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ABSTRACT

Wireless Power Transfer (WPT) has been widely used in recent years for charging
electric vehicles, powering gadgets, and activating inaccessible wireless devices. With
the variety of existing technologies available, the power transferred to wireless electric
vehicles, for example, is no longer an illusion. Inductive resonant technology has gained
more popularity compared to their counterpart WPT technologies which are inductive
and capacitive because it can transfer power over longer distances more effectively and
safely. In inductive resonance, the power transferred to the load is maximized if the
WPT link has a high-quality factor (Q) and the load impedance is matched properly to
the system output impedance provided the WPT link works at the resonance frequency.
The main considerations in inductive resonant WPT are to apply the equivalent circuit
theory to the model theoretically and analyze the single load inductively coupled WPT
system to ensure it works better at the resonance frequency. Therefore, this research
focuses on the technique of how the resonance frequency of the inductive resonant WPT
link can be estimated. In this research, the possibility of using total harmonic distortion
(THD) in finding resonance frequency under varying link impedance conditions, is
investigated. An experimental testbed to estimate the resonance frequency of inductive
resonant WPT link was developed. Experimental data were obtained by measuring the
transmitted and received voltages and then, analyzing them in the offline mode for THD
estimates. The results are validated by calculating and comparing WPT performance
using experimental data for relative power delivery in resonance, under-resonance, and
over-resonance conditions. It has been shown that at the resonance frequency the power
delivery reaches the highest point corresponding to the total harmonics distortion at the
lowest peak and root mean square voltage (Vrwms) of the transmitted voltage (at the
primary coil) at the highest peak. This suggests that the resonance frequency estimation
of the inductive resonant WPT link can be implemented automatically and dynamically
by measuring the transmitted voltage and finding the lowest THD peak and highest
Vrums peak using a specially developed algorithm or intelligent system. It is recorded
that, at a distance of 0-5cm, the relative power transmitted to the load is increased by
45% at the estimated resonance frequency compared to the relative power delivered to
the load at the best-fixed frequency. The result validated that the higher power is
transferred to load provided the estimated resonance frequency is closer to the actual
resonance frequency. Thus, it proves that it is possible to estimate the resonance
frequency of the inductive resonant WPT link by finding the lowest THD value
measured on the transmitter side. Therefore, the resonance frequency estimation for
inductive resonant wireless power transfer using total harmonics distortion (THD) was
successfully explored and employed in this research.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDY

In general, the concept of energy transfer through an air gap is not a new piece of new
knowledge. Historically, it has been around since humans knew that magnetic coils
could be used to induce an electric field. The term wireless power transfer (WPT) which
is used to describe the technology to transfer energy/power to an electric load without
having physical contact or medium, has been experimented with by Nicolas Tesla in the
late 19th century through conducting several experiments (Shidujaman, Samani, & Arif,
2014). For example, Nicola tesla set up a large laboratory in Manhattan to conduct
further experiments to realize his dream of supplying megawatt power wirelessly to
ships without the need for a physical cable. He had raised a huge tower bearing a coil
to provide power to the ship without requiring the ship to approach the shipyard.
Unfortunately, studies in this area have been almost forgotten since Tesla's death, and
some failed experiments by some pioneering works appear in the period after Tesla's
death. Although Tesla was very ambitious, his work did not get much attention at the
time until recently research in wireless power transfer was given a new breath, with
newer research directions and interests.

With the development of electric appliances and applications, research in the
wireless power transfer area has become a popular area lately. In addition, the recent
research on wireless power transfer has contributed to new dimensions and aspects in
the field of contactless power transfer applications (X. Lu, Wang, Niyato, Kim, & Han,

2016). For example, Electric Vehicles, which are now a reality in the very near future



in metropolitan transportation, are transforming into the Park-and-Charge concept right
away from now. Further, RFID and [oT devices are other areas, where passive device
activation or battery charging via non-contact devices is an obvious area for wireless
charging applications. Other applications of wireless power transfer are autonomous
underwater vehicles, public transport, for example, monorail, industrial automation, and
robot manipulation and maneuvering of autonomous objects and unmanned aerial
vehicles. Similarly, powering devices buried in civil structures for monitoring the
purpose of physical parameters or activation of implants for the measurement of
biological or biomedical parameters are areas where wireless power transfer has proven
to be the only means of application (S. R. Khan, Pavuluri, Cummins, & Desmulliez,
2020).

Inductive resonant wireless power transfer is one of the most popular areas of
wireless power transfer research. However, one of the main challenges in inductive
resonant WPT is the loss of energy on the way from the energy source to the target
device. There is a lot of work reported to overcome or reduce power loss throughout
power transmission. Work addressing research parameters such as coil design,
geometry or shape, resonance frequency channel parameters, or the effect of gap
separation in the form of coupling coefficients has been widely reported. On top of that,
there are other works reported, for example, fine-tuning the primary or/and the
secondary capacitor for tuning and conditioning reasons; fine-tuning the primary or/and
the secondary coils; and load impedance matching, to name a few.

This research addresses the optimization of power transfer through resonance
frequency adjustment as well as focuses on techniques on how the resonance frequency
of the inductive resonant WPT link can be estimated through simpler implementation

efforts. In other words, this research is about proposing, validating, and verifying



resonance frequency estimation techniques for inductive resonant wireless power
transfer (WPT).

1.2 RESEARCH QUESTION

The inductive resonant wireless power transfer efficiency can be maximized by
ensuring the operating frequency as close as possible to the secondary coil resonance
frequency. If the system is at the resonance frequency of the secondary coil, then the
quality factor (Q) of the system is high. This ensures that almost all power at the primary
coil is transferred to the secondary coil. Therefore, the major research question of this
research is about devising a technique to estimate the resonance frequency with
accuracy, making it a reason for estimating the coupling coefficient (k) of the inductive
resonant WPT link. The open research question is whether such a technique can be
reliably used to estimate the resonance frequency of inductive resonant wireless power
transfer. Will the technique in stand-alone mode prove sufficient or require other
parameters in the association? Exploring this work onward will pave the way into areas
of automatic resonance frequency tracking and self-tuning research activities.

1.3 RESEARCH PHILOSOPHY

In general, almost all inductive resonant wireless power transfers rely on the square
waves generated to run the DC-to-DC network in the form of an H-bridge as the voltage
source. The voltage source in the form of a square wave is injected into the transmitter
unit mutually coupled with the receiver unit. Depending on the resistance and reactance
of the inductive resonant WPT system, the transmitted voltage is the result of a square
wave signal modified by the inductive resonant WPT link response. In general, the
resulting transmitted voltage depends on the frequency of the square wave injected into
the WPT link, as well as the resonance frequency of the WPT link. The operating

frequency or period of the injected square wave should be kept close to the resonance



frequency of the WPT link to ensure that the source finding the chain of the device
mounted on the receiving unit appears to be a purely resistive load. The objective of this
thesis is to estimate the resonance frequency of inductive resonant wireless power
transfer by analyzing the transmitted voltage. Initially, total harmonics distortion
(THD), Crest Factor, and VRMS were suggested as parameters to be used in estimating
resonance frequency.

1.4 RESEARCH HYPOTHESIS

The hypothesis of the research is:

"It is possible to develop a method to estimate the resonance frequency of inductive
resonant wireless power transfer links."

The research hypothesis is based on:

1- Assuming an inductive resonant wireless power transfer link is like a bandpass
filter.

2- Assuming the inductive resonant WPT link allows the frequency components
within its passband and discriminates all other frequency components.

3- Assuming that the resonance frequency of the inductive resonant WPT link can
be estimated by the frequency response of the transmitting voltage across its
primary coil.

1.5 PROBLEM STATEMENTS

In the resonant inductive wireless power transfer system, the energy from the primary
coil is transferred inductively through the air gap to the secondary coil. This is usually
implemented with purposely designed transformers. As with a wired power
transmission system, power transmission efficiency in a wireless power transfer system
is highly dependent on the capability of energy delivered from the primary coil to the

secondary coil. It has been observed that ensuring high power transmission efficiency



is one of the most popular branches of research in wireless power transfer technology
as well as the most challenging field for researchers.

Several factors are affecting the amount of power delivered to load. The most
prominent factor is the coupling coefficient between the two coils. In contrast to the
conventional transformer, the WPT coils are placed apart or/and aligned at some angle
orientation. The farther the secondary coil is from the primary coil, the lower the amount
of magnetic flux produced by the primary coil cutting through the secondary coil (Q. Li
& Liang, 2015). As a result, the lesser the coupling coefficient between the two coils
and the lesser power is delivered to load. The situation is the same if the two coils are
aligned at an angle, the power transfer is maximum if the coils are arranged coaxially
with the plane of the coils parallel to each other.

Another factor influencing the amount of power transfer is the quality factor (Q) of
the secondary resonant coil. Where the ratio of energy store to energy loss is determined
by the system quality factor which in other words, active or effective power gets wasted
due to the presence of reactive power. Therefore, the presence of reactive power in the
system must be reduced to improve power transfer. One way to address this wastage of
power is to use tuning capacitors coupled to coils on both sides. Therefore, power
transfer can be maximized by ensuring that the inductive resonant WPT works at the
resonance frequency determined by the inductive and capacitive elements of the system.
In (W. Zhang & Mi, 2016), the resonance frequency of the system has been proven to
be determined by the resonance frequency of the receiving coil. For these reasons, the
resonance frequency of the primary and secondary coils is practically set to operate at
the same frequency.

However, the resonance frequency of the WPT is not regulated primarily by the

capacitance and inductance of the system. The resonance frequency of the WPT also



