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ABSTRACT

Depression is a mental disorder of high prevalence, leading to a negative effect on
individuals, family members, society, and the economy. Traditional clinical diagnosis
methods are subjective, complicated, and require extensive participation of experts.
Furthermore, the severe shortage in psychiatrists’ ratio per population in Malaysia
imposes patients’ delay in seeking treatment and poor compliance to follow-up. On the
other side, the social stigma of visiting psychiatric clinics also prevents patients from
seeking early treatment. Automatic depression detection using speech signals is a
promising depression biometric because it is fast, convenient, and non-invasive.
However, current machine learning algorithms could not achieve high accuracy and
robust results yet. Moreover, the existing researches and approaches have minimal
support to Bahasa Malaysia. This research attempts to develop an end-to-end deep
learning model to classify depression from Bahasa Malaysia speech using our dataset
collected from clinically depressed and healthy Bahasa Malaysia speakers. The dataset
was collected via an online platform using participants’ mobile phones to record their
read and spontaneous speech and depression status. Depression status is identified by
the Patient Health Questionnaire (PHQ-9), the Malay Beck Depression Inventory-II
(Malay BDI-II), and subjects’ declaration of Major Depressive Disorder diagnosis by a
trained clinician. The dataset consists of 42 and 11 depressed female and male
participants, respectively, and 68 and 9 healthy female and male participants. However,
this research study focuses on female data only due to data insufficient. We provided a
detailed implementation of the deep learning model using two approaches: raw audio
input and acoustic features input. Multiple combinations of speech types were analyzed
using various deep neural network models. Additionally, an analysis of robust feature
selection was carried out on the acoustic features input before proceeding to the deep
learning models. After performing hyperparameters tuning, raw audio input from
female read and female spontaneous speech combination using AttCRNN model
achieved an accuracy of 91%. In comparison, robust acoustic features input from female
spontaneous speech using RNN model achieved an accuracy of 85%. These results
could be improved by providing a larger dataset. Besides, male and gender-independent
models could be further studied.
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CHAPTER ONE
INTRODUCTION

1.1 OVERVIEW

Depression is one of the most common mental disorders. Globally, it is
estimated that more than 300 million people of all ages suffer from depression (World
Health Organization, 2017). Consequently, it can cause the affected person to function
poorly at work, school, and within the family. At its worst, depression can lead to
suicide. The case of Malaysia is no exception; in fact, depression is the most common
mental illness reported in Malaysia (Mukhtar & P. S. Oei, 2011). In 2015, it was
reported that 29.2% of Malaysians had suffered from mental illnesses, including
depression and anxiety disorder (Institute for Public Health, 2015). An early
intervention aimed at preventing the onset of clinical depression can provide an

effective means for reducing the disease’ s burden. However, currently, the range of

diagnostic tools for identifying depression is quite limited. Assessment methods rely
almost exclusively on patient self-reporting and clinical opinion, risking a variety of
subjective biases. Consequently, it is essential to look for new objective measures that
help clinicians diagnose and monitor clinical depression (H. Jiang et al., 2017).
Non-verbal information processing of speech for creating various IT tools is an
important area for cognitive info-communication (Baranyi, Csapo, & Sallai, 2015). The
fascinating field of using speech as a bio-signal and developing different non-invasive

diagnostic tools makes an automatic assessment of the people’ s cognitive and

psychological state possible. Automatic depression detection based on speech

processing belongs to this research field



1.2 STATEMENT OF THE PROBLEM

Nowadays, the number of people who have a mental illness is increasing
dramatically all over the world. In regions with a relatively large population, such as
Western-Pacific and South-East Asia, around half of the people suffer from depressing
live (World Health Organization, 2017). In Malaysia, the prevalence of mental health
issues has been steadily increasing from 10.7% in 1996, to 11.2% in 2006, to 29.2% in
2015 (Institute for Public Health, 2015). World Health Organization (WHO) ’s Global
Health Observatory data repository reported that there were only 1.05 psychiatrists per
100,000 population for Malaysia in 2016 (World Health Organization, 2019). As of the
year 2018, a more recent study showed 410 registered psychiatrists in Malaysia,
representing 1.27 psychiatrists per 100,000 population. WHO has recommended a ratio
of psychiatrists to the Malaysian population of 1:10,000. However, the current ratio is
only 1:80,000 (Guan, Lee, Francis, & Yen, 2018). This severe shortage of psychiatrists
in the country may pose several problems for those facing mental health issues. These
problems include delay in seeking treatment, long waiting time for psychiatric
consultation, low-quality outpatient mental health care, poor compliance to follow-up
and treatment, increased drug abuse and addiction cases, a surge in suicide rates,
unemployment, and homelessness.

Another contributing factor to preventing people with mental health issues from
seeking clinical treatment is the social stigma, especially in Malaysia. People are afraid
to be called crazy or psycho; hence, they will not attempt to see a psychiatrist once they
feel they have a mental issue during the early stage.

Early detection and treatment of depression can provide effective means for

minimizing the negative impacts of the illness. However, the available techniques and



tools for depression diagnosis are pretty limited. In psychiatric clinics, diagnosis
procedures need extensive participation of experts, and it can be subjective. Other
techniques such as electroencephalogram (EEG) and electrocardiogram (ECG) signals
are time-consuming, complicated, and expensive. They require a skilled and
experienced clinician to perform the device setup and proper wire connection to get
correct data, then analyze them and draw a diagnosis. Additionally, it restricts body
movement during the test, causing lots of inconvenience to the patient.

The utilization of speech as a bio-marker tool to assess the state of depression is
non-invasive, fast, and easy to access by a broader range of people. Speech-based
detection of depression has attracted increasing attention from researchers in
psychology, computer science, linguistics, and related disciplines. However, current
machine learning algorithms could not achieve high accuracy and robust results yet.
Moreover, the existing researches and approaches have minimal support to Bahasa

Malaysia.

1.3 RESEARCH OBJECTIVES

The research aims to achieve the following objectives:

1. To develop a speech depression dataset from Bahasa Malaysia female speakers.

2. To develop an end-to-end deep learning models that classifies the depression
state from Bahasa Malaysia female speech using raw audio input and acoustic
feature input and compare between read and spontaneous speech.

3. To analyze microphone independent features for robust speech depression

detection and evaluate the performance of the developed models.



1.4 SIGNIFICANCE OF RESEARCH

The significance of contributing to depression detection research study is not
providing better or safer treatment to the illness. Further, it does not mean dispensing
with the psychiatrist role altogether but rather providing an alternative. Nevertheless,
the study’s goal is to provide a convenient and accessible tool to predict depression.
Thus, encouraging them to seek treatment at an early stage to prevent the disorder’s

consequences before it worsens, including suicide as its worst-case scenario.

1.5 RESEARCH SCOPE AND LIMITATION

The research aims to focus on developing a speech-based depression detection.
The scope of the research covers the Bahasa Malaysia language. Detection of depression
consists of classifying the input audio signal as depressed or healthy (not depressed).

Collecting speech dataset is one of the biggest challenges in this research.
Reaching out to people diagnosed with depression, recording their voices, and
collecting their data are not easy tasks. Ideally, on-site recording by collaborating with
a psychiatric clinic should be performed. However, due to the COVID-19 pandemic,
this was totally out of the question. Alternatively, we performed online data collection
utilizing social media to find our targeted participants. Due to the limited access to
speech dataset in general, and male data in particular, we have decided to focus in this

study on female participants’ data only.

1.6 RESEARCH METHODOLOGY

The following methodology will be adopted to achieve the objectives of the research.
1. Extensive literature review on speech-based depression detection.

2. Data collection



3. Dataset pre-processing and filtering
4. Acoustic feature extraction and analysis
5. Raw audio pre-processing and normalizing
6. Develop and train different DNNs models for classification
7. Model testing, validation, and analysis
Figure 1.1 shows the flowchart of the research methodology to be adopted in this

research.



Extensive literature review on speech-based depression detection

v

Data collection

v

Dataset pre-processing and filtering

Y

Raw audio pre-processing and normalizing

v

Develop and train different DNMs models for
classification

v

Maodel testing, validation and analysis

atisfied with the classification
performance?

h

Acoustic feature extraction and analysis

|,

v

Feature Selection

v

Develop and train different DNMNs models for
classification

v

Model testing, validation and analysis

Satisfied with the classification
performance?

Perform hyperparameter tuning on the best DNN model

Figure 1.1: Research methodology flow chart




1.7 THESIS ORGANIZATION

This research thesis is divided into several chapters.

Chapter 1: Introduction

This chapter discusses the research overview, including research objectives, problem
statements, research scope, research significance, and research workflow.

Chapter 2: Literature Review

This chapter reviews the literature on speech-based depression detection. The review
covers an overview of depression, some of its assessment tools, and how it is related to
speech signals. Furthermore, it reviews the previous works and researches on speech
depression detection. This review will help us extract the important concepts and get
the general concept to finally develop our model.

Chapter 3: Methodology

This chapter discusses the process of data collection and its pre-processing, DNNs
model design and architecture, and audio features extraction.

Chapter 4: Results and Discussion

Results of different input formats such as raw input and feature input are compared
and discussed in this chapter. This includes all training performance and classification
results.

Chapter 5: Conclusion

This chapter summarizes what was achieved in this research study. Moreover, this

chapter discusses the limitations and recommendations.



CHAPTER TWO
LITERATURE REVIEW

2.1 INTRODUCTION

Professionals across numerous fields are trying to develop helpful tools for
depression assessment. Each subfield tends to approach the job from a unique point of
view, with somewhat different objectives and totally different database sources. Due to
these observed distinctions, it is difficult to compare approaches (Morales, Scherer, &
Levitan, 2017).

Despite the existing differences, every system and research study shares the
typical goal of discovering a method to utilize innovation to assist evaluate depression
(Morales et al., 2017). This chapter aims to serve as a bridge between the subfields by
providing a comprehensive review of depression detection systems throughout
subfields. In this chapter, we will address how depression has been defined and
annotated in depression detection systems, what are the conventional assessment tools,
how are speech signals affected by the mental state of depression, what are the existing
detection systems available, and how well do they perform.

Major depressive disorder (MDD) is a common and serious medical illness that
negatively affects how you feel, think, and act. It can lead to various emotional and
physical problems and decrease a person’s ability to function at work and home
(American Psychiatric Association, 2013).

Depression symptoms can differ from moderate to serious and can consist of the
feeling of unhappiness, loss of interest, weight gained or loss unassociated to dieting,
changes in appetite, insomnia or hypersomnia, increased fatigue or loss of energy,

increase in purposeless physical activity, for example, hand-wringing or pacing or



slowed movements and speech (actions observable by others), feeling blameworthy or
worthless, bradyphrenia, difficulty concentrating or making decisions, thoughts of death
or suicide. Symptoms must last for at least two weeks for a medical diagnosis of

depression (American Psychiatric Association, 2013)

2.2 DEPRESSION ASSESSMENT
2.2.1 Gold-Standard Questionnaires

Frequently used assessment tools consist of meeting style assessments such as
the Hamilton Score Scale for Depression (HAMD) (Hamilton, 1960) or self-
assessments such as the Beck Depression Index (BDI) originally published in 1961 as
well as changed in 1996 (Beck, Steer, & Brown, 1996). Both analysis methodologies
rate the extent of 21 signs and symptoms observed in anxiety to offer a client a score
related to their level of anxiety. The significant distinctions in between both scores are
that HAMD is a clinician-rated survey that can be finished in 20 to 30 minuets, while
BDI is a self-reported questionnaire that can be completed in just 5 to 10 minutes. Both
ranges utilize different things; the HAMD prefers neuro-vegetative signs (signs and
symptoms that affect an individual's everyday functioning such as weight, sleep,
psychomotor retardation, and tiredness), while the BDI favors negative self-evaluation
symptoms and also various weighting systems when generating their total score. Both
evaluations have actually been revealed to have anticipating legitimacy as well as
uniformity when setting apart dispirited from non-depressed individuals (Cummins et
al., 2015).

The HAMD has actually long been considered as the gold standard assessment
tool for depression for both diagnosis and research functions, although this status

constantly comes into question (Maust et al., 2012). The HAMD evaluation rates the



