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ABSTRACT 

Analogous to Mutually Unbiased Bases (MUB) for 𝑑-dimensional Hilbert space, ℋ𝑑 

capturing the notion of equiprobable transition between states in one basis to another, 

we consider a similar notion for some subspace of linear operators instead. Working 

mainly in terms of matrices, the notion of Mutually Unbiased Unitary Bases (MUUB) 

of 𝑀(𝑑, ℂ) can be understood in terms of the equiprobable guess of a unitary operator 

in one basis for that in another. MUUBs has in fact shown to be useful in specific 

quantum key distribution (QKD) protocols, namely bidirectional QKD protocols akin 

to the role of MUBs for prepare and measure QKD schemes like the well-known BB84 

protocol. The MUUB structure is strongly related to the notion of MUBs consisting only 

of maximally entangled states of space ℋ𝑑 ⨂ ℋ𝑑 or, mutually unbiased maximally 

entangled bases (MUMEBS). The two are essentially equivalent though much remains 

to be explored. In fact, for a 𝑑2-dimensional space of 𝑀(𝑑, ℂ), while it is known that 

the maximal numbers that MUUBs can have is 𝑑2 − 1, there is no known recipe for 

constructing the maximal number of such bases. It is not even known if such a number 

may even be achieved for any 𝑑 Focusing on the case for 𝑑 being the prime numbers, 

we show that the minimal number for MUUBs is 3 and approaches its maximal 𝑑2 − 1 

for very large values of 𝑑. We further provide a numerical recipe in constructing 

MUUBs which gives us an explicit construction for the maximal number of MUUBs 

for subspaces of 𝑀(3, ℂ) and 𝑀(2, ℂ). Despite the possible use of the numerical search 

for any dimension, it quickly becomes inefficient as 𝑑 grows. For a more analytical 

solution, we turn our focus to the case of some 𝑑-dimensional subspace for any prime 

𝑑 and report on the maximal number of MUUBs for such a subspace. By constructing 

monoids based on the underlying sets of ℋ𝑑 and a subspace of 𝑀(𝑑, ℂ), an isomorphism 

between the monoids lead to an important theorem for constructing 𝑑 MUUBs, i.e. the 

maximal possible number for such a subspace. Finally, we show how the notion of 

MUUBs arise in some setup relevant to the problem of incompatibility/uncertainty 

between pairs of unitary operators. Departing from some earlier works making use of 

standard deviations to quantify the uncertainty of pairs of unitary operators (similar to 

the uncertainties of observables), we formulate a more ‘operational’ notion of 

uncertainty of pairs of unitary operators in the context of a guessing game and derive 

an entropic uncertainty relation for such a pair. We show how distinguishable operators 

are compatible while maximal incompatibility of unitary operators can be connected to 

bases for some subspace of operators which are mutually unbiased. We conclude the 

thesis with some suggestions for future works. 
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 خلاصة البحث 

يلتقط فكرة الانتقال   d  ،ℋ𝑑( لفضاء هيلبرت ذي الأبعاد MUBعلى غرار القواعد غير المتحيزة بشكل متبادل )
المتكافئ بين الحالات في أساس واحد إلى آخر، نحن نعتبر فكرة مماثلة لبعض الفضاء الجزئي للمشغلين الخطيين بدلًا من  
ذلك. من خلال العمل بشكل أساسي من حيث المصفوفات، يمكن فهم مفهوم القواعد الأحادية غير المتحيزة بشكل  

,𝑀(𝑑( لـ MUUBمتبادل ) ℂ) يث التخمين المتساوي للمشغل الوحدوي في أساس واحد لذلك في آخر. في  من ح
  QKD(، وهي بروتوكولات QKDأنها مفيدة في بروتوكولات توزيع المفتاح الكمي ) MUUBsالواقع ، أظهرت 

المعروف. ترتبط بنية   BB84مثل بروتوكول  QKDلإعداد وقياس مخططات  MUBsثنائية الاتجاه المشابهة لدور 
MUUB  ارتباطاً وثيقًا بمفهومMUBs  التي تتكون فقط من حالات التشابك القصوى للفضاءℋ𝑑 ⨂ ℋ𝑑   أو

(. كلاهما متكافئان بشكل أساسي على الرغم من  MUMEBSقواعد التشابك القصوى غير المتحيزة بشكل متبادل )
,𝑀(𝑑 الأبعاد لـ-2dأنه لا يزال هناك الكثير لاستكشافه. في الواقع ، بالنسبة إلى مساحة الإعلان  ℂ)  بينما من ،

، فلا توجد وصفة معروفة لإنشاء العدد  2d-1هي    MUUBsالمعروف أن الأرقام القصوى التي يمكن أن تحتوي عليها  
هي   dمع التركيز في حالة  dالأقصى لهذه القواعد . ليس من المعروف حتى ما إذا كان يمكن تحقيق مثل هذا الرقم لأي  

للأرقام الكبيرة جدًا    2d-1ويقترب من الحد الأقصى    3هو    MUUBsحنا أن الحد الأدنى لعدد  الأعداد الأولية، أوض 
  MUUBsوالتي تعطينا بنية واضحة لأقصى عدد من  MUUBs. نقدم أيضًا وصفة عددية في إنشاء dمن 

,𝑀(3للمساحات الفرعية  ℂ)   و𝑀(2, ℂ) أنه  . على الرغم من إمكانية استخدام البحث العددي لأي بعُد، إلا 
. للحصول على حل أكثر تحليلًا، حولنا تركيزنا إلى حالة بعض الفضاء الجزئي ذي  dسرعان ما يصبح غير فعال مع نمو 

لمثل هذه المساحة الفرعية. من خلال إنشاء أحاديات    MUUBsونبلغ عن العدد الأقصى من    dلأي أول    dالأبعاد  
,𝑀(𝑑فرعية من ومساحة  ℋ𝑑استنادًا إلى المجموعات الأساسية لـ  ℂ)  يؤدي التماثل بين الأحاديات إلى نظرية مهمة ،

  MUUBs، أي العدد الأقصى الممكن لمثل هذا الفضاء الجزئي. أخيراً، أوضحنا كيف تنشأ فكرة  d MUUBsلبناء  
عض  في بعض الإعدادات ذات الصلة بمشكلة عدم التوافق/عدم اليقين بين الأزواج من المشغلين الوحدويين. خلافا لب 

الأعمال السابقة عن استخدام الانحرافات المعيارية لتقدير عدم اليقين في أزواج المشغلين الوحدويين )على غرار عدم اليقين  
في الملاحظات(، قمنا بصياغة مفهوم أكثر "تشغيلية'' لعدم اليقين من أزواج المشغلين الوحدويين في سياق لعبة التخمين  

تمية لمثل هذا الزوج. أوضحنا مدى توافق المشغلين المميزين بينما يمكن ربط أقصى درجات  واشتقاق علاقة عدم اليقين الح
عدم التوافق للمشغلين الوحدويين بقواعد بعض الفضاء الفرعي للمشغلين غير المتحيزين بشكل متبادل. نختتم الأطروحة  

 ببعض الاقتراحات للأعمال المستقبلية. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 MOTIVATION 

The advancement of quantum information has been of interest since the early 90s 

(Duwell, 2019). It deals mostly with the issue of how information is represented and 

communicated through quantum states. Notwithstanding the rich details of the field of 

quantum information theory, it can be described in a nutshell as dealing with the notion 

of retrieving or manipulating information encoded via quantum mechanical properties 

of a system. In other words, one’s ability to know or manipulate a system is generally 

limited. As an example, the uncertainty principle limits the ability to precisely estimate 

value associated to non-commuting observables.  

This is closely related to the issue of optimal estimation of a quantum states in 

the context of state estimation, where it deals with the maximal information extraction 

of the system’s state. Considering quantum systems that can be represented by elements 

in a finite dimensional Hilbert space, measurements made in one basis may perturb the 

system and effectively result in introducing uncertainty of measurements made in 

another. More precisely, measuring a quantum state belonging to a basis along a 

mutually unbiased basis, one obtains as the result, a random vector of the latter basis 

and all the possible results are equiprobable (Durt et al. 2010). We refer such bases as 

mutually unbiased bases (MUBs). The simplest example for MUB is the spin states of 

a spin-
1

2
 particle for two perpendicular directions. 

The concept of MUB was first introduced by Schwinger (1960). The next twenty 

years saw plenty of progress in this field. Alltop (1980) constructed for complex 
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sequences (of period N  where the sequences consist of thN  root of unity with N  as a 

positive integer) with low periodic correlations for use in communication system where 

his sequences are the first construction of sets of MUBs. Then, Ivanovic (1981) 

provided the explicit construction of a complete set of MUBs for quantum system of 

odd prime dimensions. Wooters & Fields (1989) extended the construction of Alltop 

(1980) and Ivanovic (1981) to all prime powers of an odd number ,d  such that md p=

( m  is a positive integer) by using mathematical framework of finite fields. The work of 

Wooters & Fields (1989) was expressed differently by Chaturvedi (2002) where the 

latter represented the 1d +  MUB in respect of characters of the cyclic group G  of order 

.p  Meanwhile, Bandyopadhyay et al. (2002) showed an alternate proof that a complete 

set of MUBs exists in all prime power dimensions if one constructs sets of MUB from 

the eigenvectors of special unitary operators (this is known as the generalised Pauli 

operators). A summary of known constructions which include the sets of MUBs 

described by Alltop (1980), Ivanovic (1981) and Wooters & Fields (1989) was 

published by Klappenecker & Röttler (2003). 

In principle, MUBs have been used in practical applications such as quantum 

key distribution (QKD), where the BB84 (Bennet, C. H. , Brassard, 1984) was the 

pioneering protocol as well as the various protocols proposed thereafter (we refer to 

Pirandola et al. (2020) for a thorough review of the subject matter) and quantum state 

tomography where Wooters & Fields (1989) showed that 1d +  MUBs provide the 

optimal set of measurements. We provide the standard definition of MUBs in the 

following  
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Definition 1.1 Two distinct orthonormal bases for a d-dimensional Hilbert space 

( )  0

0 1,..., dJ   −=  and ( )  1

0 1,..., dJ   −=  are said to be mutually unbiased bases 

(MUB) provided that 1/i j d  = , for every , 0,..., 1.i j d= −  

 

Nonetheless, in terms of composite dimensions which are not powers of primes, for 

example 6,d =  still remains an open problem for the existence of a complete set of 

MUBs. In this context, the Zauner conjecture (Klappenecker, A., Röttler, 2003) stated 

that the number of MUBs for 6d =  is three rather than seven MUBs.  

Motivated by the study of MUB, we consider the notion of mutually unbiased 

unitary bases (MUUB) for the space of operators acting on a -d dimensional Hilbert 

based on considering the idea of equiprobable guesses of unitary transformations. This 

is closely related to the issue of optimal estimation of process determination where we 

focus on the estimation of the dynamics of a quantum system instead of state estimation. 

As the dynamical evolution of a closed quantum system is described by a unitary 

transformation, these equiprobable guesses  are relevant to a procedure of identification 

of an unknown quantum dynamical process acting on a quantum state, i.e. quantum 

process tomography (QPT) (Scott, 2008). Quantum process tomography is a method for 

determining quantum channel (trace-preserving completely positive linear map) which 

acts upon a quantum system (note the difference with quantum state tomography which 

is a method for quantum state determination). It is noteworthy that prior to this, Scott 

(2008) first introduced the notion of MUUBs where one can have a maximal of 2 1d −  

MUUBs for the 2-d dimensional Hilbert space for dimension 2,3,5,7and 11.d =  
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1.2 PROBLEM STATEMENT 

The construction of MUUBs for the 2-d dimensional Hilbert space was first done by 

Scott (2008) and is shown to have a maximal of 2 1d −  MUUBs. It can be used for QPT 

and is shown to exist for 2,3,5,7and 11.d = However, beyond that, little else is known. 

As a matter of fact, no known recipe exists for constructing the maximal number of 

MUUBs for 2-d dimensional Hilbert space, let alone subspaces for ( ), .M d   

 

1.3 RESEARCH APPROACH AND OBJECTIVES 

In this thesis, we aim to have a proper understanding of MUUBs for the subspace of 

operators acting on a -d dimensional Hilbert space. Motivated by the equiprobable 

transition between states in one basis to another in the case of MUBs, we aim to develop 

an analogous idea of equiprobable guesses of unitaries towards a notion of MUUB for 

the subspace of operators acting on a -d dimensional Hilbert and provide a systematic 

study of the notion’s properties and construction as well as the relevance of MUUBs in 

the context of incompatibility between the unitary operators. 

We start off by finding the minimal number of MUUBs that can be constructed for 

space of ( ),M d  based on the equivalence of MUUB for ( ),M d  and MUBs for 

bipartite systems whose Hilbert space is d d  consisting of only maximally 

entangled states (MES). Next, we construct the maximal number of MUUBs for some 

subspace of ( ), .M d  Then, we hope to see the MUUBs would arise naturally by using 

the uncertainty relation to establish the entropic bounds between two unitary operators 

for some tester with measurement operators. This research aims to achieve the following 

objectives: 
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• To construct mutually unbiased unitary bases acting on -d dimensional Hilbert 

space. 

• To ascertain the maximal number of mutually unbiased unitary bases on -d

dimensional Hilbert space. 

• To establish entropic bounds on the maximal amount of information. 

In the following, we provide the necessary background of quantum mechanics that we 

would use throughout the thesis. 

 

 

1.4 MATHEMATICAL PREREQUISITES 

Before we delve into the discussion of MUUBs, it is instructive to outline certain basic 

concepts of linear algebra and the standard notation of quantum mechanics for linear 

algebraic concepts. We refer to Nielsen & Chuang (2010) for the following subsections. 

 

1.4.1 Hilbert space 

In the following d  is referred as a -d dimensional Hilbert space, a complex vector 

space of dimension d  equipped with an inner product. The Hilbert space must obey the 

properties of being a linear vector space, with a valid inner product. It is separable and 

also complete. The Dirac notation represents the standard quantum mechanical notation 

from linear algebra. It indicates that a vector of d  would be expressed as the ket 

notation u , and its dual vector, as the bra notation u . The inner product of u  and 

w  may be denoted as .u w  A unit vector is a vector u  such that u =1. For this 

case, u  is also called normalized. Two vectors u  and v  are orthogonal if their 

inner product is equal to zero, which is 0u v = . 
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A basis  for d  is a set of vectors such that any element in the space can be 

written as a linear combination of the elements of . This basis is orthonormal if all 

vectors are mutually orthogonal and of unit length. 

A linear operator on d  is defined to be a function : d d→  which is linear 

in its inputs, 

 ( ).i i i i

i i

a u a u
 

= 
 
   (1.1) 

The identity operator will be expressed by d . As a simple example, we let the identity 

and the Pauli operators on 2 , which can be written with respect to the computational 

basis as 

 

2 0 0 1 1 ,

0 0 1 1 ,

0 1 1 0 ,

0 1 1 0 .

Z

X

Y i i

= +

= −

= +

= − +

  (1.2) 

A diagonal representation for a linear operator  on d  is denoted by 

i i i

i

u u= , where the vectors 
iu  form an orthonormal basis of eigenvectors 

for  with corresponding i . An operator  is then called a diagonalisable operator 

if it has such diagonal representation. Also,  is a normal operator if it commutes with 

its adjoint such that † †= . Note that a linear operator  on d  is 

diagonalisable if and only if it is normal (spectral decomposition).  is unitary if 

† † .d= =  As  is a unitary operator, then  is normal and has a spectral 

decomposition. Therefore, the unitary operator is diagonalisable and normal. 
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 Given that ( ),M d  is the space of all d d  matrices with entries from d . A 

matrix ( )  ,M d  is unitary if †

d= . Also, a matrix  is a Hermitian matrix if 

†= . This matrix is diagonal if ( ) 0
ij
=  for all i j  (with thi  row and thj  column 

of ). Note that the vectors of a basis may be presentation as the column of a matrix. 

The matrix constructed from an orthonormal basis can be unitary. An eigenvector of  

on ( ),M d  is a non-zero vector u  such that u u= , where   is a complex 

number called the eigenvalue of  corresponding to .u  In quantum information 

theory, the identity and the Pauli operators on 2  represented by 2 2  matrices, 

namely the Pauli matrices are denoted as 

 
2 ,   ,   ,     .

1 0 1 0 0 1 0

0 1 0 1 1 0 0

Z X Y
i

i

          
−       

       −       

  (1.3) 

The Pauli matrices have been generalised for higher dimensions. The generalised Pauli 

matrices are defined as follows 

 
1,i ik k +=  

 
1 1, ,i

d di i i idX k k k kZ + +==   (1.4) 

where 
ik  is the thi  standard basis vector of d  and d  is a thd  root of unity with the 

index i  indicating the thi  power of .d  Note that the generalized Pauli matrices have 

the following properties (Bandyopadhyay S., Boykin P., 2002; Hall. J, 2011) 
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( ) ( )

( )

,

Tr 0 for , .

,

,

d d d d

m n ni

d d

d d

d d

i i j

d

m n

d d

Z X X Z

X Z

X

d

Z

k k

X Z m n



 +

=

=

=



=

=

  (1.5) 

The trace of a 𝑑 × 𝑑 matrix is the sum of the entries on the main diagonal. 

 ( ) ( ) .Tr
ii

i

=   (1.6) 

The trace is cyclic, i.e. ( ) ( )Tr Tr=  and linear, 

( ) ( ) ( ) ( ) ( )Tr Tr Tr , Tr  Trb b+ = + =  where  and  are arbitrary 

matrices in ( ),M d  and b  is a complex number. For a 𝑑 × 𝑑 matrix  and , 

( )†Tr  forms an inner product. It is said that the matrices are orthogonal if 

( )†Tr 0= . Note that although ( ),M d  is the set of 𝑑 × 𝑑 matrices with complex 

entries, it is regarded as the set of operators acting on a -d dimensional Hilbert space 

(with prime d ) because actually matrices represent such operators.  

 

 

1.4.2 Tensor products 

Let u  and v  are vectors in U  and V , and  and  are linear operators on U

and V  respectively. Then, a linear operator   on U V  is defined as follows 

 ( ) .v vu u     (1.7) 

The definition of   can be extended to all elements of U V  to ensure linearity 

of  , which is 
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 ( ) i i i i i i

i i

a u v a u v
 

    
 
    (1.8) 

The trace for tensor products of    would be defined as follows 

 ( ) ( ) ( )Tr Tr Tr .    (1.9) 

 

 

1.5 THE POSTULATES OF QUANTUM MECHANICS 

Quantum mechanics provides a mathematical foundation or framework for the 

construction of physical theories, as is well known. Therefore, this section provides the 

fundamental concepts of quantum mechanics by means of its postulates. 

 

1.5.1 Postulate 1 (State space) 

Associated to any isolated physical system is a complex vector space with inner product 

(that is, Hilbert space) known as the state space of the system. The system is completely 

described by its state vector, which is a unit vector in the system’s state space. 

The Quantum bit or known as qubit is is a quantum system whose state lies in a 

2-dimensional Hilbert space. For example, consider an orthonormal basis  0 , 1  of 

2.  Then, any state vector in a qubit can be written as 0 1  = +  where   and 

  are complex numbers such that 
2 2

1 + = . This is due to   being a unit vector, 

1  =  which is known as the normalization condition for the state vectors. 

 

1.5.2 Postulate 2 (Evolution) 

This postulate states that the evolution of a closed system is described by a unitary 

transformation. The Pauli operators are the best examples of allowed operations on such 

quantum system (particularly on qubits) since they are unitary. 
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1.5.3 Postulate 3 (Quantum general measurement) 

Quantum measurement are described by a collection  mM  of measurements 

operators. These are operators acting on the state space of the system being measured. 

The index m refers to the measurement outcomes that may occur in the experiment. If 

the state of the quantum system is   immediately before the measurement then the 

probability that result m occurs is given by 

 ( ) †

m mM M ,p m  =   (1.10) 

and the state of the system after the measurement is  

 
†

.
m

m m

M

M M



 
  (1.11) 

The measurement operators satisfy the completeness equation,  

 † .m m d

m

M M =   (1.12) 

The completeness equation expresses the fact that probabilities sum to one: 

 ( ) †1 .m m

m m

p m M M = =    (1.13) 

This postulate describes how to extract information from the quantum system 

particularly the problem of distinguishing quantum states. For example, consider the 

cryptographic scheme between two parties, Alice and Bob. Alice selects a state 

( )0i i n    from a fixed set of states that both users are familiar with and submits it 

to Bob, whose task is to find the index i  associated with it. 

 Let the states 
i  are orthonormal, then Bob can perform a quantum 

measurement to distinguish the states in the following procedure. Let i i iM    be 

measurement operators, one for each possible index ,i  and let 0M  be another 
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measurement operator denoted as the positive square root of the positive operator 

0

d i i

i

 


− . The completeness relation.is satisfied by these operators. If the state 

i  is prepared then ( ) iM 1i ip i  = = . Therefore, the result i  occurs with 

certainty. Thus, the orthonormal states 
i  may be reliably distinguished. 

 In contrast, if the states 
i  are not orthonormal, then no quantum measurement 

is capable of distinguishing the states. 

 A special class of this general measurements postulate is known as the projective 

measurements, together with unitary transformations (as explained in Postulate 2) are 

adequate to implement in an equivalent way a general measurement. Suppose the 

measurement operators mM  in Postulate 3, in addition to satisfying the completeness 

relation †

m m d

m

M M = , also satisfy the conditions that mM  are orthogonal projectors, 

that is, the mM  are Hermitian, and ,m m m m mM M M = . With these additional 

restrictions, Postulate 3 reduces to as the following. 

  

1.5.4 Postulate 3.1 (Quantum projective measurement) 

A projective measurement is described by an observable, ,M  a Hermitian operator on 

the state space of the system being observed. The observable has a spectral 

decomposition, 

 ,m

m

M mP=   (1.14) 

where mP  is the projector onto the eigenspace of M  with eigenvalue .m  The possible 

outcomes of the measurement correspond to the eigenvalues, ,m  of the observable. 

Upon measuring the state  , the probability of getting result m is given by 
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 ( ) .mp m P =   (1.15) 

Given that outcome m occurred, the state of the quantum system immediately after the 

measurement is  

 
( )

.
mP

p m


  (1.16) 

It is worth noting that the commonly used expression “to measure in a basis m ” where 

m  denotes an orthonormal basis, simply refers to perform the projective measurement 

with projectors 
mP m m= . For example, consider a projective measurement on the 

vector state ( )
1

0 1
2

+  by the Z  Pauli operator as the observable .Z  The observable  

Z  has eigenvalues 1+  and 1−  with corresponding eigenvectors 0  and 1 , then one 

obtains the results 1+  with probability 0 0 1 2  =  and analogously the result 1−  

with probability 1 1 1 2.  =   

 

1.5.5 Postulate 4 (Composite systems) 

The state space of a composite physical system is the tensor product of the states spaces 

of the component physical system. Moreover, if we have systems numbered 1 through 

,n  and system number i  is prepared in the state 
i , then the joint state of the total 

system is 
1 2 n    . 

This postulate explains the description of the composite system based on the 

combined of state spaces from different quantum systems. Note that if the state of the 

composite system can be represented by any unit vector of the tensor product, then it is 

possible that this vector is not a pure tensor product. Such corresponding state is called 
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entangled. The simplest example of entanglement is the entangled state of two qubits, 

( )
1

00 11
2

+ . Note that the well-known kind of entanglement is the maximally 

entangled states (MES) for qubit, i.e. the Bell states. The Bell states are defined 

 

00 11 00 11
, ,

2 2

10 01 01 10
, .

2 2
 

+ −

+ −

+ −
 =  =

+ −
= =

  (1.17)  

A state   is said to be a maximally entangled state such that 

 
1

,A B

i

i i
D

 =    (1.18) 

where and A B  are the subsystems of Hilbert spaces such that A B . 

 

 

1.5.6 Shannon entropy 

Given that a random variable X  with a probability distribution, 1,..., .np p  The Shannon 

entropy of a random variable X , ( )H X  can be viewed as a measure of uncertainty 

about X  before one learn of its outcome. This entropy can be written as 

 
21( ) ( ,.., ) log .n x x

x

H pX H p p p  −   (1.19) 

An alternate way to view this entropy is, eq. (1.19) gives the measure of uncertainty 

about X  after one learn of its outcome. 

 

1.6 THESIS ORGANIZATION 

All chapters have been arranged in such a way the contents are mathematically concise 

and chronological to provide for a coherent reading. 




