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ABSTRACT

Analogous to Mutually Unbiased Bases (MUB) for d-dimensional Hilbert space,
capturing the notion of equiprobable transition between states in one basis to another,
we consider a similar notion for some subspace of linear operators instead. Working
mainly in terms of matrices, the notion of Mutually Unbiased Unitary Bases (MUUB)
of M(d, C) can be understood in terms of the equiprobable guess of a unitary operator
in one basis for that in another. MUUBSs has in fact shown to be useful in specific
quantum key distribution (QKD) protocols, namely bidirectional QKD protocols akin
to the role of MUBs for prepare and measure QKD schemes like the well-known BB84
protocol. The MUUB structure is strongly related to the notion of MUBS consisting only
of maximally entangled states of space H,; ® H, or, mutually unbiased maximally
entangled bases (MUMEBS). The two are essentially equivalent though much remains
to be explored. In fact, for a d?-dimensional space of M(d, C), while it is known that
the maximal numbers that MUUBSs can have is d? — 1, there is no known recipe for
constructing the maximal number of such bases. It is not even known if such a number
may even be achieved for any d Focusing on the case for d being the prime numbers,
we show that the minimal number for MUUBs is 3 and approaches its maximal d — 1
for very large values of d. We further provide a numerical recipe in constructing
MUUBSs which gives us an explicit construction for the maximal number of MUUBs
for subspaces of M (3, C) and M (2, C). Despite the possible use of the numerical search
for any dimension, it quickly becomes inefficient as d grows. For a more analytical
solution, we turn our focus to the case of some d-dimensional subspace for any prime
d and report on the maximal number of MUUBS for such a subspace. By constructing
monoids based on the underlying sets of H; and a subspace of M (d, C), an isomorphism
between the monoids lead to an important theorem for constructing d MUUBs, i.e. the
maximal possible number for such a subspace. Finally, we show how the notion of
MUUBSs arise in some setup relevant to the problem of incompatibility/uncertainty
between pairs of unitary operators. Departing from some earlier works making use of
standard deviations to quantify the uncertainty of pairs of unitary operators (similar to
the uncertainties of observables), we formulate a more °‘operational’ notion of
uncertainty of pairs of unitary operators in the context of a guessing game and derive
an entropic uncertainty relation for such a pair. We show how distinguishable operators
are compatible while maximal incompatibility of unitary operators can be connected to
bases for some subspace of operators which are mutually unbiased. We conclude the
thesis with some suggestions for future works.
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CHAPTER ONE

INTRODUCTION

1.1 MOTIVATION

The advancement of quantum information has been of interest since the early 90s
(Duwell, 2019). It deals mostly with the issue of how information is represented and
communicated through quantum states. Notwithstanding the rich details of the field of
guantum information theory, it can be described in a nutshell as dealing with the notion
of retrieving or manipulating information encoded via quantum mechanical properties
of a system. In other words, one’s ability to know or manipulate a system is generally
limited. As an example, the uncertainty principle limits the ability to precisely estimate
value associated to non-commuting observables.

This is closely related to the issue of optimal estimation of a quantum states in
the context of state estimation, where it deals with the maximal information extraction
of the system’s state. Considering quantum systems that can be represented by elements
in a finite dimensional Hilbert space, measurements made in one basis may perturb the
system and effectively result in introducing uncertainty of measurements made in
another. More precisely, measuring a quantum state belonging to a basis along a
mutually unbiased basis, one obtains as the result, a random vector of the latter basis
and all the possible results are equiprobable (Durt et al. 2010). We refer such bases as

mutually unbiased bases (MUBS). The simplest example for MUB is the spin states of

.1 . . L
a spln-E particle for two perpendicular directions.

The concept of MUB was first introduced by Schwinger (1960). The next twenty

years saw plenty of progress in this field. Alltop (1980) constructed for complex



sequences (of period N where the sequences consist of Nth root of unity with N as a
positive integer) with low periodic correlations for use in communication system where
his sequences are the first construction of sets of MUBs. Then, Ivanovic (1981)
provided the explicit construction of a complete set of MUBs for quantum system of

odd prime dimensions. Wooters & Fields (1989) extended the construction of Alltop
(1980) and Ivanovic (1981) to all prime powers of an odd number d, such that d = p"

(m is a positive integer) by using mathematical framework of finite fields. The work of
Wooters & Fields (1989) was expressed differently by Chaturvedi (2002) where the
latter represented the d +1 MUB in respect of characters of the cyclic group G of order

p. Meanwhile, Bandyopadhyay et al. (2002) showed an alternate proof that a complete

set of MUBs exists in all prime power dimensions if one constructs sets of MUB from
the eigenvectors of special unitary operators (this is known as the generalised Pauli
operators). A summary of known constructions which include the sets of MUBs
described by Alltop (1980), Ivanovic (1981) and Wooters & Fields (1989) was
published by Klappenecker & Rottler (2003).

In principle, MUBSs have been used in practical applications such as quantum
key distribution (QKD), where the BB84 (Bennet, C. H. , Brassard, 1984) was the
pioneering protocol as well as the various protocols proposed thereafter (we refer to
Pirandola et al. (2020) for a thorough review of the subject matter) and quantum state
tomography where Wooters & Fields (1989) showed that d +1 MUBs provide the
optimal set of measurements. We provide the standard definition of MUBSs in the

following



Definition 1.1 Two distinct orthonormal bases for a d-dimensional Hilbert space

IO ={@), | @)} and 3U ={|¢),....|¢,,)} are said to be mutually unbiased bases

(MUB) provided that K(o, ‘¢j >‘ =1//d , for every i, j=0,...,d 1.

Nonetheless, in terms of composite dimensions which are not powers of primes, for

example d =6, still remains an open problem for the existence of a complete set of

MUBs. In this context, the Zauner conjecture (Klappenecker, A., Réttler, 2003) stated
that the number of MUBs for d =6 is three rather than seven MUBs.

Motivated by the study of MUB, we consider the notion of mutually unbiased
unitary bases (MUUB) for the space of operators acting on a d-dimensional Hilbert
based on considering the idea of equiprobable guesses of unitary transformations. This
is closely related to the issue of optimal estimation of process determination where we
focus on the estimation of the dynamics of a quantum system instead of state estimation.
As the dynamical evolution of a closed quantum system is described by a unitary
transformation, these equiprobable guesses are relevant to a procedure of identification
of an unknown quantum dynamical process acting on a quantum state, i.e. quantum
process tomography (QPT) (Scott, 2008). Quantum process tomography is a method for
determining quantum channel (trace-preserving completely positive linear map) which
acts upon a quantum system (note the difference with quantum state tomography which
is a method for quantum state determination). It is noteworthy that prior to this, Scott

(2008) first introduced the notion of MUUBS where one can have a maximal of d*—1

MUUBSs for the d*-dimensional Hilbert space for dimension d =2,3,5,7and 11.



1.2 PROBLEM STATEMENT

The construction of MUUBS for the d?-dimensional Hilbert space was first done by
Scott (2008) and is shown to have a maximal of d*> —1 MUUBEs. It can be used for QPT
and is shown to exist for d =2,3,5,7and 11. However, beyond that, little else is known.
As a matter of fact, no known recipe exists for constructing the maximal number of

MUUBs for d?- dimensional Hilbert space, let alone subspaces for M (d, C).

1.3 RESEARCH APPROACH AND OBJECTIVES

In this thesis, we aim to have a proper understanding of MUUBSs for the subspace of
operators acting on a d-dimensional Hilbert space. Motivated by the equiprobable
transition between states in one basis to another in the case of MUBS, we aim to develop
an analogous idea of equiprobable guesses of unitaries towards a notion of MUUB for
the subspace of operators acting on a d-dimensional Hilbert and provide a systematic
study of the notion’s properties and construction as well as the relevance of MUUBs in
the context of incompatibility between the unitary operators.

We start off by finding the minimal number of MUUBSs that can be constructed for

space of M (d,C) based on the equivalence of MUUB for M (d,C) and MUBs for
bipartite systems whose Hilbert space is H, ® H, consisting of only maximally
entangled states (MES). Next, we construct the maximal number of MUUBS for some
subspace of M (d,C). Then, we hope to see the MUUBSs would arise naturally by using

the uncertainty relation to establish the entropic bounds between two unitary operators
for some tester with measurement operators. This research aims to achieve the following

objectives:



e To construct mutually unbiased unitary bases acting on d-dimensional Hilbert
space.
e To ascertain the maximal number of mutually unbiased unitary bases on d-
dimensional Hilbert space.
e To establish entropic bounds on the maximal amount of information.
In the following, we provide the necessary background of quantum mechanics that we

would use throughout the thesis.

1.4 MATHEMATICAL PREREQUISITES
Before we delve into the discussion of MUUBS, it is instructive to outline certain basic
concepts of linear algebra and the standard notation of quantum mechanics for linear

algebraic concepts. We refer to Nielsen & Chuang (2010) for the following subsections.

1.4.1 Hilbert space

In the following H, is referred as a d-dimensional Hilbert space, a complex vector

space of dimension d equipped with an inner product. The Hilbert space must obey the
properties of being a linear vector space, with a valid inner product. It is separable and
also complete. The Dirac notation represents the standard quantum mechanical notation

from linear algebra. It indicates that a vector of H, would be expressed as the ket
notation |u), and its dual vector, as the bra notation (u|. The inner product of |u) and
|w) may be denoted as (u|w). A unit vector is a vector |u) such that H |u)H:1. For this
case, |u) is also called normalized. Two vectors |u) and |v) are orthogonal if their

inner product is equal to zero, which is (u|v)=0.



A basis F for H, is a set of vectors such that any element in the space can be

written as a linear combination of the elements of F . This basis is orthonormal if all
vectors are mutually orthogonal and of unit length.

A linear operator on H, is defined to be a function M :H; — H, which s linear

in its inputs,
M[Zai |ui>j - am(u)) L1)
The identity operator will be expressed by I, . As a simple example, we let the identity

and the Pauli operators on H,, which can be written with respect to the computational

basis as

I =[0)(0]+[1) (1],

2 =10)(0] -9,
(1.2)
X =[0)+[1) (0],

Y =—i[0)(1]+i[2)(0].
A diagonal representation for a linear operator M on H, is denoted by

MzZﬂ,, |u;)(u;|, where the vectors |u,) form an orthonormal basis of eigenvectors

for M with corresponding 4 . An operator M is then called a diagonalisable operator

if it has such diagonal representation. Also, M is a normal operator if it commutes with

its adjoint such that MAM = M'M. Note that a linear operator M on H, is

diagonalisable if and only if it is normal (spectral decomposition). M is unitary if

MM = M M=1,. As M isaunitary operator, then M is normal and has a spectral

decomposition. Therefore, the unitary operator is diagonalisable and normal.



Given that M (d, C) is the space of all d xd matrices with entries from C?. A
matrix }CeM (d,C) is unitary if £'K =1, . Also, a matrix K is a Hermitian matrix if
KC =K. This matrix is diagonal if (IC)ij =0 forall i= j (with i" rowand j™ column
of K'). Note that the vectors of a basis may be presentation as the column of a matrix.

The matrix constructed from an orthonormal basis can be unitary. An eigenvector of X

on M(d,C) is a non-zero vector |u) such that KC|u)=A|u), where 1 is a complex
number called the eigenvalue of K corresponding to |u> In quantum information

theory, the identity and the Pauli operators on H, represented by 2x2 matrices,

namely the Pauli matrices are denoted as

B Y Y

The Pauli matrices have been generalised for higher dimensions. The generalised Pauli

matrices are defined as follows

k =k

i i+1?

Xdk; :Em’ Zdlzi :a)(;k (1.4)

i+17
where k; is the i standard basis vector of C* and , isa d" root of unity with the

index i indicating the i" power of @,. Note that the generalized Pauli matrices have

the following properties (Bandyopadhyay S., Boykin P., 2002; Hall. J, 2011)



(1.5)
X§ =24 =1,
Tr(Xyz7)=0 form,n=d.
The trace of a d x d matrix is the sum of the entries on the main diagonal.
Tr(K)= Zi:(lc)ii : (1.6)
The  trace is cyclic, i.e. Tr(KL)=Tr(£LK) and linear,

Tr(K+L£)=Tr(K)+Tr(£),Tr(bK)=bTr(K) where K and L are arbitrary
matrices in M (d,(C) and b is a complex number. For a d X d matrix £ and £,
Tr(ICTﬁ) forms an inner product. It is said that the matrices are orthogonal if

Tr(K'£)=0. Note that although M (d,C) is the set of d x d matrices with complex

entries, it is regarded as the set of operators acting on a d-dimensional Hilbert space

(with prime d') because actually matrices represent such operators.

1.4.2 Tensor products

Let [u) and |v) are vectorsin U and V , and M and N are linear operators on U

and V respectively. Then, a linear operator M® N on U ®V is defined as follows
MBN (|u)®|v))= M|u)y® N |v). (1.7)

The definition of M ® A can be extended to all elements of U ®V to ensure linearity

of M® N, which is



(M®N)(Zi:ai|ui)®|vi>]zZaiM|ui)®N|vi) (L8)

The trace for tensor products of M® N would be defined as follows

Tr(MON)=Tr(M)Tr(N). (1.9)

1.5 THE POSTULATES OF QUANTUM MECHANICS
Quantum mechanics provides a mathematical foundation or framework for the
construction of physical theories, as is well known. Therefore, this section provides the

fundamental concepts of quantum mechanics by means of its postulates.

1.5.1 Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product
(that is, Hilbert space) known as the state space of the system. The system is completely
described by its state vector, which is a unit vector in the system’s state space.

The Quantum bit or known as qubit is is a quantum system whose state lies in a

2-dimensional Hilbert space. For example, consider an orthonormal basis {|0),|1)} of
H,. Then, any state vector in a qubit can be written as |¢) = |0)+ S|1) where « and
S are complex numbers such that |05|2 +|,8|2 =1. This is due to | @) being a unit vector,

(| ) =1 which is known as the normalization condition for the state vectors.

1.5.2 Postulate 2 (Evolution)
This postulate states that the evolution of a closed system is described by a unitary
transformation. The Pauli operators are the best examples of allowed operations on such

guantum system (particularly on qubits) since they are unitary.



1.5.3 Postulate 3 (Quantum general measurement)

Quantum measurement are described by a collection {Mm} of measurements
operators. These are operators acting on the state space of the system being measured.
The index m refers to the measurement outcomes that may occur in the experiment. If

the state of the quantum system is |z//> immediately before the measurement then the
probability that result m occurs is given by

p(m)=(w MM, |y), (1.10)
and the state of the system after the measurement is

M, |y)

Jw MM Jy)

The measurement operators satisfy the completeness equation,

(1.11)

dMIM, =T, (1.12)

The completeness equation expresses the fact that probabilities sum to one:
1=Sp(m)=3"(w|MIM, |w). (1.13)

This postulate describes how to extract information from the quantum system
particularly the problem of distinguishing quantum states. For example, consider the

cryptographic scheme between two parties, Alice and Bob. Alice selects a state

|z//i>(0 <i<n) from a fixed set of states that both users are familiar with and submits it
to Bob, whose task is to find the index i associated with it.

Let the states |1//i) are orthonormal, then Bob can perform a quantum

measurement to distinguish the states in the following procedure. Let M, = |y )(y;| be

measurement operators, one for each possible index i, and let M, be another

10



measurement operator denoted as the positive square root of the positive operator

I, = |w:)(w;|. The completeness relation.is satisfied by these operators. If the state

i=0
lw;) is prepared then p(i)=(y;|M|w;)=1. Therefore, the result i occurs with

certainty. Thus, the orthonormal states |://i) may be reliably distinguished.

In contrast, if the states |y, ) are not orthonormal, then no quantum measurement

is capable of distinguishing the states.

A special class of this general measurements postulate is known as the projective
measurements, together with unitary transformations (as explained in Postulate 2) are
adequate to implement in an equivalent way a general measurement. Suppose the

measurement operators M in Postulate 3, in addition to satisfying the completeness

relation ZM;Mm =1, also satisfy the conditions that M, are orthogonal projectors,

that is, the M _ are Hermitian, and M _M_ =0, .M, . With these additional

m,m m

restrictions, Postulate 3 reduces to as the following.

1.5.4 Postulate 3.1 (Quantum projective measurement)

A projective measurement is described by an observable, M, a Hermitian operator on

the state space of the system being observed. The observable has a spectral

decomposition,

M=>mp, (1.14)

where P, is the projector onto the eigenspace of M with eigenvalue m. The possible
outcomes of the measurement correspond to the eigenvalues, m, of the observable.

Upon measuring the state |1//> , the probability of getting result m is given by
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P(m)={y|Ruly)- (1.15)
Given that outcome m occurred, the state of the quantum system immediately after the

measurement is

Pulw)

p(m)

(1.16)

It is worth noting that the commonly used expression “to measure in a basis | m) ” where
|m> denotes an orthonormal basis, simply refers to perform the projective measurement

with projectors P, =|m)(m|. For example, consider a projective measurement on the

vector state %(|0>+|1>) by the Z Pauli operator as the observable Z. The observable

N

Z has eigenvalues +1 and —1 with corresponding eigenvectors |0) and 1), then one

obtains the results +1 with probability (y/|0)(0|y/) =1/2 and analogously the result —1

with probability (y|1)(1|y)=1/2.

1.5.5 Postulate 4 (Composite systems)
The state space of a composite physical system is the tensor product of the states spaces

of the component physical system. Moreover, if we have systems numbered 1 through

n, and system number i is prepared in the state |z//i>, then the joint state of the total

system is |y;) ®|y,) ®...®y,) .

This postulate explains the description of the composite system based on the
combined of state spaces from different quantum systems. Note that if the state of the
composite system can be represented by any unit vector of the tensor product, then it is

possible that this vector is not a pure tensor product. Such corresponding state is called
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entangled. The simplest example of entanglement is the entangled state of two qubits,

%(|00>+|11>). Note that the well-known kind of entanglement is the maximally

entangled states (MES) for qubit, i.e. the Bell states. The Bell states are defined

\q>+>=|00>+|11>, \®‘>=|OO>_|11>

2 2
(1.17)
.\ [10)+|01) \_|01)—|10)
O S B
A state |CD> is said to be a maximally entangled state such that
1) = —— ¥ iy ), (1.18)
JD "

where A and B are the subsystems of Hilbert spaces such that H, ® H,.

1.5.6 Shannon entropy

Given that a random variable X with a probability distribution, p,,..., p,. The Shannon
entropy of a random variable X, H(X) can be viewed as a measure of uncertainty

about X before one learn of its outcome. This entropy can be written as

H(X)=H(p,.. p,)=—>_p, log, p,. (1.19)

An alternate way to view this entropy is, eq. (1.19) gives the measure of uncertainty

about X after one learn of its outcome.
1.6 THESIS ORGANIZATION

All chapters have been arranged in such a way the contents are mathematically concise

and chronological to provide for a coherent reading.
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