CHARACTERIZATION OF BACTERIAL STRAINS OF RHAMNOLIPID SURFACTANTS FROM PALM KERNEL CAKE AND ITS APPLICATIONS

BY

SUMATHY VELLO

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

MAY 2020

ABSTRACT

Rhamnolipid is a glycolipid surfactant used in various sectors due to its versatile action. The major problem of rhamnolipid production is an expensive substrate and high production microbial strains. With this in mind, a novel substrate from palm waste, palm kernel cake (PKC) was explored for rhamnolipid production using coculture to maximize the return. A mixture of seven bacterial population was isolated from PKC and labelled as VS1 to VS7. All the isolates were identified as biosurfactant producers through haemolytic assay, drop collapse, surface tension, oil spreading and emulsification index. However, only VS2, VS3, VS5 and VS7 were rhamnolipid producers. Biochemical analysis and 16S rRNA sequence analysis disclosed that they were Enterococcus faceium (VS2), Pantoea ananatis LMG 5342 (VS3), Enterococcus hirae (VS5) and Stenotrophomonas maltophilia K279 (VS7). The selection of co-culture in this investigation was based on the compatibility test with Pseudomonas aeruginosa ATCC 9027, a commercial strain. Isolated bacteria Stenotrophomonas maltophilia K279 was the most compatible bacteria in this study. Out of the eleven screened factors, four factors, namely sucrose, glucose, NaNO₃ and KH₂PO₄, were the most significant components for rhamnolipid production in Plackett Burman experimental design. As PKC functioned as the primary substrate, sucrose was chosen as the co-substrate. One factor at a time (OFAT) experiment showed that PKC (8%), sucrose (4 g/L), NaNO₃ (1.4 g/L), KH₂PO₄ (1.3 g/L), temperature (35°C), pH (7) and inoculum size (6%) were the optimum concentrations and conditions required for best rhamnolipid production. Media optimization using Face centered central composite design (FCCCD) showed that sucrose (4.1 g/L), NaNO₃ (1.9 g/L) and KH_2PO_4 (1.29 g/L) produced the highest E24 value indicating maximum rhamnolipid production. Process optimization for aeration and agitation in a bioreactor using 2^k factorial design indicated that aeration of 1 vvm and agitation above 250 rpm was suitable for maximum production of rhamnolipid. An increase of 25% in rhamnolipid recovery was recorded with mixed culture compared to using a single strain in a production comparison study. The brown viscous extract showed the presence of mono-rhamnolipid with a R_f value of 0.70 in TLC analysis. The presence of hexadecanoic acid, methyl ester, was the fatty acid detected in GS-MS analysis for our rhamnolipid. Both ¹H NMR and ¹³C NMR detected the presence of rhamnose ring in the chromatogram. In vitro antibacterial experiment showed that rhamnolipid was more potent towards Gram negative bacteria compared to Gram positive bacteria. Likewise, rhamnolipid recovered in this study successfully removed 91.3% (Zn), 91% (Cu) and 90.7% (Fe) at 10 ppm that is common in agriculture soil.

خلاصة البحث

رامنوليبيد (Rhamnolipid) هي دهون سكرية خافضة للتوتر السطحي تستخدم في عدة لقطاعات بسبب تنوع وظائفها. ولكنّ المشكلة الأساسية في إنتاج الرامنوليبيد هي تكلفته العالية وتواجد السلالات الميكروبية التي تنتجه بوفرة. مع أخذ ذلك في الاعتبار، تمّ استكشاف مادّة جديدة من نفايات النخيل ، كعكة نواة النخيل (PKC) لإنتاج الرامنوليبيد باستخدام مبدأ التكافل في نموّ السلالات لزيادة الإنتاج. حيث تم عزل خليط من سبع سلالات بكتيرية من PKC، وتسميتها VS1 إلى VS7. تم تصنيف جميع العز لات كمُنتِجات للعوامل البيولوجية الخافضة للتوتر السطحي من خلال الفحص الانحلالي، سقوط القطرة، التوتر السطحي، انتشار الزيت، ومؤشر الاستحلاب. ومع ذلك، كانت السلالات VS2 ، VS3 ، VS5 و VS7 فقط هي المنتجة للرامانوليبيد. وكشف التحليل البيوكيميائي وتحليل تسلسل الحمض النووي rRNA 16S أنَّ هذه السلالات كانت (VS3) Pantoea ananatis LMG 5342 (VS2) Enterococcus faceium Stenotrophomonas (VS5) Enterococcus hirae maltophilia K279 (VS7). واستند اختيار سلالات التكافل على اختبار النوافق مع السلالة التجارية Pseudomonas aeruginosa ATCC 9027. وكانت البكتيريا المعزولة Stenotrophomonas maltophilia K279 أكثر السلالات توافقًا في هذه الدراسة. من بين أحد عشر عاملًا تم فحصبها، كانت أربعة عوامل، وهي السكروز والجلوكوز و NaNO₃ و KH2PO4 ، هي أهم المكونات لإنتاج رامنوليبيد في التصميم التجريبي Plackett Burman. وبما أن PKC يعمل كركيزة أساسية، فقد تمّ اختيار السكروز كركيزة مساندة. أظهرت دراسة عامل واحد في كل مرة (OFAT) أنّ PKC بنسبة (8%) ، السكروز (4 جم/لتر) ، NaNO3 (1.4 جم/لتر)، KH2PO4 (1.3 جم/لتر) ، درجة الحرارة (35 درجة مئوية) ، درجة الحموضة (7.00) و حجم اللقاح (6%) هي التركيزات المثلى والظروف المطلوبة للحصول على أفضل إنتاج رامنوليبيد. وأظهرت دراسة تحسين الإنتاج باستخدام التصميم المركب المركزي (FCCCD) أنّ السكروز (4.1 جم/لتر)، NaNO₃ (1.9 جم/لتر) و KH₂PO₄ (29) أنّ السكروز (1.29 جم/لتر) أنتجت أعلى قيمة E24 مايشير إلى الحد الأقصى من إنتاج رامنوليبيد. أوضحت عملية تحسين التهوية والتحريك في المفاعل الحيوي باستخدام تصميم عامل 2^k أن التهوية بمقدار vvm 1 والتحريك بقيمة أعلى من 250 دورة في الدقيقة، كانت مناسبة لإنتاج الحد الأقصى من رامنوليبيد. وفي دراسة لمقارنة الإنتاج، سُجِلت زيادة بنسبة 25% في عائد الرامنوليبيد باستخدام خليط من سلالات البكتيريا مقارنةً باستخدام سلالة واحدة. وأظهر المستخلص البني اللزج، وجود أحادي الرامنوليبيد بقيمة R_f تبلغ 0.70 في تحليل TLC. وكان حمض الهيكساديكانويك واستر الميثيل ، هي الأحماض الدهنية التي تم الكشف عنها في التحليل الكروماتوجرافي GS-MS لرامنوليبيد. كشف كلٌّ من H NMR و ¹³C NMR وجود حلقة رامنوز (rhamnose) في الطيف اللوني. وأظهرت التجارب المخبرية المضادة للبكتيريا أنَّ الرامنوليبيد كان أكثر فعالية. تجاه البكتيريا السالبة الجرام مقارنة بالبكتيريا الموجبة الجرام. كذلك فإنّ رامنوليبيد المنتج في هذه الدراسة نجح في إزالة 91.3% (Zn) ، 91% (Cu) و 90.7% (Fe) عند 10 جزء من المليون والتي تعتبر شائعة في التربة الزراعية.

APPROVAL PAGE

The thesis of Sumathy Vello has been approved by the following:

Parveen Jamal Supervisor

Md. Zahangir Alam Co-Supervisor

Mohammed Saedi Jami Co-Supervisor

Md. Noor bin Salleh Co-Supervisor

Wan Mohd Fazli Wan Nawawi Co-Supervisor

Nassereldeen Ahmad Kabbashi Internal Examiner

Abdulrahman Hamid Nor External Examiner

Mohammad Naqib Eishan Jan Chairman

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Sumathy Vello

Signature

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

ISOLATION AND IDENTIFICATION OF BACTERIAL STRAINS FOR PRODUCTION OF RHAMNOLIPID SURFACTANT FROM PALM KERNEL CAKE AND ITS APPLICATION AS ANTIMICROBIAL AGENT AND HEAVY METAL REMOVER

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2020 Sumathy Vello and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Sumathy Vello

Signature

Date

ACKNOWLEDGEMENTS

The journey to earning my Ph.D in Engineering could not have been possible without the blessings from the Almighty. I thank God for making me stronger every single day along this long journey and for introducing all beautiful souls into my life who became the pillars of my life.

I am deeply indebted to my supervisor, Prof. Dr. Parveen Jamal for her valuable advice and unwavering guidance. She has always supported and nurtured me with her unparalleled knowledge and insightful suggestions for this research. A big thank you to her for encouragement and patience that cannot be underestimated throughout this project.

I am extremely grateful to all my co-supervisors, Prof. Dr. Md. Zahangir Alam, Prof. Dr. Saedi Jami, Prof. Emeritus Dato' Wira Ir Dr. Md. Noor bin Salleh and Dr. Wan Mohd Fazli Wan Nawawi for their assistance and support throughout my research. This dissertation compilation is not possible without their helpful advice and feedback.

Thanks, should also go to Bro. Naseeruddin (Environmental lab), Br. Aslan (Bioprocess lab), Bro. Hafizul (Instrumental lab) for all their technical help during my lab work.

I would also like to extend my deepest gratitude to my family for being my backbone. Firstly, I thank my late father, Mr. Vello for his profound belief in my abilities to pursue my doctorate and my mother for all her moral support along this journey. Special thanks to my siblings and friends for their confidence in me.

TABLE OF CONTENTS

Abstract	11
Abstract in Arabic	iii
Approval Page	iv
Declaration	v
Copyright Page	vi
Acknowledgements	vi
List of Tables	xi
List of Figures	X
List of Abbreviations	X
List of Symbols	XX
CHAPTER ONE: INTRODUCTION	1
1.1 Background Study	1
1.2 Problem statement and its significance	4
1.3 Research Philosophy	5
1.4 Research Objectives	6
1.5 Research Scope	6
1.6 Research Methodology Outline	7
1.7 Organization of Dissertation	1
CHAPTER TWO: LITERATURE REVIEW	1
2.1 Introduction	1
2.2 Surfactant and Biosurfactant	12
2.2.1 Properties of Biosurfactant	1
2.2.1.1 Surface and interfacial activity	1
2.2.1.2 Environmental friendly	1
2.2.1.3 Tolerance to range of pH and temperature	1
2.2.1.4 Low toxicity	1
2.2.1.5 Chemical diversity	1
2.2.1.6 Production from renewable resources	1
2.2.2 Types of Biosurfactant	1
2.2.2.1 Microbial Biosurfactant.	1
2.2.2.1.1 Anionic surfactant	1
2.2.2.1.2 Cationic surfactant	1
2.2.2.1.3 Zwitterionic surfactant	1
2.2.2.1.4 Non-ionic surfactant	1
2.2.2.2 Plant Biosurfactant.	1
2.2.3 Rhamnolipids.	1
2.2.3.1 Discovery.	1
2.2.3.2 Structure	1
2.2.3.3 Producers	2
2.2.3.4 Synthesis	2
2.2.3.5 Applications	2
2.2.3.5.1 Rhamnolipids in Agriculture	2
	۷.

2.2.3.5.2 Rhamnolipids in Food Industry	23
2.2.3.5.3 Rhamnolipids in Oil Industry	24
2.2.3.5.4 Rhamnolipids in Pharmaceuticals	25
2.2.3.5.5 Rhamnolipids in Cosmetics	26
2.2.3.6 Bottleneck for Rhamnolipid production	27
2.3 Waste for sustainable biosurfactant production	29
2.4 Palm Kernel Cake	32
2.5 Effect of chemical and physical parameters in rhamnolipid	
production	33
2.5.1 Carbon source	33
2.5.2 Nitrogen source	34
2.5.3 Temperature	35
2.5.4 pH	35
2.5.5 Aeration and agitation	36
2.5.6 Inoculum size	37
2.6 Methods for Biosurfactant screening	37
2.6.1 Haemolytic assay	37
2.6.2 Drop collapse	38
2.6.3 Emulsification Index	38
2.6.4 Oil spreading	38
2.6.5 du-Nouy Ring	39
2.6.6 Rhamnolipid detection	39
2.6.6.1 Cetyltrimethylammonium bromide (CTAB) agar test.	39
2.6.6.2 Orcinol assay	40
2.7 Optimization.	40
2.7.1 One Factor at a Time	40
2.7.2 Statistical optimization using Design Expert	41
2.7.2.1 Plackett Burman Design	41
2.7.2.2 Face centered central composite design (FCCCD)	42
2.8 Research gap.	42
2.9 Summary	43

CHAPTER THREE: MATERIALS AND METHODS	44
3.1 Introduction	44
3.2 Materials	44
3.2.1 Microorganism	44
3.2.2 Raw material	46
3.2.3 Chemicals	46
3.2.4 Equipment	46
3.2.5 Consumable Items.	46
3.2.6 Software	47
3.3 Methods	47
3.3.1 Collection and Bacterial Isolation	47
3.3.2 Screening of bacteria producing biosurfactant	47
3.3.2.1 Haemolytic Assay	48
3.3.2.2 Drop Collapse	48
3.3.2.3 Surface Tension Measurement	49
3.3.2.4 Oil Spreading Test	49

3.3.2.5 Emulsification Index	49
3.3.3 Detection and quantification of rhamnolipid	50
3.3.3.1 Cetyltrimethylammonium bromide (CTAB) Agar Test.	50
3.3.3.2 Orcinol Assay	50
3.3.4 Biochemical Analysis	52
3.3.4.1 Catalase test	52
3.3.4.2 Urease test	52
3.3.4.3 Indole test	52
3.3.4.4 Methyl Red test	53
3.3.4.5 Voges Proskauer test	53
3.3.4.6 Mac Conkey agar	54
3.3.4.7 Starch hydrolysis	54
3.3.4.8 Simmon's Citrate Agar	54
3.3.4.9 Eosin Methylene Blue	55
3.3.5 Identification of bacterial isolates.	55
3.3.5.1 DNA extraction.	55
3.3.5.2 PCR amplification	56
3.3.5.3 Gel electrophoresis.	57
3.3.5.4 Sequence analysis	57
3.3.6 Cross streak test and growth of co-culture in broth	58
3.3.7 Media and process screening	58
3.3.7.1 Inoculum preparation	58
3.3.7.2 Selection of critical media components: Plackett-	
Burman Design	59
3.3.7.3 One factor at a time	60
3.3.7.3.1 Studies on the Effect of Palm Kernel Cake (PKC)	61
3.3.7.3.2 Studies on the Effect of sucrose	61
3.3.7.3.3 Studies on the Effect of NaNO ₃	61
3.3.7.3.4 Studies on the Effect of KH ₂ PO ₄	62
3.3.7.3.5 Studies on the Effect of pH	62
3.3.7.3.6 Studies on the Effect of Temperature	62
3.3.7.3.7 Studies on the Effect of Inoculum size	62
3.3.7.4 Face Centered Central Composite Design (FCCCD)	63
3.3.7.5 Optimization of Process conditions in Bioreactor using	05
2^k Factorial Design	64
3.3.8 Kinetics study	64
3.3.9 Recovery of Rhamnolipid	65
3.3.10 Stability studies.	65
3.3.10.1 Temperature Tolerance.	65
3.3.10.2 pH Tolerance.	65
3.3.10.3 Salinity Tolerance	66
3.3.11 Purification of Biosurfactant.	66
3.3.11.1 Thin Layer Chromatography (TLC)	66
3.3.11.2 Gas Chromatography-Mass Spectrophotometer	00
(GC-MS)	67
3.3.11.3 Nuclear Magnetic Resonance (NMR)	67
3.3.12 Antimicrobial activity assessment	67
3.3.12.1 Disc Diffusion Assay	67
J.J.12.1 DISC DIIIUSIOII / YOSUY	07

3.3.12.2 Minimum Inhibitory Concentration (MIC)	68
3.3.13 Heavy metal Reduction	69
3.4 Summary	69

CHAPTER FOUR: RESULTS AND DISCUSSION	71
4.1 Introduction	71
4.2 Microbial isolation, screening and identification	72
4.2.1 Bacterial isolation	72
4.2.2 Screening for biosurfactant producing bacteria	74
4.2.2.1 Haemolytic assay	74
4.2.2.2 Drop collapse	76
4.2.2.3 Surface tension	77
4.2.2.4 Oil spreading	77
4.2.2.5 Emulsification Index	79
4.2.3 Detection and quantification of rhamnolipid	81
4.2.3.1 Cetyltrimethylammonium bromide (CTAB)	81
4.2.3.2 Orcinol Assay	82
4.2.4 Biochemical analysis.	85
4.2.5 Identification of isolated bacteria.	89
4.2.5.1 DNA extraction	89
4.2.5.2 Polymerase Chain Reaction (PCR)	86
4.2.6 Cross streak test and growth of co-culture bacteria in broth	90
4.3 Media screening.	98
4.3.1 Media screening of co-culture with different percentage of	
РКС	98
4.3.2 Plackett-Burman Design (PBD)	101
4.3.2.1 Significant Variables	104
4.3.2.2 Non-significant variables	106
4.4 Optimization	109
4.4.1 One Factor at a Time (OFAT)	109
4.4.1.1 Effect of PKC	109
4.4.1.2 Effect of Sucrose.	110
4.4.1.3 Effect of NaNO ₃	111
4.4.1.4 Effect of KH ₂ PO ₄	113
4.4.1.5 Effect of Temperature	114
4.4.1.6 Effect of pH	115
4.4.1.7 Effect of inoculum size	116
4.4.2 Face centered central composite design (FCCCD)	118
4.4.2.1 Effects of interaction between optimized parameters	122
4.4.2.1.1 Effect of sucrose and NaNO ₃	122
4.4.2.1.2 Effect of sucrose and KH ₂ PO ₄	124
4.4.2.1.3 Effect of KH ₂ PO ₄ and NaNO ₃	125
4.4.3 Validation of Experiment.	127
4.4.4 2 ^k Factorial Design	128
4.4.5 Verification of Model	134
4.4.6 Rhamnolipid production with and without co-culture in	
Bioreactor	134
4.4.7 Stability test	136

4.5 Kinetic Study	139
4.5.1 Growth curve of pure culture	139
4.5.2 Kinetic profile	140
4.6 Recovery, purification and characterization	142
4.6.1 Recovery of Rhamnolipid	142
4.6.2 Purification and Characterization of Rhamnolipid	143
4.6.2.1 Thin Layer Chromatography (TLC)	143
4.6.2.2 Gas Chromatography Mass Spectrophotometer	
(GC- MS)	145
4.6.2.3 Nuclear Magnetic Resonance (NMR)	148
4.7 Application of rhamnolipid	151
4.7.1 Antimicrobial activity of Rhamnolipid	151
4.7.2 Heavy Metal Remediation	155
4.8 Summary.	158

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION 5.1 Conclusion 5.2 Recommendation.	160
REFERENCES	163
APPENDIX A APPENDIX B APPENDIX C APPENDIX D	189 190

LIST OF TABLES

Table 2.1	Forms of surfactants from microorganisms	17
Table 2.2	Class and source of plant biosurfactants	18
Table 2.3	Companies producing rhamnolipids around the world	22
Table 2.4	Nutrient compositions of Palm Kernel Cake (PKC)	32
Table 2.5	List of physical parameters used for the production of rhamnolipids	36
Table 3.1	Preparation of dilutions for L-rhamnose standard curve using orcinol reagent	51
Table 3.2	Amplification conditions	57
Table 3.3	Independent variables influencing rhamnolipid production in Plackett-Burman experiment	60
Table 3.4	Experimental variables in actual units	63
Table 3.5	Variables in a factorial design	64
Table 4.1	Colonial and cellular morphology of isolated bacteria	72
Table 4.2	Haemolysis activity, drop collapse and surface tension measurement for the isolated bacteria	76
Table 4.3	Rhamnose quantification using Orcinol assay	83
Table 4.4	Biochemical analysis for all the isolates	87
Table 4.5	Probable genera from biochemical analysis	89
Table 4.6	Phylogenetic analysis of the isolated enteric from palm kernel cake (PKC)	92
Table 4.7	Colony forming units (CFU) for (a) <i>P. aeruginosa</i> ATCC 9027 and VS2 (b) <i>P. aeruginosa</i> ATCC 9027 and VS3 (c) <i>P. aeruginosa</i> ATCC 9027 and VS4 (d) <i>P. aeruginosa</i> ATCC 9027 and VS5 (e) <i>P. aeruginosa</i> ATCC 9027 and VS6 (f) <i>P. aeruginosa</i> ATCC 9027 and VS7	96

Table 4.8	Emulsification activity and rhamnolipid recovered from co- culture	100
Table 4.9	Plackett Burman Design matrix in actual and coded values	102
Table 4.10	Analysis of variance (ANOVA) from the Plackett-Burman design for assessing the significance of variables	108
Table 4.11	Face centered central composite design matrix of three factors in coded and natural units along with their responses	119
Table 4.12	Analysis of Variance (ANOVA) for Response Surface Reduced Quadratic Model	121
Table 4.13	Validation of the quadratic model	127
Table 4.14	Experimental design with coded and actual values using $2^{k}\ \mbox{Factorial design}$	129
Table 4.15	Analysis of Variance (ANOVA) for process optimization	130
Table 4.16	Validation of model for process conditions	134
Table 4.17	Fatty acid derivatives	145
Table 4.18	Antibacterial activity of rhamnolipid using Disc diffusion assay	154
Table 4.19	Percentage of heavy metal removal with rhamnolipid	157

LIST OF FIGURES

Figure 1.1	A simple flowchart of overall research methodology	9
Figure 2.1	(a) Surfactin (b) Sophorolipid	15
Figure 2.2	Chemical structure of mono-rhamnolipid and di-rhamnolipid	20
Figure 2.3	Antimicrobial activity and biodegradation process of rhamnolipids	27
Figure 3.1	Overview of the research methodology	45
Figure 4.1	Different colonies of bacteria from Palm Kernel Cake (PKC)	73
Figure 4.2	Oil displacement area by the isolates from Palm Kernel Cake (PKC)	78
Figure 4.3	Emulsification Index for all the isolated bacteria	80
Figure 4.4	Rhamnolipid detection using methylene blue agar test	81
Figure 4.5	Standard curve for L-Rhamnose	84
Figure 4.6	PCR products after amplification of the DNA	90
Figure 4.7	Dendrogram of 16S rRNA gene sequence relatedness for the bacteria isolated from palm kernel cake (PKC)	93
Figure 4.8	Compatibility between <i>P. aeruginosa</i> ATCC 9027 and all isolated bacteria	95
Figure 4.9	Main effects of the medium constituents in Plackett-Burman experimental results (A: sucrose; B: glucose; C: NH ₄ NO ₃ ; D: NaNO ₃ ; E: KH ₂ PO ₄ ; F: K ₂ HPO ₄ ; G: MgSO ₄ . 7H ₂ O; H: PKC; J: pH; K: Temperature; L: Inoculum size)	103
Figure 4.10	Pie chart showing the contribution of each variable for rhamnolipid production	104
Figure 4.11	Effect of PKC concentration on E24 and yield	110
Figure 4.12	Effect of sucrose concentration on E24 and yield	111
Figure 4.13	Effect of NaNO ₃ concentration on E24 and yield	112
Figure 4.14	Effect of KH ₂ PO ₄ concentration on E24 and yield	113

Figure 4.15	Effect of temperature on E24 and yield	115
Figure 4.16	Effect of pH on E24 and yield	116
Figure 4.17	Effect of inoculum size on E24 and yield	117
Figure 4.18	(a) 3D Response surface showing the effect of sucrose and NaNO ₃ and their interactions on the Emulsification Index value (b) 2D Contour plot shows the effect of sucrose and NaNO ₃ and their interactions on the Emulsification Index value	123
Figure 4.19	(a) 3D Response surface showing the effect of sucrose and KH_2PO_4 and their interactions on the Emulsification Index value (b) 2D Contour plot showing the effect of sucrose and KH_2PO_4 and their interactions on the Emulsification Index value	124
Figure 4.20	3D Response surface showing the effect of KH_2PO_4 and $NaNO_3$ and their interactions on the Emulsification Index value (b) 2D Contour plot showing the effect of KH_2PO_4 and $NaNO_3$ and their interactions on the Emulsification Index value	126
Figure 4.21	Half Normal plot showing interactions between aeration and agitation for rhamnolipid production	131
Figure 4.22	Pareto chart on the effects of agitation and aeration for rhamnolipid production	131
Figure 4.23	(a) 3D Response surface showing the effect of aeration and agitation and their interactions on the Emulsification Index value (b) 2D Contour plot showing the effect of aeration and agitation and their interactions on the Emulsification Index value	133
Figure 4.24	Comparison of E24 value and rhamnolipid production with single and dual culture	135
Figure 4.25	Effect of temperature on rhamnolipid stability	137
Figure 4.26	Effect of pH on rhamnolipid stability	138
Figure 4.27	Effect of salinity on rhamnolipid stability	139
Figure 4.28	Growth curve of <i>P. aeruginosa</i> ATCC 9027 and <i>S. maltophilia</i> K279	140
Figure 4.29	Time profile of biomass, rhamnolipid production and emulsification index for <i>P. aeruginosa</i> ATCC 9027	141

Figure 4.30	(a) Growth curve of co-culture in shake flask batch fermentation (b) Plot showing the product formation with growth	142
Figure 4.31	Thin Layer Chromatography of rhamnolipid	144
Figure 4.32	Mass spectra of fragmented fatty acid methyl ester m/z 270	146
Figure 4.33	GC-MS analysis for rhamnolipid	146
Figure 4.34	Predicted mono-rhamnolipid structure	147
Figure 4.35	¹ H NMR for rhamnolipid	149
Figure 4.36	¹³ C NMR for rhamnolipid	150

LIST OF ABBREVIATIONS

AAS	Atomic Absorption Spectroscopy
ANOVA	Analysis of Variance
ATCC	American Type Culture Collection
bp	base pair
BLAST	Basic Local Alignment Search Tool
CCD	Central Composite Design
Cd	Cadmium
CFU	Colony Forming Units
CTAB	Cetyltrimethylammonium bromide
DOE	Design of Experiments
DNA	deoxyribonucleic acid
EMB	Eosin Methylene Blue
EOR	Enhanced Oil Recovery
FAME	fatty acid methyl ester
FCCCD	Face Centered Central Composite Design
GCMS	Gas Chromatography-Mass Spectrometry
H_2O_2	Hydrogen peroxide
H_2SO_4	Sulfuric acid
HMW	Biosurfactant of High Molecular Weight (HMW)
IIUM	International Islamic University Malaysia
LMW	Low Molecular Weight (LMW)
MEGA	Molecular Evolutionary Genetic Analysis

MIC	Minimum Inhibitory Concentration
MR	Methyl red
NA	Nutrient Agar
NB	Nutrient Broth
NCBI	National Centre for Biotechnology Information
NMR	Nuclear Magnetic Resonance
OD	Optical density
OFAT	One Factor At a Time
PBD	Plackett-Burman Design
PCR	Polymerase Chain Reaction
PFAD	palm fatty acid distillate
РКС	Palm Kernel Cake
POME	Palm Oil Mill Effluent
Rha	Rhamnose
RLs	Rhamnolipids
rpm	rotation per minute
RSM	Response Surface Methodology
TLC	Thin Layer Chromatography
UPM	University Putra Malaysia
USD	United States dollar
VP	Voges Proskauer
vvm	Volume of air flow per volume of working unit per minute

LIST OF SYMBOLS

mN/m	Millinewton per meter
g/L	gram per liter
ml	Milliliter
μl	Microliter
°C	degree Celsius
h	hour
µg/ml	Microgram per millimeter
µl/ml	Microliter per millimeter
v/v	Volume per volume
mt	Metric tonne
mg/mL	Milligrams per milliliter
mg/mL nm	Milligrams per milliliter Nanometer
-	
nm	Nanometer
nm λ	Nanometer lambda
nm λ E24	Nanometer lambda emulsification index
nm λ E24 R_{f}	Nanometer lambda emulsification index Retention factor
nm λ E24 R_{f} ppm	Nanometer lambda emulsification index Retention factor Parts per million
nm λ E24 R _f ppm cm	Nanometer lambda emulsification index Retention factor Parts per million centimeter

CHAPTER ONE INTRODUCTION

1.1 BACKGROUND STUDY

Surfactant (surface active compound) is an essential compound in our daily lives simply because of its use in various industries. From hygienic need in detergents, bioactive compounds as antibiotics (Rodrigues et al., 2006), emulsifier and additives in food (Fracchia et al., 2012), pesticide for plants and in oil fields for oil recovery shows its versatility. Twenty years ago, the petroleum-based surfactants were conquering these industries. It is necessary to realize that the scenario is offbeat in the current biotechnology era with a substitute, biosurfactant (biologically surface active agent) (Burch et al., 2011). Biosurfactants are primarily synthesized by an extensive range of microorganisms particularly micro and macroscopic ones like bacteria and fungi (Shekhar et al., 2015) are attracting the attention of industrialists due to numerous easy and cost-effective industrial applications. The ability of these molecules to reduce surface tension has made it unique and widely applied in a large number of industries for chemically synthesized surfactants (Pattanathu and Gakpe, 2008). This amphiphilic molecule is biologically biodegradable, and most importantly can be synthesized on renewable resources that make it more preferable over the synthetic ones (Muller et al., 2012).

In times to come, it can be expected to see tremendous advancement in biosurfactant market only due to its utilization in various industries. According to a market survey conducted by Global Market Insight, the industrial trend for biosurfactant consumption is expected to rise to 540-kilotons by 2024 (Anonymous, 2018). Although there are many types of biosurfactants in industrial practise,

1

rhamnolipid biosurfactant is forecasted to overcome other biosurfactants like sophorolipids, methyl ester and lipopeptides. In 2017, rhamnolipid biosurfactants valued at USD 11.1 million due to its diverse applications. By 2024, the use of rhamnolipids in food processing industry alone is expected to surpass USD 1.8 million (Anonymous, 2018). Holding properties like high emulsifying activity, low minimum surface tension and higher affinity for hydrophobic organic molecules (Colak and Kahraman, 2013) make its function suitable in agriculture, hydrocarbon recovery, household and personal care product (Anonymous, 2018).

From an economic point of view, biosurfactants are not yet competitive with the chemically synthesized surfactants (Radzuan et al., 2018). In the business world investor's objective is always to invest less and expect high returns (Banat et al., 2014). Sadly, in the case of biosurfactant industry, the monetary input is higher than the output due to several reasons. Firstly, the availability and choice of raw material. The limited available substrate with the right composition of nutrient for microorganism's utilization is one of the significant issues in the biosurfactant industry. Secondly, there is a lack of overproducing microorganisms as this results in low productivity (Gakpe et al., 2007). On the other hand, pricey large-scale production remains as the commonest reported demerits of biosurfactant production. Expensive media components are not returned with high yield concerns people in this business. Along with this, expensive purification is another cost obstacle faced by manufacturers (Rodrigues et al., 2006). Marchant and Banat (2012) reported that the right microorganism selection with the use of renewable substrates and improved fermentation process are the significant areas should be accounted for before producing biosurfactants.

Thus, this scenario justifies why scientists are actively engaged in research on rhamnolipid biosurfactant in the last ten years. Among the different substrates, wastes (food, agriculture and industry) are currently the favourite choice among contemporary researchers (Chong et al., 2017). Correspondingly, agricultural waste recycling is a flourishing trade among businessman today. Since globalization has left a substantial negative impact on the environment, stringent regulatory norms are implemented in most developing countries to substitute synthetic products with biobased products. Therefore, this justifies why a scientist is more directed towards the green solution. Additionally, people's awareness of the environment and health is winning their choices to bio-based products.

Apart from being a tropical country, Malaysia is also known for its rich biodiversity. For this reason, the agricultural industry is a leading economy booster of the country. The climate and fertile soil support a wide variety of crops on the land. Rubber, oil palm, cocoa, rice and coconut are some of the dominant commercial plants of Malaysia. In South-East Asia, Malaysia is the second biggest palm oil producers, although this oil crop is originally from Africa (Mohd Noor et al., 2017). Palm Kernel Cake (PKC) is a residual waste obtained after oil extraction from palm nut through mechanical pressing (Chong et al., 2008). Investigator Imandi et al. (2010) highlighted that approximately 3 million tonnes of PKC are produced as wastes after oil extraction from palm kernel in Malaysia. As of today, only a portion of PKC is used to make animal feed for cow, cattle, goat and pig as it is rich with carbohydrate, protein, minerals and fatty acids (Boateng et al., 2008). Bioeconomy is one approach encouraged by the government to generate a green economy to lift countries' economy and moving towards zero waste management. There is evidence from the literature that waste from oil processing industry is one promising renewable

substrate to produce biosurfactant. Coconut cake, olive oil mill waste and soya bean cake are some of the reported resources (Banat et al., 2014).

Accordingly, the present study attempts to use PKC to produce rhamnolipid surfactant that is expected to be the next generation biosurfactant. A consortium of bacterial strains was used to produce rhamnolipid as an attempt to increase the yield. Optimization experiment has been emphasized in this study to obtain information on the optimum media and process conditions such as temperature, pH, aeration and agitation for rhamnolipid production. At the end of this study, it is hoped to identify the bacteria that produce rhamnolipid isolated from PKC and its potent antimicrobial properties after testing for antimicrobial properties.

1.2 PROBLEM STATEMENTS AND ITS SIGNIFICANCE

It is known that Malaysia is one of the biggest palm oil producers in the world. As a consequence, the environmental pollution caused by the discharge of organic wastes from palm oil industry represents a considerable risk to the ecosystem. Secondly, the currently practised synthetic surfactants have limited application since they are known to possess toxicity properties. Moreover, they are often applied as mixtures for better performance rather than individual components. Other leading obstacles are related to cost and production. Expensive substrates and downstream processing resulting in overpriced production cost is the main reason why it is challenging to scale down the rate of these biomolecules. Besides, there are very limited substrates with the right balance of nutrients like carbon, nitrogen and phosphorus for optimal growth of microorganisms to produce rhamnolipid. Therefore, this results in a low yield.