sensor (Benoudjit et al., 2018; Cuartero & Crespo, 2018). Hence, a
CPs as a solid contact transducer with the following favourable characteristics is needed

in the fabrication of AS-NH4"ISEs for mobile sensor application in aqueous media:
1. displays strong mechanical adhesion to electrode surfaces; and

2. operates with stable cyclic voltammetry (CV) profile after repetitive CV

cycles.

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is one
of the CPs used as the solid contact transducer for AS-ISE development. It is less
sensitive to atmospheric gases (O2 and COg) than a polypyrrole (PPy) solid contact
transducer (Bobacka, 2006). However, PEDOT:PSS comes with its limitations; the

presence of hydrophilic PSS chains in PEDOT:PSS can lead to weak adhesion onto the



electrode surface, which results in film degeneration and peeling from the electrode
(Wang et al., 2014; Zhang et al., 2015). For this reason, previous research has focused
on enhancing PEDOT:PSS’s adhesion and water stability to electrodes by adding
polyvinyl alcohol (PVA) (Wang et al., 2014), nafion (Wen et al., 2012), or sodium
carboxymethyl cellulose as a binding reagent (Li et al., 2015). However, most of the
tests conducted on PEDOT:PSS adhesion on electrode surfaces were measured in
solution in a typical laboratory setting — static measurements condition in which the
electrodes are submerged in measurement solution, the electrodes are not moving, and
without water flow on the electrode surface. Moreover, our initial work demonstrated
that PEDOT:PSS deposited by electropolymerization deposition technique on screen-
printed platinum electrodes (SPPEs) could overcome the problem by enhancing the

adhesion PEDOT:PSS to the electrode surface (Benoudjit et al., 2018).

However, few studies have been made on understanding the stability of
electropolymerized PEDOT:PSS on screen-printed carbon electrodes (SPCEs) as solid
contact transducers for applications in static and dynamic measurements conditions and
their applicability for AS-NH4*ISEs. Therefore, this work aims to develop a stable AS-
NH4"ISEs-based on PEDOT:PSS as a solid contact transducer and Po-PD as an ion-
selective membrane (ISM) ionophore-free for mobile sensor application in aqueous

media.

1.2 PROBLEM STATEMENT

The key components of all-solid-state ammonium ion-selective electrodes (AS-
NH4"ISEs) are the solid contact transducer and the ion-selective membrane (ISM). The
stable performance of the AS-NH.4"ISEs for prolonged measurements in aqueous media

requires a stable solid contact transducer and ISM. However, solid contact transducer



and ISM tend to deteriorate in liquid media by losing their electrochemical capabilities
and can be easily peeled off from the surface of electrodes after prolonged storage or
use in liquid media which lead to unstable sensor performance. Therefore, in this work
the poly (o-phenylenediamine) (Po-PD) as an ISM and poly (3,4-
ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as solid contact
transducer were selected. The poly (o-phenylenediamine) (Po-PD) as an ISM has shown
good stability for up to 5 months (Kan et al., 2016), and | have shown such ISM can be
fabricated by a one-step process (Benoudjit, Abd-Wahab, et al., 2020). Moreover, my
preliminary work on investigating the stability of poly (3,4-ethylenedioxythiophene):
poly(styrene sulfonate) (PEDOT:PSS) as solid contact transducer on screen-printed
platinum electrodes (SPPEs) (PEDOT:PSS/SPPEs) has shown that PEDOT:PSS/SPPEs
possessed good stability in static measurements conditions -in which the electrodes are
not moving when measurements are made in aqueous media, and there is no water flow
on the electrode surface, and also dynamic conditions, in which an aqueous solution

flows across the electrode surface at a fixed flow rate (Benoudjit et al., 2018).

Few studies have been made on understanding the stability of
electropolymerized PEDOT:PSS on screen-printed electrodes (SPESs) as solid contact
transducer in static and dynamic measurements conditions and its applicability in AS-
NH4 ISEs. Therefore, this work aims to develop stable AS-NH4'ISEs based on
electropolymerized PEDOT:PSS as the solid contact transducer on screen-printed
carbon electrodes (SPCEs) for the purpose of integration in a mobile sensor platform
for prolonged and real time-time measurements in aqueous media. The future end goal
is to develop a mobile sensor platform that can be deployed in rivers or coastal areas for

water quality monitoring. As NH4* ions play a critical role in the occurrence and



