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ABSTRACT 

The current trend of data collection involves a small number of observations with a 
very large number of variables, known as high dimensional data. Mining these data 
produces an explosive number of smaller itemsets which are less important than 
colossal (large) ones. As the trend in Frequent Itemset Mining is moving towards 
mining colossal itemsets, it is important to understand the challenges in order to 
formulate a better method that is faster in running time, more scalable and able to 
produce useful and interesting knowledge. For this reason, this thesis has proposed 
two new algorithms; RARE and RARE II, which mine colossal closed itemsets. Both 
algorithms apply a minimum cardinality threshold to limit the search space and a 
closure computation method that does not require storage of previously discovered 
itemsets for duplicates checking. These approaches improved both memory and time 
requirement of the algorithms to finish mining tasks. Algorithm RARE searches the 
rowset lattice in breadth-first manner which resulted to a reduced itemset intersections 
compare to other state-of-the-art algorithms, CARPENTER and IsTa. Although the 
different threshold used in CARPENTER and IsTa make direct comparison with 
RARE difficult, RARE proved to be better. In terms of memory usage, RARE need 
only one-third of CARPENTER’s and one-tenth of IsTa’s, while require the least 
running time to discover 100% of closed itemsets in the dataset. Meanwhile, RARE II 
further reduced itemset intersections by evaluating only the closed rowsets in order to 
mine the next closed itemsets, which resulted to an improved run time by more than 
50% compare to RARE.  
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 خلاصة البحث 
ARABIC 

  

ا من الملاحظات مع عدد كبير جداً من يتضمن الاتجاه الحالي لجمع البيانات عدداً صغيرً 
المتغيرات ، المعروفة باسم البيانات ذات الأبعاد العالية. ينتج عن استخراج هذه البيانات عدداً 
كبيرًا من العناصر الأصغر التي تكون أقل أهمية من تلك الضخمة (الكبيرة). نظرًا لأن الاتجاه 

صر يتجه نحو مجموعات التنقيب الضخمة ، من في التنقيب البياناتي المتكرر لمجموعة العنا
المهم فهم التحديات من أجل صياغة طريقة أفضل تكون أسرع في  التشغيل ، وأكثر قابلية 
للتطوير وقادرة على إنتاج معرفة مفيدة ومثيرة للاهتمام. لهذا السبب ، اقترحت هذه الرسالة 

تعملان على التنقيب البياناتي  ، اللتان   )RAREII(؛  و )RARE،(ميتين جديدتين خوارز
لمجموعات العناصر الضخمة المغلقة. تستعمل كلتا الخوارزميتين حداً أدنى من عدد العناصرفي 
المجموعة  للحد من مساحة البحث وطريقة حساب الإغلاق التي لا تتطلب تخزين مجموعات 

كلا من متطلبات الذاكرة العناصر المكتشفة سابقاً للتحقق من التكرارات. حسنت هذه الأساليب 
بالبحث في شبكة   )RARE،(والوقت للخوارزميات لإنهاء مهام التنقيبب. تقوم الخوارزمية 

الصفوف بطريقة السعة الأولية ، مما أدى إلى تقاطع عناصر أقل مقارنة بخوارزميات أخرى 
خدمة في . وعلى الرغم من أن العتبات المختلفة المست  )IsTa(و )CARPENTER(متطورة مثل 

)CARPENTER( و)IsTa(   تجعل المقارنة المباشرة مع)،RARE(  صعبة ، فقد أثبتت)RARE(  

وعشر  )CARPENTER(تحتاج فقط إلى ثلث  )RARE،(أنها أفضل. من حيث استخدام الذاكرة 
)IsTa(   من العناصر المغلقة في مجموعة 100، بينما تتطلب أقل وقت تشغيل لاكتشاف ٪

قلل  من تقاطعات مجموعة العناصر من خلال تقييم   )RAREII(لوقت نفسه ،االبيانات. وفي 
مجموعات الصفوف المغلقة فقط من أجل استخراج العناصر المغلقة التالية ، مما أدى إلى تحسين 

  . )RARE،(٪ مقارنة بـ 50وقت التشغيل بأكثر من 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

 

1.1 BACKGROUND 

Currently, we are in the age of massive automatic data collection and the existing 

trends are likely to accelerate in the near future. Various types of data are 

constantly being collected; i.e. from traditional supermarket transactions and credit 

card records, to scientific kinds of data such as astronomical images, molecular 

structures, Deoxyribonucleic acid (DNA) sequences and human genome data. 

These massive automatic data collections have produced another kind of dataset, 

known as high-dimensional data, which is characterized by a small number of 

observations (rows), n, compared to a large number of features (columns or 

dimensions), m (Jain et. al., 2018). The term High Dimensional Small Sample Size 

(HDSSS) is referred to data with n < 100 and m > 103 (Li et. al., 2017) (Mafarja et. 

al., 2018) (Barddal et. al., 2019), and ultra-high dimensional when the dimension is 

extremely large, i.e. m > 106 (Yamada et. al., 2018). 

In order to extract insights from high dimensional data; mining algorithm, 

software tools, and computing specifications should also be improved. Though 

there are numerous data mining tasks, this thesis will focus on the task of 

association rule mining (ARM), which has been extensively used with the aim of 

describing interesting relationships between variables in a dataset. Agrawal et al. 

(1993) introduced Frequent Itemset Mining (FIM) problem as part of association of 

rule discovery. An itemset is a collection of related items that occur together in a 
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given dataset. The research was initially motivated by the so-called market basket 

data, in which the goal is to find regularities in the customer behaviour in terms of 

combinations of products that are often purchased together. In addition to market 

basket analysis, association rules have been employed in many other areas 

including bioinformatics, which involve high dimensional data. In bioinformatics, 

association rules can be used to identify differentially expressed genes (Chen et. al, 

2015) (Mallik et. al., 2015), candidate genotype variants related to 

pharmacogenomics of drugs (i.e. the study of how genes affect a person's response 

to drugs) (Agapito et. al., 2019), and extracting rules from Single Nucleotide 

Polymorphisms (SNPs) data (Boutorh and Guessoum, 2016). 

However, in the case of high dimensional datasets, several issues have been 

identified. First, many rules generated from frequent itemsets are irrelevant and 

redundant, thus are not useful. To overcome this problem, the concept of closed 

frequent itemset (CFI) has been introduced by Pasquier et al., (1999), which 

resulted to less number of mined frequent itemsets and more compact association 

rules. Since then, closed itemsets have been opted in several mining task including 

colossal closed itemsets (Nguyen et. al., 2017) (Vanahalli and Patil, 2019), frequent 

closed sequences (Tran et. al., 2015), and closed high-utility-itemset (Dam et. al., 

2019). 

Second, many relevant rules that have high-quality metrics exist at low 

frequency level. From a medical point of view, rules with high confidence are more 

reliable, but unfortunately, they are infrequent (Ordonez et. al., 2006) (Zhao et. al., 

2015). Therefore, mining frequent itemsets becomes impractical as many 

interesting rules exist at the lower end of the threshold, which resulted to many 

patterns with low support and high confidence being filtered out. To overcome this 
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problem, several alternative thresholds have been proposed to replace the support-

based method.  This includes confidence measure (McIntosh and Chawla, 2007), 

core ratio (Zhu et al., 2007) (Nguyen et. al., 2017), and minimum cardinality 

(Zulkurnain et. al., 2012) (Sohrabi et. al., 2012).  

Third, frequent itemsets mining algorithm generates a large set of rules due 

to high-dimensionality of a dataset. This has not only lead to high computational 

cost, but make the rules harder to be interpreted and implemented. Therefore, 

several rule summarization methods have been proposed to compress large set of 

rules such that the original rule sets can be recovered with minimal loss of 

information (Simon et. al., 2015) (Sorte et. al., 2018). However, the need for rule 

summarization added to the processing time, where it is possible to summarize the 

rule during the mining process itself. Consider two rules R1: X1 ⇒ Y and R2: X2 ⇒ 

Y, where X1 ⊆ X2, the first rule is simpler and is likely to have higher support. 

However, the second rule may be more interesting as it summarizes several rules 

similar to the first rule. Therefore, R2 covers R1 and R1 can be excluded. It can be 

seen that a concise summary is produced when several rules have been covered by 

R2. Furthermore, in bioinformatics, patterns that are larger in pattern size, e.g. X2, 

give more important meaning than shorter ones, e.g. X1. Large size patterns can be 

called colossal pattern, to differentiate from patterns that have large support. In 

order to mine colossal patterns, a minimum cardinality threshold can be used 

instead of minimum support threshold, which known to have a performance 

bottleneck to mine colossal itemset (Zhu et al., 2007) (Simon et. al., 2015).  

Based on the issues represented above, the strategic approach to mining 

high dimensional data can be concluded as follows: 
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1. Mining closed itemsets instead of all itemsets 

2. Support threshold will not be used to keep the interesting rare itemsets 

3. Minimum cardinality threshold will be used to mine colossal itemsets 

With these three criteria, an algorithm can be designed to mine colossal closed 

itemset that satisfy minimum cardinality threshold. Existing algorithms have either 

followed the techniques of candidate generation in Apriori (Agrawal et al., 1993) 

or mining from a tree data structure as in FP-growth (Han et al., 2000). Apriori 

traverses the column enumeration tree using a bottom-up search in breadth-first 

order. This means that each level of the tree must be fully explored to discover 

frequent itemsets before moving on to the next level. However, bottom-up row 

enumeration tree is more suitable in mining high dimensional data as the number of 

rows are much less compared to the columns (Pan et al., 2003) (Cong et al., 2004a). 

In terms of search order, several algorithms have been evaluated against Apriori 

and it is concluded that depth-first order would result in the most aggressive 

pruning of the search space and requires the least amount of memory (Zaki and 

Hsiao, 2005; Soulet and Rioult, 2014; Tomovic and Stanisic, 2015). Though there 

are several breadth-first algorithms with improved performance than Apriori, none 

have compared their performance against depth-first algorithms (Shah, 2016) 

(Darrab and Ergenc, 2017) (Dou et. al., 2018) (Sinthuja et. al., 2019).  

 The obvious weakness of Apriori is that it requires multiple database scans 

to discover each level of candidate itemsets. This is improved in FP-growth by 

constructing a compact tree data structure called FP-tree, which is a compressed 

representation of all the transactions in the database. Thus, mining process is done 

on the tree, avoiding the need to repeatedly scan the database. Since then, several 

database representations have been proposed including vertical data format (Zaki 
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and Hsiao, 2005), binary format (Besson et al., 2005), and bitmap compression 

(Burdick et. al., 2005). ARM algorithms search the closed itemsets by generating 

candidates based on row/column enumeration tree (or mining the FP-tree for 

algorithms based on FP-growth). For each node of the tree, an internal data 

structure is used to store its information, which can be itemset, rowset, and 

frequency or cardinality. This information is used to check whether the itemset is 

closed and will be kept in the main memory for duplicates checking. Among the 

data structure used are transposed tables in CARPENTER (Pan et al., 2003), diffset 

in CHARM (Zaki and Hsiao, 2005), and prefix tree in IsTa (Borgelt et. al., 2011), 

DisClose (Zulkurnain et. al., 2012), HDminer (Xu and Ji, 2016), and skipping FP-

tree (Nishina et.al., 2019). An efficient algorithm is highly dependent on the 

pruning strategy to limit the search space, the simplicity of closure checking 

method, and its efficiency to avoid duplicates in the output. Though algorithms 

with internal data structure have efficiently avoiding duplicates in the output, they 

are computationally expensive and their performances are severely degraded with 

high dimensional data. 

The discovery processes in this mining task are twofold; mining the 

itemsets and generating the association rules. Since the later task is very 

straightforward and computationally inexpensive, most of the research focus has 

been on improving the itemset mining process. In this study, the method to mine 

colossal closed itemsets from high dimensional data is explored. The focus is on 

the traversal of the search tree; i.e. depth-first and breadth-first, pruning strategy, 

the closure checking method, and the data structure to store intermediate results. As 

more applications in bioinformatics require knowledge discovery using ARM, it is 

important to understand the challenges in order to design better algorithms. 
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1.2 PROBLEM STATEMENT 

Mining colossal closed itemsets from high dimensional data requires 

different approaches from mining frequent itemsets. In terms of search order, most 

algorithms have implemented depth-first search as it is claimed to allow the most 

aggressive pruning of the search space and requires the least amount of memory. 

However, this is not always true as it is highly dependent on the data structure to 

store intermediate results, the pruning strategies applied, and the devised closure 

checking method. The use of complex internal data structures to store intermediate 

results while enumerating the search space has added to the computational 

complexity. This is worsening when the search is in depth-first order, where many 

itemsets of the parent nodes need to be stored. Existing algorithms focused on 

designing scalable data structures to store and compare all closed itemsets to avoid 

redundancy in the output. However, the memory usage increases as the cardinality 

of closed itemsets increases. Therefore, a method which does not require the 

storage of all colossal closed itemsets will result to a more efficient algorithm. In 

addition, closure checking method that is combined with the right search order and 

pruning strategies will reduce the number of intermediate results. The huge number 

of items in high dimensional dataset makes bottom-up row-enumeration search is 

more suitable than column enumeration. As each closed itemset corresponds to a 

unique set of rows, they are ensured to be found by enumerating all combinations 

of rows (nodes) in the search tree, as long as the threshold is satisfied. However, it 

is known that not all nodes lead to closed itemsets, hence enumerating them added 

to computational complexity. The pruning strategies proposed in some algorithms 

has resulted to incomplete set of discovered closed itemsets in the output, risking 

the possibility of losing important knowledge from the dataset. Therefore, devising 
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a method that can efficiently skip unnecessary nodes of the row enumeration tree, 

without missing any closed itemsets in the output will significantly reduce the run 

time and enhances the scalability of an algorithm.  

 

1.3 RESEARCH OBJECTIVE 

In this study, two main research objectives are addressed which include: 

1. To propose a method of traversing the search space with effective 

pruning strategy based on the search order. 

2. To propose a method of traversing the relevant nodes without missing 

any closed itemsets in the output. 

 

1.4 RESEARCH PHILOSOPHY 

While it is proven that row enumeration search is more suitable than 

column enumeration in mining colossal closed itemsets, in terms of the search 

order, there is no performance comparison between depth-first and breadth-first 

algorithms. This study explored the advantages of searching the itemsets in 

breadth-first order in reducing the number of intermediate results and the running 

time. In breadth-first order, the row enumeration tree is visited level-by-level, 

where the parent node can be removed once the children nodes have been 

generated. The benefit of removing the nodes that have been visited is a huge 

memory saving, which contributes to the scalability of the algorithm.  

ARM algorithms have rigidly enumerated every nodes of the search tree to 

discover closed itemsets. While this ensured no missing itemsets in the output, 

exploring the entire search space is time consuming. Apart from the imposed 
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threshold, many pruning strategies have been proposed. However, based on 

literature, it is shown that there is a relationship between a closed itemset with a 

specific sequence order of items, which can minimize the number of closure 

computation. Therefore, it is important to study its implementation in discovering 

colossal closed itemsets. 

 

1.5 RESEARCH SCOPE 

This study focus on designing an efficient algorithm to mine colossal closed 

itemsets. The performance and correctness of the proposed algorithm are evaluated 

against well-known algorithms; i.e. CARPENTER and IsTa. The algorithms used 

minimum support threshold and enumerate the search space in depth-first order and 

stored intermediate results in tables and prefix tree, respectively. Low density 

synthetic dataset is used in order to make a direct comparison, as the benchmark 

algorithms failed to complete mining task on high density real dataset. Thus, for 

real dataset, the experimental results of the proposed algorithms are presented with 

a secondary y-axis which represents the maximum support of the discovered 

colossal closed itemsets. Similarly, a secondary y-axis is also added to the results of 

CARPENTER and IsTa which represents the maximum cardinality of the closed 

frequent itemsets discovered. The synthetic dataset is generated using the tool 

available online while real dataset is obtained from a published discretized 

microarray data. The correctness of the proposed algorithm is validated by 

comparing the number of mined closed itemsets in the output with well-known 

algorithms, available online; i.e. CHARM and DCI_CLOSED.   

 


