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ABSTRACT

The demand for radio frequency spectrum is rapid since the most desirable frequency
spectrum is congested; hence 5G and satellite communications are moving forward to
the frequency band utilization above 10 GHz. Frequency higher than 10 GHz is
subjected to impairment by rain. ITU-R has established rain attenuation prediction
methods deduced from the measured rainfall rate with an integration time of 1-minute
or less. However, recently, significant discrepancies in ITU-R prediction are found in
the measurements of rain attenuation at mmWave bands for short-length propagation
links. All researchers used rain intensity from 1- min integration time measurement, as
not less than 1-minute data are unavailable. Therefore, this project aims to consider rain
rate less than 1-minute integration time, investigate the effects of less than 1-minute
integration time on rain rate distribution, and compare rain attenuation predictions using
measured rain intensities with different integration times. A real-time rain gauge with
a resolution of 10-secs integration time is installed in the International Islamic
University Malaysia (IlUM) Gombak. A one-year measured rain rate data with
integration times of 10-secs, 20-secs, 30-secs, 1- minute, and 2-minutes are utilized to
analyze the effects of integration times on rain intensity distributions and rain
attenuation predictions. From the analysis, it is found that at 0.01% probability, rain
rates are 123 mm/hr and 191 mm/hr with 1-min and 10-secs integration times,
respectively. At 0.1% and 0.001% probabilities, the differences increase to 80% and
above. The rain attenuation measured at 26 GHz, 38 GHz, and 73 GHz terrestrial links
with 300 m lengths and 12 GHz earth-to-satellite links in Malaysia are compared with
those predicted by data from 5 integration times. Predicted attenuation with 10-secs is
closer to measurement than 1-min integration time for all three terrestrial links and two
satellite links. However, 30-sec integration time data was found close to the
measurement for one satellite link. Hence mm-wave short paths in 5G, lower
integration time-based rain rate measurement will provide more accurate prediction for
path loss and high reliability in the tropical climate.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND

The demand for radio frequency spectrum is rapidly increasing to serve many
customers in the business, government, and private sectors. Since the most desirable
frequency spectrum to satisfy this demand is the 1 to 10 GHz band, apparent congestion
occurs within this band, and telecommunication engineers are forcibly looking forward
to utilizing the frequency band above 10 GHz. Around the same time, it is therefore
vital to consider the exploration and use of higher frequencies, reaching deep into the
millimeter-wavelength regions of the electromagnetic spectrum, to promote the
growing need for modern communication networks with higher data speeds and hence
broader bandwidths. With recent advancements and innovations in component and
machine technology, these region spectrums are now becoming more available for
communications networks, increasing the availability of cost-effective, stable, and
lightweight hardware and thereby providing new prospects and possibilities that are
currently not achievable or not feasible at lower frequencies.

Radio wave propagation through the earth’s atmosphere is a persistent problem
in the efficiency of communication systems. Uncontrolled changes in signal amplitude,
phase, polarization, and angle of arrival can be caused by atmospheric conditions,
resulting in a decrease in the performance of wireless communication systems.
Consequently, statistical tests and procedures are typically most helpful in determining

propagation impairments on communication links.



Rain is the primary source of impairments for the radio wave when the
frequency is higher than 10 GHz. Hence the future millimeter-wavelength regions will
be highly affected by rainfall and will degrade the performance of wireless
communication systems (Abdulrahman et al., 2012). The problem is severe in tropical
regions where the intensity of rain is very high and frequent. Raindrops consume and
spread radio wave energy, resulting in rain attenuation that can degrade the contact
link's stability and performance. Thus, the raindrops are believed to be spherical drops
of vapor, which disperse and absorb energy from the incident radio signal. However,
the non-spherical configure ratio of raindrops can also affect the signal's polarization
properties, resulting in rain depolarization (a transfer of energy from one polarization
state to another). Hence the effects of rain are frequency-dependent, and each drop's
contributions are proportional and distinct from the other drops. This means a 'simple
dispersion’ of energy; however, specific 'multiple scattering' effects must be considered

for attenuation and loss estimation.

As the frequency increases, the size of wavelength decreases that approaches

the size of raindrops, which scatters and absorbs the radio wave's energy.

C
The wavelength of a radio wave isA = 7 (1.2)

Where, A= wavelength in m, f= frequency in Hz and c= 3x10"8 m/s If
the frequency of a wave is 10GHz, then the wavelength is 3cm from equation (1.1),
which is closed to raindrop size, and the wave is highly attenuated during propagating
through the rain (Kotamraju & Korada, 2019). Thus, the study of raindrop size

distributions is essential to know the rain effects on microwave propagation.



A significant challenge for the designer is to evaluate the excess path attenuation
due to rainfall when constructing millimeter-wave connections. Rain attenuation can be
obtained directly from measurement or predicted from a knowledge of the rain rate. The
rain attenuation prediction utilizing indirect measurement is based on the multiplication
of specific attenuation (attenuation per unit length), propagation path length, and a path
length reduction factor. The horizontal reduction factor accounts for the inhomogeneity
of rain along the propagation path for a terrestrial microwave link. The relationship
between the specific attenuation and the rain rate is established by modeling two
regression parameters. These parameters depend on frequency, drop size distribution,
shape, temperature, and radio-wave polarization. It has been standard practice as a
function of precipitation intensity to express rainfall depletion. The intensity depends
on the content of liquid water and the drop velocity of the drops (Emiliani et al., 2009).
The statistical distribution of rain attenuation is, thus, obtained from the rain rate
distribution for the region concerned. In its recommendation ITU-R P.618-13-2017/12,
International Telecommunication Union describes a procedure to predict rain
attenuation for earth-to-satellite microwave links. By considering 1HUM, Gombak
campus as a location of satellite earth station and MEASAT3A as satellite rain
attenuation is predicted using ITU-R P.618-13-2017/12 for C-band (4 GHz), Ku-band
(12 GHz), Ka-band (20 GHz), and V-band (40 GHz) downlinks and presented in Figure.
1.1. Figure 1.1 shows how severe the problem is to design reliable links in Malaysia. It
requires about 20 dB, 40 dB, and 120 dB extra fade margins to achieve 99.99%

availability for Ku, Ka, and V-bands systems in Malaysia.
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Figure 1.1: Predicted rain attenuation in vertical polarization using rain
intensity for Malaysia. (ITU-R P.618-13-2017/12)

In Malaysia, two monsoon wind seasons occur, which are southeast monsoon and
northeast monsoon. The southeast monsoon happens from May to September and the
northeast monsoon from November to March. During the monsoon season, the rain
occurs most heavily. According to Malaysian Meteorological Department, different
parts of Malaysia have different rainfall, for example, the lowest rainfall is in Jelebu,

Negeri Sembilan and the highest rainfall is in Bukit Larut, Perak.

The Malaysian Meteorological Department has defined the monsoon based on
total rainfall in mm, not based on rain intensity. However, ITU-R and all other
prediction methods need the intensity of rain in mm/hr. The rain intensity data can only
be measured by the real-time rain gauge and being analyzed to get the rain distribution
for one year of data. The rain rate distribution is also known as cumulative distribution,
is @ measure of rain intensity in mm/hr. Many rain rate distribution models are widely
being used and acceptable for the whole world, which are Moupfouma Model, Crane

Model, Modified Crane Model, and ITU-R Model.



In Bell System Technical Journal, S. H. Lin proposed that rain intensity must be used
as mm/hour to cover geographical variations of 1 km to predict specific rain attenuation
dB/Km. In his analysis of the dependence of rain rate distributions on rain gauge
integration time, he used 5-min, 10-min, 15-min, 30-min, and 60-min integration times
and found that the lower integration times showed higher rain intensity. ITU-R has
recommended that the rain intensity or rain rate be deduced from the observed rainfall
rate with an integration time of 1-minute or less. However, the lowest integration time
in measurement was reported with 30-secs and distribution was found higher than 1-

min with more accurate prediction was achieved.

Since the rain attenuation is one of the major challenges for current mmWave
propagation for 5G in the tropical climate, it is high time to analyze the intensity
measurement based on lower than 1-min integration time to predict more accurately.
This research aims to collect rain rate data with 10-sec integration time in the
International Islamic University Malaysia (IlUM) Gombak campus and analyze its

effects on rain intensity distributions and rain attenuation predictions.

1.2 PROBLEM STATEMENT

Fifth-generation mobile and future satellite communications all move towards the
utilization of higher and higher frequencies. However, rain is the most critical factor
above 10 GHz frequency for severe signal attenuation in open space propagation. All
system designers depend on rain attenuation prediction models to design reliable
systems for 5G and other links. All prediction models use rain intensity data in mm/hr
measured with 1-min integration time or less as recommended by ITU-R. Recent

measurements of rain attenuation at mmWave bands for short length propagation links



are found significant discrepancies from ITU-R predictions as reported by many
researchers. All researchers used rain intensity from 1-min integration time
measurement, as not less than 1-minute data are unavailable. As rain gauge integration
time impacts rain intensity distribution and eventually on rain attenuation prediction,
the fact has not been investigated yet. A rain gauge with a 10-seconds integration time
was installed on Satellite Lab Rooftop, and this project has presented the analysis of the
effects of integration time on rain intensity distributions and rain attenuation prediction

based on one-year measurement.

1.3 OBJECTIVES

The study to achieve the following objectives:

1. To investigate the effects of 10-s integration time on rain intensity distributions
based on measured data using real-time rain gauge.

2. To compare the predicted rain attenuation for mm Wave bands with different
integration times with those of available rain attenuation measurements.

3. To predicted rain attenuation for mmWave bands using measured rain intensities

with different integration times.

1.4 RESEARCH METHODOLOGY

Phase I: Literature Review
Investigation of the dependence of Rain Intensity Distribution in mm/hr on rain gauge
resolution and integration time of measurement from related literature.
Phase 1I: Rain Intensity Data Collection
1. Collection of one-year rain-intensity data time series using real-time rain gauge

with 10-secs integration time at 1HUM.



2. Availability analysis of data
Phase I11: Data Processing

1. Processing the data with a 10-sec integration time.

2. Conversion of the data to 20-seconds, 30-seconds, 1- minute, and 2-minutes of
rain intensity time series.

3. Analysis of cumulative distribution function (CDF) for rain intensity
distributions using measured 10-seconds, 20-seconds, 30-seconds, 1-minute and
2-minutes data.

Phase IV: Data Analysis

1. Analysis of rain intensity distributions for monthly and yearly with five
integration times.

2. Compare yearly distributions with different prediction models for rain
intensity distribution.

Phase V: Rain Attenuation Predictions

1. Prediction of rain attenuation using ITU-R REC-P.530-17-2017 and P.618-13-
2017 for terrestrial and satellite links.

2. Analyze the effects of rain intensity with different integration times.

Phase VI: Compare the predicted attenuation with available measurements.

1.5 SCOPE OF THE RESEARCH

The rain intensity data used for research is the one-year measurement with a

10-seconds integration time at UM, Gombak campus.

The other five integration times are utilized to analyze the effects of integration times

on rain intensity distributions and rain attenuation predictions. The rain attenuation



measured at 26 GHz, 38 GHz, and 73 GHz terrestrial links and 12 GHz earth-to-

satellite links in Malaysia are used for comparison and validation of findings.

1.6 THESIS LAYOUT

This research dissertation consists of five chapters. The chapters are arranged as

follows:
Chapter 1: Introduction

Background, problem statements, objectives, methodology, and scopes are included in

chapter 1.
Chapter 2: Literature Review

The significance of rain intensity measurement, distributions, prediction models is
described in this chapter. Significance and literature related to integration time, rain

attenuation prediction, and measurements are also included in chapter 2.
Chapter 3: Data Collection and Data Processing

This chapter presents rain gauge setup, rain intensity data collection, availability

analysis, conversion to different integration times, and monthly and yearly distributions.
Chapter 4: Results and Analysis

This chapter presents the effects of integration time on rain intensity distributions, rain

attenuation predictions and compares them with the available measurements.
Chapter 5: Conclusions

This chapter summarizes the findings and recommends further works for future

researchers to conduct future work.



CHAPTER TWO
LITERATURE REVIEW

2.1 INTRODUCTION

This chapter presents the basic concepts of rain-caused effects on wave
propagation. It describes the relation between rain attenuation and rain intensity. This
chapter also presents how rain intensity is derived from the rain gauge data with
different integration times. The effects of integration time on the rain rate distributions
are also presented and reviewed. Available prediction models for rain rate distributions
are described briefly. Rain attenuation predictions by ITU-R for Earth-to-satellite (ITU-
R P.618-13) and terrestrial (ITU-R P.530-17) links are explained in detail. Finally, few

rain attenuation measurements are presented for comparisons.

2.2 EFFECTS OF RAIN

Above 10 GHz, radio waves are propagated through the atmosphere not just due
to free space loss but also due to a variety of other meteorological factors. The gaseous
contribution of the homogeneous atmosphere due to resonant and non-resonant
polarization parameters, the contribution of atmospheric inhomogeneities, and the
contribution from fog, mist, and rain are all included. In radio connection design for
frequencies above 10 GHz, excessive attenuation due to rainfall and atmospheric
absorption can play a major role. The general formula derived(Freeman & Freeman,

2005) for the calculation of total transmission loss in a given radio link is

Attenuation (dB) = 92.45 + 20 log Fen; + 20 log Dkm+a+b+c+d+e (2.1)

where F is in gigahertz and D is in kilometers,
a = excess attenuation due to water vapour

b = excess attenuation due to mist and fog



