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ABSTRACT 

Depression is a mental disorder of high prevalence, leading to a negative effect on 

individuals, family members, society, and the economy. Traditional clinical diagnosis 

methods are subjective, complicated, and require extensive participation of experts. 

Furthermore, the severe shortage in psychiatrists’ ratio per population in Malaysia 

imposes patients’ delay in seeking treatment and poor compliance to follow-up. On the 

other side, the social stigma of visiting psychiatric clinics also prevents patients from 

seeking early treatment. Automatic depression detection using speech signals is a 

promising depression biometric because it is fast, convenient, and non-invasive. 

However, current machine learning algorithms could not achieve high accuracy and 

robust results yet. Moreover, the existing researches and approaches have minimal 

support to Bahasa Malaysia. This research attempts to develop an end-to-end deep 

learning model to classify depression from Bahasa Malaysia speech using our dataset 

collected from clinically depressed and healthy Bahasa Malaysia speakers. The dataset 

was collected via an online platform using participants’ mobile phones to record their 

read and spontaneous speech and depression status. Depression status is identified by 

the Patient Health Questionnaire (PHQ-9), the Malay Beck Depression Inventory-II 

(Malay BDI-II), and subjects’ declaration of Major Depressive Disorder diagnosis by a 

trained clinician. The dataset consists of 42 and 11 depressed female and male 

participants, respectively, and 68 and 9 healthy female and male participants. However, 

this research study focuses on female data only due to data insufficient. We provided a 

detailed implementation of the deep learning model using two approaches: raw audio 

input and acoustic features input. Multiple combinations of speech types were analyzed 

using various deep neural network models. Additionally, an analysis of robust feature 

selection was carried out on the acoustic features input before proceeding to the deep 

learning models. After performing hyperparameters tuning, raw audio input from 

female read and female spontaneous speech combination using AttCRNN model 

achieved an accuracy of 91%. In comparison, robust acoustic features input from female 

spontaneous speech using RNN model achieved an accuracy of 85%. These results 

could be improved by providing a larger dataset. Besides, male and gender-independent 

models could be further studied. 
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خلاصة البحث 

الاكتئاب هو اضطراب عقلي ذو انتشار واسع، يؤدي إلى تأثير سلبي على الفرد والأسرة والمجتمع وأيضا على 

التقليدية غير موضوعية ومعقدة وتتطلب مشاركة واسعة من الخبراء. علاوة الاقتصاد. طرق التشخيص السريري 

على ذلك، فإن النقص الحاد في نسبة الأطباء النفسيين للسكان في ماليزيا سبب في تأخر تلقي العلاج وصعوبة امتثال 

دات الطب النفسي تمنع حول زيارة عيا  -الخاطئة-المرضى للمتابعة الطبية. من ناحية أخرى، فإن النظرة المجتمعية  

ومع ذلك، لم تتمكن خوارزميات التعلم الآلي الحالية من تحقيق دقة عالية ونتائج   المرضى من تطلب العلاج المبكر.

يعد   .قوية حتى الآن. علاوة على ذلك، فإن الأبحاث والأساليب الحالية تحظى بدعم ضئيل للغة البهاسا الماليزية

باستخدام مؤ الجراحي.  اكتشاف الاكتئاب  يتطلب التدخل  الكلام مقياسًا حيويًا واعدًا لأنه سريع، وعملي، ولا  شر 

يهدف هذا البحث إلى تطوير نموذج تعلم عميق، شامل لتصنيف الاكتئاب عن طريق التخاطب بلغة البهاسا الماليزية  

جمع مجموعة البيانات  باستخدام مجموعة من البيانات جمعت من متحدثين أصحاء وآخرين مصابين بالاكتئاب. تم 

عبر منصة إلكترونية باستخدام هواتف المشاركين المحمولة لتسجيل خطاب صوتي مقروء وعفوي، لرصد حالات  

(، ومن خلال استبيان قائمة PHQ-9الاكتئاب. يتم تحديد حالة الاكتئاب من خلال استبيان لتحديد صحة المريض )

، ثم يتم توضيح تشخيص الاكتئاب للمشتركين من قبل طبيب  (Malay BDI-II)بيك للاكتئاب المترجمة للملايو  

رجلا مصابا،   ١١امرأة سليمة إضافة الى    ٦٨امرأة مصابة بالاكتئاب،    ٤٢مختص. تتكون مجموعة البيانات من  

الباحث  رجال أصحاء. ومع ذلك، تركز هذه الدراسة البحثية على بيانات الإناث فقط بسبب وفرة البيانات وقدرة  ٩

نموذج تنفيذي مفصل للتعلم العميق باستخدام طريقتين: مدخلات الصوت الخام ومدخلات   على الاعتماد عليها. قدمنا

السمات الصوتية. تم تحليل مجموعات متعددة من أساليب الكلام باستخدام نماذج مختلفة للشبكات العصبية  /الملامح

لى إدخال السمات الصوتية لاختيار السمات الراسخة قبل الانتقال إلى  بالإضافة إلى ذلك، تم إجراء تحليل ع العميقة.

نماذج التعلم العميق. بعد إجراء ضبط المعلمات الفائقة، حقق إدخال الصوت الخام من دمج الخطاب العفوي والمقروء  

دخالها عن  ٪. في المقارنة. بينما حققت السمات الصوتية التي تم إ٩١دقة    AttCRNNللإناث باستخدام نموذج  

٪. يمكن تحسين هذه النتائج من خلال توفير مجموعة  ٨٥دقة  RNNطريق الكلام العفوي للإناث باستخدام نموذج 

 بيانات أكبر. إلى جانب ذلك، يمكن دراسة نماذج للذكور ونماذج غير معتمدة على جنس المتكلم.
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CHAPTER ONE 

INTRODUCTION 

1.1 OVERVIEW 

Depression is one of the most common mental disorders. Globally, it is 

estimated that more than 300 million people of all ages suffer from depression (World 

Health Organization, 2017). Consequently, it can cause the affected person to function 

poorly at work, school, and within the family. At its worst, depression can lead to 

suicide. The case of Malaysia is no exception; in fact, depression is the most common 

mental illness reported in Malaysia (Mukhtar & P. S. Oei, 2011). In 2015, it was 

reported that 29.2% of Malaysians had suffered from mental illnesses, including 

depression and anxiety disorder (Institute for Public Health, 2015). An early 

intervention aimed at preventing the onset of clinical depression can provide an 

effective means for reducing the disease’s burden. However, currently, the range of 

diagnostic tools for identifying depression is quite limited. Assessment methods rely 

almost exclusively on patient self-reporting and clinical opinion, risking a variety of 

subjective biases. Consequently, it is essential to look for new objective measures that 

help clinicians diagnose and monitor clinical depression (H. Jiang et al., 2017). 

Non-verbal information processing of speech for creating various IT tools is an 

important area for cognitive info-communication (Baranyi, Csapo, & Sallai, 2015). The 

fascinating field of using speech as a bio-signal and developing different non-invasive 

diagnostic tools makes an automatic assessment of the people’s cognitive and 

psychological state possible. Automatic depression detection based on speech 

processing belongs to this research field 
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1.2 STATEMENT OF THE PROBLEM 

Nowadays, the number of people who have a mental illness is increasing 

dramatically all over the world. In regions with a relatively large population, such as 

Western-Pacific and South-East Asia, around half of the people suffer from depressing 

live (World Health Organization, 2017). In Malaysia, the prevalence of mental health 

issues has been steadily increasing from 10.7% in 1996, to 11.2% in 2006, to 29.2% in 

2015 (Institute for Public Health, 2015). World Health Organization (WHO) ’s Global 

Health Observatory data repository reported that there were only 1.05 psychiatrists per 

100,000 population for Malaysia in 2016 (World Health Organization, 2019). As of the 

year 2018, a more recent study showed 410 registered psychiatrists in Malaysia, 

representing 1.27 psychiatrists per 100,000 population. WHO has recommended a ratio 

of psychiatrists to the Malaysian population of 1:10,000. However, the current ratio is 

only 1:80,000 (Guan, Lee, Francis, & Yen, 2018). This severe shortage of psychiatrists 

in the country may pose several problems for those facing mental health issues. These 

problems include delay in seeking treatment, long waiting time for psychiatric 

consultation, low-quality outpatient mental health care, poor compliance to follow-up 

and treatment, increased drug abuse and addiction cases, a surge in suicide rates, 

unemployment, and homelessness. 

Another contributing factor to preventing people with mental health issues from 

seeking clinical treatment is the social stigma, especially in Malaysia. People are afraid 

to be called crazy or psycho; hence, they will not attempt to see a psychiatrist once they 

feel they have a mental issue during the early stage. 

Early detection and treatment of depression can provide effective means for 

minimizing the negative impacts of the illness. However, the available techniques and 
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tools for depression diagnosis are pretty limited. In psychiatric clinics, diagnosis 

procedures need extensive participation of experts, and it can be subjective. Other 

techniques such as electroencephalogram (EEG) and electrocardiogram (ECG) signals 

are time-consuming, complicated, and expensive. They require a skilled and 

experienced clinician to perform the device setup and proper wire connection to get 

correct data, then analyze them and draw a diagnosis. Additionally, it restricts body 

movement during the test, causing lots of inconvenience to the patient.  

The utilization of speech as a bio-marker tool to assess the state of depression is 

non-invasive, fast, and easy to access by a broader range of people. Speech-based 

detection of depression has attracted increasing attention from researchers in 

psychology, computer science, linguistics, and related disciplines. However, current 

machine learning algorithms could not achieve high accuracy and robust results yet. 

Moreover, the existing researches and approaches have minimal support to Bahasa 

Malaysia. 

 

1.3 RESEARCH OBJECTIVES 

The research aims to achieve the following objectives: 

1. To develop a speech depression dataset from Bahasa Malaysia female speakers. 

2. To develop an end-to-end deep learning models that classifies the depression 

state from Bahasa Malaysia female speech using raw audio input and acoustic 

feature input and compare between read and spontaneous speech. 

3. To analyze microphone independent features for robust speech depression 

detection and evaluate the performance of the developed models. 
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1.4 SIGNIFICANCE OF RESEARCH 

The significance of contributing to depression detection research study is not 

providing better or safer treatment to the illness. Further, it does not mean dispensing 

with the psychiatrist role altogether but rather providing an alternative. Nevertheless, 

the study’s goal is to provide a convenient and accessible tool to predict depression. 

Thus, encouraging them to seek treatment at an early stage to prevent the disorder’s 

consequences before it worsens, including suicide as its worst-case scenario. 

 

1.5 RESEARCH SCOPE AND LIMITATION 

The research aims to focus on developing a speech-based depression detection. 

The scope of the research covers the Bahasa Malaysia language. Detection of depression 

consists of classifying the input audio signal as depressed or healthy (not depressed).  

Collecting speech dataset is one of the biggest challenges in this research. 

Reaching out to people diagnosed with depression, recording their voices, and 

collecting their data are not easy tasks. Ideally, on-site recording by collaborating with 

a psychiatric clinic should be performed. However, due to the COVID-19 pandemic, 

this was totally out of the question. Alternatively, we performed online data collection 

utilizing social media to find our targeted participants. Due to the limited access to 

speech dataset in general, and male data in particular, we have decided to focus in this 

study on female participants’ data only.  

 

1.6 RESEARCH METHODOLOGY 

The following methodology will be adopted to achieve the objectives of the research. 

1. Extensive literature review on speech-based depression detection.  

2. Data collection  
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3. Dataset pre-processing and filtering 

4. Acoustic feature extraction and analysis 

5. Raw audio pre-processing and normalizing 

6. Develop and train different DNNs models for classification 

7. Model testing, validation, and analysis 

Figure 1.1 shows the flowchart of the research methodology to be adopted in this 

research. 
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Figure 1.1: Research methodology flow chart 
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1.7 THESIS ORGANIZATION 

This research thesis is divided into several chapters. 

Chapter 1: Introduction 

This chapter discusses the research overview, including research objectives, problem 

statements, research scope, research significance, and research workflow. 

Chapter 2: Literature Review  

This chapter reviews the literature on speech-based depression detection. The review 

covers an overview of depression, some of its assessment tools, and how it is related to 

speech signals. Furthermore, it reviews the previous works and researches on speech 

depression detection. This review will help us extract the important concepts and get 

the general concept to finally develop our model. 

Chapter 3: Methodology 

This chapter discusses the process of data collection and its pre-processing, DNNs 

model design and architecture, and audio features extraction.  

Chapter 4: Results and Discussion 

Results of different input formats such as raw input and feature input are compared 

and discussed in this chapter. This includes all training performance and classification 

results. 

Chapter 5: Conclusion 

This chapter summarizes what was achieved in this research study. Moreover, this 

chapter discusses the limitations and recommendations.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Professionals across numerous fields are trying to develop helpful tools for 

depression assessment. Each subfield tends to approach the job from a unique point of 

view, with somewhat different objectives and totally different database sources. Due to 

these observed distinctions, it is difficult to compare approaches (Morales, Scherer, & 

Levitan, 2017). 

Despite the existing differences, every system and research study shares the 

typical goal of discovering a method to utilize innovation to assist evaluate depression 

(Morales et al., 2017). This chapter aims to serve as a bridge between the subfields by 

providing a comprehensive review of depression detection systems throughout 

subfields. In this chapter, we will address how depression has been defined and 

annotated in depression detection systems, what are the conventional assessment tools, 

how are speech signals affected by the mental state of depression, what are the existing 

detection systems available, and how well do they perform. 

Major depressive disorder (MDD) is a common and serious medical illness that 

negatively affects how you feel, think, and act. It can lead to various emotional and 

physical problems and decrease a person’s ability to function at work and home 

(American Psychiatric Association, 2013). 

Depression symptoms can differ from moderate to serious and can consist of the 

feeling of unhappiness, loss of interest, weight gained or loss unassociated to dieting, 

changes in appetite, insomnia or hypersomnia, increased fatigue or loss of energy, 

increase in purposeless physical activity, for example, hand-wringing or pacing or 



 

9 

slowed movements and speech (actions observable by others), feeling blameworthy or 

worthless, bradyphrenia, difficulty concentrating or making decisions, thoughts of death 

or suicide. Symptoms must last for at least two weeks for a medical diagnosis of 

depression (American Psychiatric Association, 2013) 

 

2.2 DEPRESSION ASSESSMENT 

2.2.1 Gold-Standard Questionnaires 

Frequently used assessment tools consist of meeting style assessments such as 

the Hamilton Score Scale for Depression (HAMD) (Hamilton, 1960) or self-

assessments such as the Beck Depression Index (BDI) originally published in 1961 as 

well as changed in 1996 (Beck, Steer, & Brown, 1996). Both analysis methodologies 

rate the extent of 21 signs and symptoms observed in anxiety to offer a client a score 

related to their level of anxiety. The significant distinctions in between both scores are 

that HAMD is a clinician-rated survey that can be finished in 20 to 30 minuets, while 

BDI is a self-reported questionnaire that can be completed in just 5 to 10 minutes. Both 

ranges utilize different things; the HAMD prefers neuro-vegetative signs (signs and 

symptoms that affect an individual's everyday functioning such as weight, sleep, 

psychomotor retardation, and tiredness), while the BDI favors negative self-evaluation 

symptoms and also various weighting systems when generating their total score. Both 

evaluations have actually been revealed to have anticipating legitimacy as well as 

uniformity when setting apart dispirited from non-depressed individuals (Cummins et 

al., 2015). 

The HAMD has actually long been considered as the gold standard assessment 

tool for depression for both diagnosis and research functions, although this status 

constantly comes into question (Maust et al., 2012). The HAMD evaluation rates the 


