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ABSTRACT        

 
Wireless Power Transfer (WPT) has been widely used in recent years for charging 
electric vehicles, powering gadgets, and activating inaccessible wireless devices. With 
the variety of existing technologies available, the power transferred to wireless electric 
vehicles, for example, is no longer an illusion. Inductive resonant technology has gained 
more popularity compared to their counterpart WPT technologies which are inductive 
and capacitive because it can transfer power over longer distances more effectively and 
safely. In inductive resonance, the power transferred to the load is maximized if the 
WPT link has a high-quality factor (Q) and the load impedance is matched properly to 
the system output impedance provided the WPT link works at the resonance frequency.  
The main considerations in inductive resonant WPT are to apply the equivalent circuit 
theory to the model theoretically and analyze the single load inductively coupled WPT 
system to ensure it works better at the resonance frequency. Therefore, this research 
focuses on the technique of how the resonance frequency of the inductive resonant WPT 
link can be estimated. In this research, the possibility of using total harmonic distortion 
(THD) in finding resonance frequency under varying link impedance conditions, is 
investigated. An experimental testbed to estimate the resonance frequency of inductive 
resonant WPT link was developed. Experimental data were obtained by measuring the 
transmitted and received voltages and then, analyzing them in the offline mode for THD 
estimates. The results are validated by calculating and comparing WPT performance 
using experimental data for relative power delivery in resonance, under-resonance, and 
over-resonance conditions. It has been shown that at the resonance frequency the power 
delivery reaches the highest point corresponding to the total harmonics distortion at the 
lowest peak and root mean square voltage (VRMS) of the transmitted voltage (at the 
primary coil) at the highest peak. This suggests that the resonance frequency estimation 
of the inductive resonant WPT link can be implemented automatically and dynamically 
by measuring the transmitted voltage and finding the lowest THD peak and highest 
VRMS peak using a specially developed algorithm or intelligent system. It is recorded 
that, at a distance of 0-5cm, the relative power transmitted to the load is increased by 
45% at the estimated resonance frequency compared to the relative power delivered to 
the load at the best-fixed frequency. The result validated that the higher power is 
transferred to load provided the estimated resonance frequency is closer to the actual 
resonance frequency. Thus, it proves that it is possible to estimate the resonance 
frequency of the inductive resonant WPT link by finding the lowest THD value 
measured on the transmitter side. Therefore, the resonance frequency estimation for 
inductive resonant wireless power transfer using total harmonics distortion (THD) was 
successfully explored and employed in this research.  
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 خلاصة البحث 
ABSTRACT IN ARABIC 

شكل واسع لشحن المركبات الكهرʪئية وتزويد    WPTفي السنوات الاخيرة تم استخدام تقنية نقل الطاقة اللاسلكية   
التي   بوسائل سلكية. لم تعد طاقة   نلا يمكالاجهزة والمعدات  اليها  إلى المركبات    الرنين الحثي  الوصول  المنقولة لاسلكياُ 

الكهرʪئية مجرد وهم بل اكتسبت المزيد من الشعبية مقارنة ʪلتقنيات المناظرة لها حيث يمكنها نقل الطاقة عبر مسافات  
مع تطابق    عالي  Qفي تقنية الرنين الحثي يتم نقل أكبر قدرة إذا كان عامل الجودة    أكثر مع المزيد من الفعالية والامان. 

بشكل أفضل، يجب    WPTعاوقة الحمل مع معاوقة خرج النظام بشرط ان تعمل عند تردد الرنين. لضمان عمل نظام  م
لذلك ، يركز هذا البحث على كيفية    تحليل النظام المزدوج الأحادي الحمل ʪستخدام نظرية الدائرة المكافئة لنموذج نظري.

ميكيًا. في هذا البحث ، تم تطوير طريقة استخدام التشوه التوافقي الكلي  دينا   WPTتقدير تردد الرنين لـتقنية الرنين الحثي  
)THD  في تحديد قيمة تردد الرنين في ظل تغير قيم معاوقة الارتباط المختلفة. كذلك تم تطوير اختبار تجريبي لتحديد قيم (

المرسل والمستقبل ، وتحليل    الجهد اس  يتم الحصول على البياʭت التجريبية عن طريق قي  . WPTتردد الرنين المتغير لتقنية  
. يتم التحقق من صحة النتيجة من خلال حساب ومقارنة أداء  THDهذه البياʭت في الوضع غير المتصل لتقدير قيمة  

WPT    ت التجريبية للقدرة المرسلة لاسلكياً في ظل ظروف أقل من تردد الرنينʭستخدام البياʪأعلى من    و  تردد الرنين  و
التوافقي    التشوه من خلال النتائج يتضح انه يتم نقل أعلى قيمة للطاقة عند تردد الرنين في المقابل تكون قيمة    ين. تردد الرن
للجهد المرسل في الملف الرئيسي عند أعلى قمة. نستنتج من    RMSVعند أدني جهد ويكون مربع الجهد    THDالكلي  

علاوة على    . RMSVو أعلى ذروة للجهد المرسل     THDيمة لـ  هذا انه يمكن تقدير تردد الرنين عن طريق تحديد أقل ق
ʪلرنين الحثي تلقائيًا وديناميكيًا عن طريق قياس الجهد   WPTذلك ، يشير هذا إلى أنه يمكن تقدير تردد الرنين لوصلة  

سجيل أنه  ʪستخدام خوارزمية مطورة خصيصًا أو نظام ذكي. تم ت  RMSVوأعلى ذروة    THDالمنقول وإيجاد أدنى ذروة  
٪ عند تردد الرنين المقدّر مقارنةً  40سم ، تزداد الطاقة النسبية المنقولة التي يتم توصيلها إلى الحمل بنسبة    4-0ضمن نطاق  

يتم تحقيق نقل أعلى قيمة للطاقة المرسلة عندما يكون   ʪلقدرة النسبية التي يتم توصيلها إلى الحمل عند أفضل تردد ʬبت. 
يكون من الممكن تقدير تردد    THDر أقرب إلى القيمة الفعلية لتردد الرنين. من خلال إيجاد أدني قيمة  تردد الرنين المقد

وهي من     WPTالرنين لنظام وʪلتالي يتم بنجاح ارسال أعلى طاقة ممكنة ʪستخدام تقنية نقل الطاقة المرسلة لاسلكياً  
 . أهم أهداف هذا البحث 
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CHAPTER ONE 

INTRODUCTION 

 
1.1 BACKGROUND OF STUDY 

In general, the concept of energy transfer through an air gap is not a new piece of new 

knowledge. Historically, it has been around since humans knew that magnetic coils 

could be used to induce an electric field. The term wireless power transfer (WPT) which 

is used to describe the technology to transfer energy/power to an electric load without 

having physical contact or medium, has been experimented with by Nicolas Tesla in the 

late 19th century through conducting several experiments (Shidujaman, Samani, & Arif, 

2014). For example, Nicola tesla set up a large laboratory in Manhattan to conduct 

further experiments to realize his dream of supplying megawatt power wirelessly to 

ships without the need for a physical cable. He had raised a huge tower bearing a coil 

to provide power to the ship without requiring the ship to approach the shipyard. 

Unfortunately, studies in this area have been almost forgotten since Tesla's death, and 

some failed experiments by some pioneering works appear in the period after Tesla's 

death. Although Tesla was very ambitious, his work did not get much attention at the 

time until recently research in wireless power transfer was given a new breath, with 

newer research directions and interests. 

With the development of electric appliances and applications, research in the 

wireless power transfer area has become a popular area lately. In addition, the recent 

research on wireless power transfer has contributed to new dimensions and aspects in 

the field of contactless power transfer applications (X. Lu, Wang, Niyato, Kim, & Han, 

2016). For example, Electric Vehicles, which are now a reality in the very near future 
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in metropolitan transportation, are transforming into the Park-and-Charge concept right 

away from now. Further, RFID and IoT devices are other areas, where passive device 

activation or battery charging via non-contact devices is an obvious area for wireless 

charging applications. Other applications of wireless power transfer are autonomous 

underwater vehicles, public transport, for example, monorail, industrial automation, and 

robot manipulation and maneuvering of autonomous objects and unmanned aerial 

vehicles. Similarly, powering devices buried in civil structures for monitoring the 

purpose of physical parameters or activation of implants for the measurement of 

biological or biomedical parameters are areas where wireless power transfer has proven 

to be the only means of application (S. R. Khan, Pavuluri, Cummins, & Desmulliez, 

2020). 

Inductive resonant wireless power transfer is one of the most popular areas of 

wireless power transfer research. However, one of the main challenges in inductive 

resonant WPT is the loss of energy on the way from the energy source to the target 

device. There is a lot of work reported to overcome or reduce power loss throughout 

power transmission. Work addressing research parameters such as coil design, 

geometry or shape, resonance frequency channel parameters, or the effect of gap 

separation in the form of coupling coefficients has been widely reported. On top of that, 

there are other works reported, for example, fine-tuning the primary or/and the 

secondary capacitor for tuning and conditioning reasons; fine-tuning the primary or/and 

the secondary coils; and load impedance matching, to name a few.  

This research addresses the optimization of power transfer through resonance 

frequency adjustment as well as focuses on techniques on how the resonance frequency 

of the inductive resonant WPT link can be estimated through simpler implementation 

efforts. In other words, this research is about proposing, validating, and verifying 
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resonance frequency estimation techniques for inductive resonant wireless power 

transfer (WPT). 

1.2 RESEARCH QUESTION 

The inductive resonant wireless power transfer efficiency can be maximized by 

ensuring the operating frequency as close as possible to the secondary coil resonance 

frequency. If the system is at the resonance frequency of the secondary coil, then the 

quality factor (Q) of the system is high. This ensures that almost all power at the primary 

coil is transferred to the secondary coil. Therefore, the major research question of this 

research is about devising a technique to estimate the resonance frequency with 

accuracy, making it a reason for estimating the coupling coefficient (k) of the inductive 

resonant WPT link. The open research question is whether such a technique can be 

reliably used to estimate the resonance frequency of inductive resonant wireless power 

transfer. Will the technique in stand-alone mode prove sufficient or require other 

parameters in the association? Exploring this work onward will pave the way into areas 

of automatic resonance frequency tracking and self-tuning research activities. 

1.3 RESEARCH PHILOSOPHY 

In general, almost all inductive resonant wireless power transfers rely on the square 

waves generated to run the DC-to-DC network in the form of an H-bridge as the voltage 

source. The voltage source in the form of a square wave is injected into the transmitter 

unit mutually coupled with the receiver unit. Depending on the resistance and reactance 

of the inductive resonant WPT system, the transmitted voltage is the result of a square 

wave signal modified by the inductive resonant WPT link response. In general, the 

resulting transmitted voltage depends on the frequency of the square wave injected into 

the WPT link, as well as the resonance frequency of the WPT link. The operating 

frequency or period of the injected square wave should be kept close to the resonance 
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frequency of the WPT link to ensure that the source finding the chain of the device 

mounted on the receiving unit appears to be a purely resistive load. The objective of this 

thesis is to estimate the resonance frequency of inductive resonant wireless power 

transfer by analyzing the transmitted voltage. Initially, total harmonics distortion 

(THD), Crest Factor, and VRMS were suggested as parameters to be used in estimating 

resonance frequency. 

1.4 RESEARCH HYPOTHESIS 

The hypothesis of the research is: 

"It is possible to develop a method to estimate the resonance frequency of inductive 

resonant wireless power transfer links." 

The research hypothesis is based on:  

1- Assuming an inductive resonant wireless power transfer link is like a bandpass 

filter.  

2- Assuming the inductive resonant WPT link allows the frequency components 

within its passband and discriminates all other frequency components. 

3- Assuming that the resonance frequency of the inductive resonant WPT link can 

be estimated by the frequency response of the transmitting voltage across its 

primary coil. 

1.5 PROBLEM STATEMENTS 

In the resonant inductive wireless power transfer system, the energy from the primary 

coil is transferred inductively through the air gap to the secondary coil. This is usually 

implemented with purposely designed transformers. As with a wired power 

transmission system, power transmission efficiency in a wireless power transfer system 

is highly dependent on the capability of energy delivered from the primary coil to the 

secondary coil. It has been observed that ensuring high power transmission efficiency 
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is one of the most popular branches of research in wireless power transfer technology 

as well as the most challenging field for researchers. 

Several factors are affecting the amount of power delivered to load. The most 

prominent factor is the coupling coefficient between the two coils. In contrast to the 

conventional transformer, the WPT coils are placed apart or/and aligned at some angle 

orientation. The farther the secondary coil is from the primary coil, the lower the amount 

of magnetic flux produced by the primary coil cutting through the secondary coil (Q. Li 

& Liang, 2015). As a result, the lesser the coupling coefficient between the two coils 

and the lesser power is delivered to load. The situation is the same if the two coils are 

aligned at an angle, the power transfer is maximum if the coils are arranged coaxially 

with the plane of the coils parallel to each other.  

Another factor influencing the amount of power transfer is the quality factor (Q) of 

the secondary resonant coil. Where the ratio of energy store to energy loss is determined 

by the system quality factor which in other words, active or effective power gets wasted 

due to the presence of reactive power. Therefore, the presence of reactive power in the 

system must be reduced to improve power transfer. One way to address this wastage of 

power is to use tuning capacitors coupled to coils on both sides. Therefore, power 

transfer can be maximized by ensuring that the inductive resonant WPT works at the 

resonance frequency determined by the inductive and capacitive elements of the system. 

In (W. Zhang & Mi, 2016), the resonance frequency of the system has been proven to 

be determined by the resonance frequency of the receiving coil. For these reasons, the 

resonance frequency of the primary and secondary coils is practically set to operate at 

the same frequency.  

However, the resonance frequency of the WPT is not regulated primarily by the 

capacitance and inductance of the system. The resonance frequency of the WPT also 


