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ABSTRACT 

A link budget is a way of quantifying the link performance. In the design of wireless 

communications links between transmitter and receiver, issues of range and received 

signal quality are of critical importance to the system engineer. Link budget analysis 

accounts for all gains and losses in the communication link. FSPL is a factor to be 

considered in the link budget. Free Space Path Loss (FSPL) is the major menace to all 

propagation links regardless of operating frequency in the tropics during the clear sky. 

An adequate power margin is typically worked out in mitigating such a problem for the 

specific desired quality of service (QoS). However, the calculation is simple and straight 

forward, but the solution is not cheap. A signal fade margin can be computed, 

configured, and implemented to increase system availability. FSPL typically dictates 

the fade margin values. This effort correspondingly will help to reduce the greenhouse 

effect. In the case of clear sky attenuation, the value is much dependent on the 

atmospheric layer conditions and their compositions. For absolute Free Space, the signal 

loss is only dependent on distance and frequency. The effects of power, distance, and 

frequency were analyzed in this study to identify the most appropriate clear sky 

attenuation. The objectives can be achieved by designing, assembling, and carrying out 

an empirical experimental set up to evaluate FSPL values. This involved the process of 

verifying the variation between the free space path loss's theoretical and empirical 

values. The empirical experiment was conducted at Electromagnetic Compatibility 

(EMC)chamber at the Malaysian National Space Agency located at Banting Selangor. 

The development of revised formulation can Empirical. The clear sky conditions were 

confirmed using S-band (Terminal Doppler Weather Radar) TDWR reflectivity 

information acquired from the Malaysian Meteorology Department (MMD). Validation 

for the proposed revised FSPL equation using RazakSAT S-band (2.232 GHz) 

transmission signal data was furnished by the Malaysian National Space Agency 

(ANGKASA). By eliminating any possible signal variation due to atmospheric 

impairments (La) the RazakSAT processed received signal level can be considered. As 

a result, the revised free space path loss equation proposed a better FSPL value than the 

ITU-R proposed equation for RazakSAT received signal. The revise formulation is 

undoubtedly a significant improvement as compared to ITU-R estimation. This research 

will be valuable for future engineers in configuring the best communication 

establishment for satellite systems operating in the tropics. 
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 خلاصة البحث 
ABSTRACT IN ARABIC 

ميزانية الارتباط هي طريقة لقياس اداء الارتباط. في تصميم روابط الاتصالات اللاسلكية بين   
المرسل والمستقبل، تعتبر قضايا المدى وجودة الإشارة المستقبلة ذات أهمية حاسمة لمهندس النظام.  

برنا يعتبر  الاتصال.  ارلتباط  والخسائرفي  المكاسب  لجميع  بحسابات  الميزانية  تحليل   مج  ربط 
FSPL غاملا يجب مراعاتة في ميزانية الارتبط. فقدان مسار الفضاء الحر(FSPL)  هو الخطر

الرتيسي لجميع روابط الانتشار بغض النظر عن تردد التشغيل في المناطق المدارية اثناء السماء  
الصافية. عادة ما يتم عمل هامش طاقة مناسب للتخفيف من مثل هزه المشكلة لجودة الخدمة 

طاوية. ومع ذلك ، فان الحساب بسيط ومباشر ، لكن الحل ليس رخيصتا. يمكن حساب الم
النظام. تحدد   توفر  لزيادة  وتنفيذه  الخبو.   FSPLهامش الاشارة وتكوينه  قيم هامش  عادة 

سيساعد هذا الجهد في المقابل علي تقميل تاثير الاحتباس الحراري . في حالة السماء الصافية 
لي حد كبير علي ظروف طبقة الغلاف الجوي وتركيباتها. بالنسبة للمساحة  ، تعتمد الفيمة ا

القدرة  ات  تاثير  تحليل  تم  والتردد.  المسافة  علي  فقط  الاشارة  تعتمد خسارة   ، المطاقة  الحرة 
والمسافة والتردد قي هذه الدر اسة لتحديد انسب فقد لتكون السماء الصافية. يمكن تحقيق  

تضمن ذلك  FSPLوتجميع وتنفيذ مجمو عة تجريبية لتقييم قيم  الاهداف من خلال تصميم  
عملية التحقق من التباين بين القيم النظرية والتجريبية لخسارة مسار الفضاء الحر. اجريت التجربة  

في وكلة الفضاء الوطنية الماليزية الواقعة  (EMC)التجريبية في غرفة التوافق الكهر و مغناطيسي  
يمكن ان يكون تطوير الصيغة المنقحة تجريبيتا. تم تاكيد ظروف السماء    في بانتينج سيلانجور.

التي تم الحصول عليها من قسم الارصاد  TDWRالصافية باستخدام معلومات انعكاسية  
الماليزي   التحقق من صحة   Sفي النطاق   (MMD)الجوية  )رادار طقس دوبلر طرفي(. تم 

بي FSPLمعادلة   باستجدام  المقترحة  ارسال  المنقحة  اشارة  -RazakSAT Sانات 
band (GHz 2.232) من فبل وكالة الفضاء الوطنية الماليزية.(ANGKASA)   من

، يمكى النظر في (La)خلال القضاء علي اي تغيير محتمل للاشارة بسبب الاتحطاط الجوي  
ونتيجة لذلك ، اقتر  RazakSAT .مستوى الاشارة المستقبلة التي تمت معالجتها بواسطة
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افضل من المعادلة التي اقتر   (FSPL)عادلة خسارة مسير الفضاء الحر المنقحة قيمة  حت م
تعد صياغة المر اجعة   (RazakSAT)حها قطاع الاتصالات الر اديوية للاشارة المستقبلة  

بلا شك تحسنا هاما مقارنة بتقدير قطاع الاتصالات الر اديوية. سيكون هذا البحث ذاقيمة  
المستقبل في العاملة في   لمهندسي  الصناعية  الاقمار  اتصالات لآنظمة  افضل موسسة  تكوين 

 المناطف المدارية 
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CHAPTER ONE 

INTRODUCTION 

1.1 OVERVIEW 

In today’s worldwide communication service scenario, it is observed that services 

providing voice, data, and video are increasingly merged and delivered to devices that 

are expected to be used at anytime and anywhere. At present, the satellite industry seems 

to play a vital role in providing telecommunication services even when they are facing 

stiff competition from terrestrial service providers. Satellite is a self-contained 

communication system with the ability to receive and transmit signals from Earth to 

satellite and vice versa via the transponder. The two essential elements of a satellite 

communication system, as shown in Figure 1.1 are the space segment comprising the 

spacecraft and flight mechanism; and the other, the ground segment of Earth station and 

network control centre of the entire satellite system. 

 

Figure 1.1  Schematic Diagram of Satellite Uplink and Downlink System (Tato, A. 

2018) 
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Today, Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary 

Earth Orbit (GEO) continue to be the members among the hundreds of operational 

telecommunications satellites. The operating frequency bands of satellites are typically 

recognized by letter: L, S, C, X, Ku, Ka, and V. Larger antennas are needed to receive 

and transmit microwave signals at lower band frequencies (L-band, S-band, and C-

band). Operations in the higher end of the frequency spectrum like X-band, Ku-band, 

Ka-band, and V-band sanctioned the use of smaller receiver dishes with size less than 

the one-meter diameter. Today’s increasing demand for video, voice, and data traffic 

that requires more substantial amounts of bandwidth will drive the satellite services to 

operate at higher frequency bands. It is crucial to determine as accurately possible the 

power margins requirements as the frequency increases. It is also necessary to identify 

as detailed possible all propagation variances to be experienced at the frequency range 

of interest.  

On such note, the atmospheric and weather effects on frequency bands between 

3–30 GHz become significant. They are no longer negligible as compared to those at 

the lower frequency bands 3 GHz and below. There are mainly two dominant types of 

attenuation that dictate the power margin requirement for such high-frequency links. 

One is the atmospheric gaseous absorption, while another is the rain attenuation when 

microwave signals pass through the rain. Other environmental phenomena, such as 

cloud, fog, ice, snow, aerosol, and dust can also cause critical signal impairment as 

operating frequency increases. Several anomalous propagation modes (such as ducting 

and tropospheric scatter) may also play significant roles in the trans-horizon 

interference for a tiny percentage of the time. At a low elevation angle, the atmospheric 

scintillation and multipath fading will become significant. A microwave propagation 
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scenario through the atmospheric medium experienced by an LEO satellite, i.e. 

RazakSAT, Malaysian owned satellite, operated in 2009 is shown in Figure 1.2 

 

Figure 1.2  Microwave Propagation Scenario (Chaturvedi P.K.,2018) 

As depicted in the figure, atmospheric absorption, clouds, fog, precipitation, and 

scintillation instigate energy losses in the transmitted signal. These losses can be 

deemed negligible at the lower frequencies, for instance, in the case of L-band link. As 

the frequency increases, such an assumption can no longer be acceptable. It is necessary 

to identify all the propagation mechanisms and estimate attenuation that might arise in 

the higher frequency bands.   

The challenge is more evident in Equatorial and Tropical regions where high 

rainfall rates are more common. When the frequencies increase, the propagation signal 

will experience higher energy reduction due to higher absorption rate when passing 

through intense rain events as when compared to lower frequencies. In Malaysia, it is 

more common to classify the condition as wet and dry. The conditions experienced by 

orbiting satellites in the space above Malaysia fluctuate in terms of time, length of 
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occurrence, and severity. The phenomenon where signal amplitude reduction, which is 

only due to increases in distance and frequency in a vacuum (free space) is defined as 

Free Space Path Loss (FSPL). Increasing the distance and frequency cause higher signal 

attenuation, thus degrade the reliability and performance of the system. To mitigate such 

circumstance, the link margin for the service has to be properly configured. The 

knowledge of the potential variation of system performance due to propagation effects 

that may occur at any time interval is indeed crucial. More detailed information is 

required to develop a better system such as the possible or potential impairments to be 

encountered on the satellite-Earth link. This is to make sure that the design incorporates 

sufficient system gain or sensitivity to accommodate expected fading, to ensure that the 

required quality of service is maintained. 

1.1.1 Fundamentals of Free-Space Path Loss (FSPL) 

In telecommunication, Free-Space Path Loss (FSPL) is the loss in signal strength of an 

electromagnetic wave that would result from a line-of-sight path through free space, 

with no obstacles nearby to cause reflection or diffraction. It does not include factors 

such as the gain of the antennas used at the transmitter and receiver, nor any loss 

associated with hardware imperfections. 

FSPL is proportional to the square of the distance between the transmitter and 

receiver, and also proportional to the square of the frequency of the radio signal. The 

signals do disperse over distances. For satellite communication, this is the primary cause 

of signal attenuation or impairment. Transmitted signal attenuates over distance because 

the signal is being spread over a longer expanse. This form of attenuation is expressed 

in terms of the ratio of the radiated power to the power received by the antenna or, in 

decibels, by taking 10 times the log of that ratio.  
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FSPL (dB) =  20 Log (
4𝜋𝑑

𝜆
) (1.1) 

Where:  𝜆 =
𝑐

𝑓
(1.2) 

For an ideal isotropic antenna, FSPL is typically denoted as Equation 1.1 where: 

λ is the signal wavelength (in meters), f is the signal frequency (in hertz), d is the 

distance from the transmitter (in meters), and c in Equation 1.2 is the speed of light in a 

vacuum.  

Thus, for the same antenna dimensions and separation, the shorter the carrier 

wavelength (the higher the carrier frequency), the higher would be the FSPL value. The 

equation indicates that as the frequency increases, the FSPL value also increases and 

becomes more burdensome. However, the equation shows that the increased loss can be 

compensated with antenna gains. The increase in distance and frequency results in an 

increased loss measured as outlined in Equation 1.3.  

𝐹𝑆𝑃𝐿(𝑑𝐵) = 20 log10 𝑑 + 20 log10 𝑓 + 32.4 (1.3) 

Where: d = distance (km) 

f = frequency (MHz) 

(ITU-R P.525-3, 2016) 

Looking into the future, expending communication requirements will lead to 

frequency spectrum congestion (Chaves et al. 2015). Theoretically, this path attenuation 

is the dominant factor that limits the use of higher frequency for a Line of Sight (LoS) 

microwave links and satellite communication links in Malaysia. Malaysian engineers 

must be aware that the integrity of the microwave systems that had been designed for 

use in countries with temperate climate may not be capable of adapting conditions in 


