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ABSTRACT

Honeycomb sandwich structure has been used extensively in engineering industries as
an energy absorber to resist external loads due to its lightweight and high energy
absorbing capability. However, the honeycomb core is the weakest part of the sandwich
structure and they may fail or collapse through cell fracture or cell wall buckling
depending on the loading regime and the core configuration. A foam-filled honeycomb
structure has been proposed to provide an enhancement in the properties of the
honeycomb core. The filler existence within honeycomb cells improves the honeycomb
structure systems by strengthening the honeycomb cell wall and changes the structure's
behavior. Therefore, statistical, experimental, and simulation works were carried out in
this research work to investigate the effects of filling Kraft paper honeycomb with
polyurethane foam. For the simulation, a three-dimensional finite element model for
foam-filled Kraft paper honeycomb was developed. Statistical analysis was performed
at the initial stage of this study to determine the optimum configuration of the Kraft
paper honeycomb. Then, the optimized unfilled kraft paper honeycomb, polyurethane
foam, and foam-filled Kraft paper honeycomb were subjected to quasi-static
compression loading. The maximum force and energy absorption of foam-filled Kraft
paper honeycomb were computed to study the improvements compared to the
summation of unfilled kraft paper honeycomb and foam alone. The three-dimensional
finite element analysis was performed using Ls-Dyna software to investigate the
interaction between polyurethane foam and cell walls. Force-displacement behaviors
obtained from numerical simulations were validated by experimental findings, and the
distribution of energy absorption between cell walls and polyurethane foam in the foam-
filled honeycomb was analyzed. In order to study the localized effect of foam-filled
kraft paper honeycomb, experimental analyses and finite element analyses subjected to
indentation loading were performed. As a result, the Kraft paper honeycomb with
density 175gsm, 3 ply thickness of paper, and 10 mm cell size of honeycomb exhibit
the optimum configuration with 724.80 J/kg of specific energy absorption (SEA) and
9.35 MPa/kg of specific compression strength (SCS). Moreover, the experimental
results show that the peak force and energy absorption of the foam-filled honeycomb
were increased up to 30% compared to the individual component. Meanwhile, the
indentation at the vertical edge shows the higher peak force and energy absorbed which
proves that the vertical edge of the cell wall behaves as a strong point to endure the
indentation force. In conclusion, polyurethane foam filler has strengthened the
honeycomb cell wall and improved the energy absorption capability of the Kraft paper
honeycomb structure. The FEA results confirmed that the cell walls strengthened by
the foam filler and the confinement of foam by cell walls increased the energy capability
of the foam-filled honeycomb structure.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Sandwich structures are known for having a high strength-to-weight ratio as well as
high specific bending stiffness and strength under uniform load. A typical structural
sandwich panel comprises two thin face sheets on both sides and a core in the centre.
Honeycomb, foam, balsa wood, corrugated, and textile cores are the most common
types of core materials. Core materials' primary functions are to absorb energy and
provide resistance to face sheets to avoid local buckling (Xiong et al., 2018). The use
of honeycomb core is continuously increasing due to its superior properties. Previous
research shows that the honeycomb core structure provides an impressive crush
resistance and high energy absorption capability in the out-of-plane direction (Alia et
al. 2019; Miller, Smith, and Evans 2011; bin Pokaad et al. 2015). Kraft paper
honeycomb core was first introduced in industry in the early 1900s. However, due to
the comparatively low cost of wood components and widespread consumer preference
for solid panels, Kraft paper honeycomb did not attain considerable market traction for
many decades. However, with the rising cost of wood materials in recent years, the use
of Kraft paper honeycomb has increased, particularly in the furniture business (Chen et
al., 2014).

Kraft paper honeycomb core with pre-impregnated resin or no resin at all is
widely used in furniture, doors, partitions, mobile homes, signs, and similar
construction. Meanwhile, a special grade Kraft paper honeycomb core that has been

expanded and then dipped in a phenolic resin to increase its water resistance and



strength are used in portable military shelters, aerospace, and naval industries (Bitzer,
2012). Some main advantages of these sandwich panels include lightweight, high
specific stiffness, stable energy-absorbing property and recyclability (Samad, Warsame,
& Khan, 2018; D. Wang, Liang, & Guo, 2019; Z Wang, Xuebao, 2012). Although
honeycomb sandwich panels have been widely used in engineering industries for many
decades, there is limited information about the properties and behavior of the
lightweight Kraft paper honeycomb panel. Meanwhile, Extensive work has been carried
out on the structural optimization and failure behavior of honeycomb sandwich
structures from different materials such as Nomex, Aluminum and composite materials.

Zhou et al. (2018), Rodrguez-Ramrez, Castanié, and Bouvet (2018), and Liu et
al. (2018) investigated the mechanical behavior and energy absorption properties of the
Nomex honeycomb structure. He et al. (2019) also investigated the effects of flexural
strength on the Aluminum honeycomb sandwich panel (2019). Moreover, Aziz et al.
(2018) investigated the energy absorption of honeycomb structures made of carbon fiber
reinforced plastics.

Metallic and polymeric foams have recently been extensively investigated as a
filler for the hollow core (Cheng et al. 2018; M. Li et al. 2018; Zhejian Li, Chen, and
Hao 2019; Niknejad et al. 2011; Yi et al. 2019; G. Zhang et al. 2014). The results show
that these low-density foams have a positive effect on strengthening the cell walls of
panels and are also credited with improving the honeycombs' energy absorption
capability and damping properties (Niknejad et al., 2011; G. Zhang et al. 2014). Zhang
et al. (2014) investigated the energy absorption and low-velocity impact response of
pyramidal lattice core sandwich panels filled with polyurethane foam. They discovered
that the foam-filled sandwich panels have a more significant load carrying capacity than

the summation of unfilled specimens and the polyurethane block due to a synergistic



effect. Furthermore, Niknejad and Rahmani's (Niknejad and Rahmani 2014)
experimental and theoretical study of the lateral compression process on an empty and
foam-filled hexagonal column revealed that as the plateau stress of polyurethane foam
filler increases, the lateral load and absorbed energy by the structure increases as well.
Numerous researchers have conducted research on foam-filled honeycombs used in
high-tech applications such as aerospace and naval industry, such as Nomex and
metallic honeycomb. Unfortunately, few studies in the literature deal with honeycomb
sandwich panels used for low-tech applications such as furniture and load-bearing
applications. Due to the lower cost and material usage of paper honeycomb compared
to solid wood-based panels, some manufacturers are aiming to use paper honeycomb
panel or structure for load-bearing applications such as floor, decks, transportation
pallet, load-bearing wall, and partition in recent years (D. Wang 2009a; D. Wang et al
2019). Thus, this study combines experimental and simulation studies of Kraft paper
honeycomb filling with polymer foam, which is expected to be used for load-bearing

applications.



1.2 STATEMENT OF THE PROBLEM AND ITS SIGNIFICANCE

Over the last two decades, numerous experimental and analytical studies have been
conducted to determine how honeycomb cells fail under various loading conditions.
Basically, depending on the nature of the cell wall material, honeycomb cells collapse
via elastic buckling, plastic yielding, creep, or brittle fracture. As a result, a number of
experimental and numerical approaches for strengthening honeycomb cell walls and
increasing the energy absorption capacity of honeycomb core structures have been
proposed. However, recent research indicates that filling the honeycomb core with foam
filler improves the honeycomb core's properties. This method is economical and does
not significantly increase the weight of a sandwich structure. Furthermore, the presence
of filler within honeycomb cells not only increases the structure's resistance to damage,
but also changes its behavior. Although foam-filled honeycomb structures under various
loading conditions have received significant attention in recent years, there is a lack of
information on the properties and behavior of foam-filled Kraft paper honeycomb
structures. Due to the significant difference in material properties between sandwich
panels containing Kraft paper core and aerospace structural sandwich panels such as
Nomex honeycomb, comprehensive studies of the structure-property relationships of
sandwich panels containing Kraft paper core are required. Thus, the purpose of this
research is to examine the behavior of foam-filled Kraft paper honeycomb and to
develop a finite element model for foam-filled Kraft paper honeycomb. Furthermore, it

can contribute to the advancement of knowledge in the field of foam-filled structures.



