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ABSTRACT 

The demand for radio frequency spectrum is rapid since the most desirable frequency 

spectrum is congested; hence 5G and satellite communications are moving forward to 

the frequency band utilization above 10 GHz. Frequency higher than 10 GHz is 

subjected to impairment by rain. ITU-R has established rain attenuation prediction 

methods deduced from the measured rainfall rate with an integration time of 1-minute 

or less. However, recently, significant discrepancies in ITU-R prediction are found in 

the measurements of rain attenuation at mmWave bands for short-length propagation 

links.  All researchers used rain intensity from 1- min integration time measurement, as 

not less than 1-minute data are unavailable. Therefore, this project aims to consider rain 

rate less than 1-minute integration time, investigate the effects of less than 1-minute 

integration time on rain rate distribution, and compare rain attenuation predictions using 

measured rain intensities with different integration times. A real-time rain gauge with 

a resolution of 10-secs integration time is installed in the International Islamic 

University Malaysia (IIUM) Gombak. A one-year measured rain rate data with 

integration times of 10-secs, 20-secs, 30-secs, 1- minute, and 2-minutes are utilized to 

analyze the effects of integration times on rain intensity distributions and rain 

attenuation predictions. From the analysis, it is found that at 0.01% probability, rain 

rates are 123 mm/hr and 191 mm/hr with 1-min and 10-secs integration times, 

respectively. At 0.1% and 0.001% probabilities, the differences increase to 80% and 

above. The rain attenuation measured at 26 GHz, 38 GHz, and 73 GHz terrestrial links 

with 300 m lengths and 12 GHz earth-to-satellite links in Malaysia are compared with 

those predicted by data from 5 integration times. Predicted attenuation with 10-secs is 

closer to measurement than 1-min integration time for all three terrestrial links and two 

satellite links. However, 30-sec integration time data was found close to the 

measurement for one satellite link. Hence mm-wave short paths in 5G, lower 

integration time-based rain rate measurement will provide more accurate prediction for 

path loss and high reliability in the tropical climate. 
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 خلاصة البحث
 

 5Gن الطيف الترددي المرغوب فيه مزدحم ومن ثم ، فإن اتصالات الطلب على طيف الترددات الراديوية سريع لأ

جيجاهرتز  10جيجاهرتز. التردد الذي يزيد عن  10والأقمار الصناعية تتقدم إلى استخدام نطاق التردد فوق 

يتعرض للانحطاط بفعل المطر. أنشأ قطاع الاتصالات الراديوية في قطاع الاتصالات الراديوية طرائق للتنبؤ 

بوقت تكامل يبلغ دقيقة واحدة أو أقل. ومع  بالتوهين الناجم عن المطر مستخلصة من معدل هطول الأمطار المقاس

ذلك ، ظهرت مؤخراً اختلافات كبيرة في تنبؤات قطاع الاتصالات الراديوية في قياسات التوهين الناجم عن المطر 

لوصلات الانتشار قصيرة الطول. استخدم جميع الباحثين شدة المطر من قياس وقت  mmWفي نطاقات الموجات 

واحدة ، حيث لا تتوفر بيانات أقل من دقيقة واحدة. لذلك ، يهدف هذا المشروع إلى اعتبار معدل التكامل لمدة دقيقة 

المطر أقل من دقيقة واحدة من وقت التكامل ، والتحقيق في آثار وقت التكامل أقل من دقيقة واحدة على توزيع معدل 

ة مع أوقات تكامل مختلفة. يتم تثبيت مقياس المطر ، ومقارنة تنبؤات التوهين بالمطر باستخدام شدة المطر المقاس

. يتم Gombak (IIUM)ثوانٍ في الجامعة الإسلامية العالمية ماليزيا  10مطر في الوقت الفعلي بدقة تكامل مدتها 

دقيقة و  1ثانية و  30ثانية و  20ثوانٍ و  10استخدام بيانات معدل المطر المقاسة لمدة عام مع أوقات تكامل تبلغ 

ة لتحليل تأثيرات أوقات التكامل على توزيعات كثافة المطر وتنبؤات التوهين بالمطر. من التحليل ، وجد أنه دقيق 2

مم / ساعة بأوقات تكامل مدتها دقيقة واحدة  191مم / ساعة و  123٪ ، تكون معدلات المطر 0.01عند احتمال 

٪ فما فوق. التوهين الناجم عن 80الفروق إلى  ٪ ، تزداد0.001٪ و 0.1ثوانٍ ، على التوالي. عند احتمال  10و 

 12متر و  300جيجاهرتز للوصلات الأرضية بطول  73جيجاهرتز و  38جيجاهرتز و  26المطر المقاس عند 

أوقات  5جيجاهرتز للوصلات من الأرض إلى الساتل في ماليزيا تتم مقارنتها مع تلك التي تنبأت بها البيانات من 

ثوانٍ أقرب إلى القياس من وقت التكامل لمدة دقيقة واحدة لجميع الوصلات  10المتوقع بـ  تكامل. يكون التوهين

ثانية بالقرب من قياس ارتباط  30الأرضية الثلاثة ووصلتي ساتلية. ومع ذلك ، تم العثور على بيانات وقت التكامل 

إن قياس معدل المطر على أساس ساتلي واحد. ومن ثم فإن المسارات القصيرة لموجة مم في الجيل الخامس ، ف

 التكامل المنخفض سيوفر تنبؤًا أكثر دقة لخسارة المسار وموثوقية عالية في المناخ الاستوائي.
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND  

The demand for radio frequency spectrum is rapidly increasing to serve many 

customers in the business, government, and private sectors. Since the most desirable 

frequency spectrum to satisfy this demand is the 1 to 10 GHz band, apparent congestion 

occurs within this band, and telecommunication engineers are forcibly looking forward 

to utilizing the frequency band above 10 GHz. Around the same time, it is therefore 

vital to consider the exploration and use of higher frequencies, reaching deep into the 

millimeter-wavelength regions of the electromagnetic spectrum, to promote the 

growing need for modern communication networks with higher data speeds and hence 

broader bandwidths. With recent advancements and innovations in component and 

machine technology, these region spectrums are now becoming more available for 

communications networks, increasing the availability of cost-effective, stable, and 

lightweight hardware and thereby providing new prospects and possibilities that are 

currently not achievable or not feasible at lower frequencies. 

Radio wave propagation through the earth’s atmosphere is a persistent problem 

in the efficiency of communication systems. Uncontrolled changes in signal amplitude, 

phase, polarization, and angle of arrival can be caused by atmospheric conditions, 

resulting in a decrease in the performance of wireless communication systems. 

Consequently, statistical tests and procedures are typically most helpful in determining 

propagation impairments on communication links. 
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Rain is the primary source of impairments for the radio wave when the 

frequency is higher than 10 GHz. Hence the future millimeter-wavelength regions will 

be highly affected by rainfall and will degrade the performance of wireless 

communication systems (Abdulrahman et al., 2012). The problem is severe in tropical 

regions where the intensity of rain is very high and frequent. Raindrops consume and 

spread radio wave energy, resulting in rain attenuation that can degrade the contact 

link's stability and performance. Thus, the raindrops are believed to be spherical drops 

of vapor, which disperse and absorb energy from the incident radio signal. However, 

the non-spherical configure ratio of raindrops can also affect the signal's polarization 

properties, resulting in rain depolarization (a transfer of energy from one polarization 

state to another). Hence the effects of rain are frequency-dependent, and each drop's 

contributions are proportional and distinct from the other drops. This means a 'simple 

dispersion' of energy; however, specific 'multiple scattering' effects must be considered 

for attenuation and loss estimation.  

As the frequency increases, the size of wavelength decreases that approaches 

the size of raindrops, which scatters and absorbs the radio wave's energy. 

The wavelength of a radio wave   isλ =
c

f
   (1.1) 

 Where, λ= wavelength in m, f= frequency in Hz and c= 3x10^8 m/s                 If 

the frequency of a wave is 10GHz, then the wavelength is 3cm from equation (1.1), 

which is closed to raindrop size, and the wave is highly attenuated during propagating 

through the rain (Kotamraju & Korada, 2019). Thus, the study of raindrop size 

distributions is essential to know the rain effects on microwave propagation. 
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A significant challenge for the designer is to evaluate the excess path attenuation 

due to rainfall when constructing millimeter-wave connections. Rain attenuation can be 

obtained directly from measurement or predicted from a knowledge of the rain rate. The 

rain attenuation prediction utilizing indirect measurement is based on the multiplication 

of specific attenuation (attenuation per unit length), propagation path length, and a path 

length reduction factor. The horizontal reduction factor accounts for the inhomogeneity 

of rain along the propagation path for a terrestrial microwave link. The relationship 

between the specific attenuation and the rain rate is established by modeling two 

regression parameters. These parameters depend on frequency, drop size distribution, 

shape, temperature, and radio-wave polarization. It has been standard practice as a 

function of precipitation intensity to express rainfall depletion. The intensity depends 

on the content of liquid water and the drop velocity of the drops (Emiliani et al., 2009). 

The statistical distribution of rain attenuation is, thus, obtained from the rain rate 

distribution for the region concerned. In its recommendation ITU-R P.618-13-2017/12, 

International Telecommunication Union describes a procedure to predict rain 

attenuation for earth-to-satellite microwave links. By considering IIUM, Gombak 

campus as a location of satellite earth station and MEASAT3A as satellite rain 

attenuation is predicted using ITU-R P.618-13-2017/12 for C-band (4 GHz), Ku-band 

(12 GHz), Ka-band (20 GHz), and V-band (40 GHz) downlinks and presented in Figure. 

1.1. Figure 1.1 shows how severe the problem is to design reliable links in Malaysia. It 

requires about 20 dB, 40 dB, and 120 dB extra fade margins to achieve 99.99% 

availability for Ku, Ka, and V-bands systems in Malaysia. 
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Figure 1.1: Predicted rain attenuation in vertical polarization using rain 

intensity for Malaysia. (ITU-R P.618-13-2017/12) 

 

 

In Malaysia, two monsoon wind seasons occur, which are southeast monsoon and 

northeast monsoon. The southeast monsoon happens from May to September and the 

northeast monsoon from November to March. During the monsoon season, the rain 

occurs most heavily. According to Malaysian Meteorological Department, different 

parts of Malaysia have different rainfall, for example, the lowest rainfall is in Jelebu, 

Negeri Sembilan and the highest rainfall is in Bukit Larut, Perak. 

           The Malaysian Meteorological Department has defined the monsoon based on 

total rainfall in mm, not based on rain intensity. However, ITU-R and all other 

prediction methods need the intensity of rain in mm/hr. The rain intensity data can only 

be measured by the real-time rain gauge and being analyzed to get the rain distribution 

for one year of data. The rain rate distribution is also known as cumulative distribution, 

is a measure of rain intensity in mm/hr. Many rain rate distribution models are widely 

being used and acceptable for the whole world, which are Moupfouma Model, Crane 

Model, Modified Crane Model, and ITU-R Model. 
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In Bell System Technical Journal, S. H. Lin proposed that rain intensity must be used 

as mm/hour to cover geographical variations of 1 km to predict specific rain attenuation 

dB/Km. In his analysis of the dependence of rain rate distributions on rain gauge 

integration time, he used 5-min, 10-min, 15-min, 30-min, and 60-min integration times 

and found that the lower integration times showed higher rain intensity. ITU-R has 

recommended that the rain intensity or rain rate be deduced from the observed rainfall 

rate with an integration time of 1-minute or less. However, the lowest integration time 

in measurement was reported with 30-secs and distribution was found higher than 1-

min with more accurate prediction was achieved.   

Since the rain attenuation is one of the major challenges for current mmWave 

propagation for 5G in the tropical climate, it is high time to analyze the intensity 

measurement based on lower than 1-min integration time to predict more accurately. 

This research aims to collect rain rate data with 10-sec integration time in the 

International Islamic University Malaysia (IIUM) Gombak campus and analyze its 

effects on rain intensity distributions and rain attenuation predictions. 

 

1.2 PROBLEM STATEMENT 

Fifth-generation mobile and future satellite communications all move towards the 

utilization of higher and higher frequencies. However, rain is the most critical factor 

above 10 GHz frequency for severe signal attenuation in open space propagation. All 

system designers depend on rain attenuation prediction models to design reliable 

systems for 5G and other links. All prediction models use rain intensity data in mm/hr 

measured with 1-min integration time or less as recommended by ITU-R. Recent 

measurements of rain attenuation at mmWave bands for short length propagation links 
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are found significant discrepancies from ITU-R predictions as reported by many 

researchers. All researchers used rain intensity from 1-min integration time 

measurement, as not less than 1-minute data are unavailable. As rain gauge integration 

time impacts rain intensity distribution and eventually on rain attenuation prediction, 

the fact has not been investigated yet. A rain gauge with a 10-seconds integration time 

was installed on Satellite Lab Rooftop, and this project has presented the analysis of the 

effects of integration time on rain intensity distributions and rain attenuation prediction 

based on one-year measurement. 

 

1.3 OBJECTIVES 

The study to achieve the following objectives:  

1. To investigate the effects of 10-s integration time on rain intensity distributions 

based on measured data using real-time rain gauge. 

2. To compare the predicted rain attenuation for mm Wave bands with different 

integration times with those of available rain attenuation measurements. 

3. To predicted rain attenuation for mmWave bands using measured rain intensities 

with different integration times. 

 

1.4 RESEARCH METHODOLOGY 

Phase I: Literature Review 

Investigation of the dependence of Rain Intensity Distribution in mm/hr on rain gauge 

resolution and integration time of measurement from related literature.  

Phase II: Rain Intensity Data Collection 

 

1. Collection of one-year rain-intensity data time series using real-time rain gauge 

with 10-secs integration time at IIUM. 
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2. Availability analysis of data  

Phase III: Data Processing 

1. Processing the data with a 10-sec integration time. 

2. Conversion of the data to 20-seconds, 30-seconds, 1- minute, and 2-minutes of 

rain intensity time series. 

3. Analysis of cumulative distribution function (CDF) for rain intensity 

distributions using measured 10-seconds, 20-seconds, 30-seconds, 1-minute and 

2-minutes data. 

Phase IV: Data Analysis 

1. Analysis of rain intensity distributions for monthly and yearly with five 

integration times. 

2. Compare yearly distributions with different prediction models for rain 

intensity distribution. 

Phase V: Rain Attenuation Predictions 

1. Prediction of rain attenuation using ITU-R REC-P.530-17-2017 and P.618-13-

2017 for terrestrial and satellite links. 

2. Analyze the effects of rain intensity with different integration times. 

Phase VI: Compare the predicted attenuation with available measurements. 

1.5 SCOPE OF THE RESEARCH 

The rain intensity data used for research is the one-year measurement with a 

10-seconds integration time at IIUM, Gombak campus.  

The other five integration times are utilized to analyze the effects of integration times 

on rain intensity distributions and rain attenuation predictions. The rain attenuation 



 

8 

measured at 26 GHz, 38 GHz, and 73 GHz terrestrial links and 12 GHz earth-to-

satellite links in Malaysia are used for comparison and validation of findings. 

1.6 THESIS LAYOUT 

This research dissertation consists of five chapters. The chapters are arranged as 

follows: 

Chapter 1: Introduction 

Background, problem statements, objectives, methodology, and scopes are included in 

chapter 1. 

Chapter 2: Literature Review 

The significance of rain intensity measurement, distributions, prediction models is 

described in this chapter. Significance and literature related to integration time, rain 

attenuation prediction, and measurements are also included in chapter 2. 

Chapter 3: Data Collection and Data Processing 

This chapter presents rain gauge setup, rain intensity data collection, availability 

analysis, conversion to different integration times, and monthly and yearly distributions. 

Chapter 4: Results and Analysis 

This chapter presents the effects of integration time on rain intensity distributions, rain 

attenuation predictions and compares them with the available measurements. 

Chapter 5: Conclusions 

This chapter summarizes the findings and recommends further works for future 

researchers to conduct future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter presents the basic concepts of rain-caused effects on wave 

propagation. It describes the relation between rain attenuation and rain intensity. This 

chapter also presents how rain intensity is derived from the rain gauge data with 

different integration times. The effects of integration time on the rain rate distributions 

are also presented and reviewed. Available prediction models for rain rate distributions 

are described briefly. Rain attenuation predictions by ITU-R for Earth-to-satellite (ITU-

R P.618-13) and terrestrial (ITU-R P.530-17) links are explained in detail. Finally, few 

rain attenuation measurements are presented for comparisons. 

2.2 EFFECTS OF RAIN 

Above 10 GHz, radio waves are propagated through the atmosphere not just due 

to free space loss but also due to a variety of other meteorological factors. The gaseous 

contribution of the homogeneous atmosphere due to resonant and non-resonant 

polarization parameters, the contribution of atmospheric inhomogeneities, and the 

contribution from fog, mist, and rain are all included. In radio connection design for 

frequencies above 10 GHz, excessive attenuation due to rainfall and atmospheric 

absorption can play a major role. The general formula derived(Freeman & Freeman, 

2005) for the calculation of total transmission loss in a given radio link is 

 Attenuation (dB) = 92.45 + 20 log FGHz + 20 log DKm + a + b + c + d + e (2.1) 

 

where F is in gigahertz and D is in kilometers, 

a = excess attenuation due to water vapour 

b = excess attenuation due to mist and fog 


