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ABSTRACT 
 

 

 

 

High Performance Computing (HPC) is the de-facto platform for deploying real-time 

applications due to the collaboration of large-scale resources operating in cross-

administrative domains. HPC resource scheduling and allocation is a crucial issue in 

achieving efficient utilization of available resources, especially when resource-

intensive applications have real-time deadlines and need data files replicated over the 

data storage resources. Such scheduling engages both computing and data storage 

resources to carry out application execution in a timely manner. Traditional 

approaches are sufficient only when data storage resources are coupled with the 

computing resources in HPC environment, since data is available at the computing 

resources for application execution. However, the said domain leaves gaps for 

deadline miss when data is transferred from remotely located data storage resources to 

the computing resources where application is being executed. The deadline miss 

mainly occurs due to the unavailability of the required data files, inadequate 

scheduling and allocation mechanism of the HPC resources. The problem becomes 

more complicated when some of the data files are pre-fetched while some post-fetched 

during application execution which usually results in delayed processing and in turn 

deadlines miss. The allocation of such resources by considering different optimization 

criteria such as makespan minimization, cost and energy efficiency, respecting 

application deadlines, etc. in the aforementioned scenario can be gracefully addressed 

by designing a scheduling strategy which can result in improved resources utilization 

while predicting application feasibility. It has always been of interest to the research 

community to pose the abovementioned situation to determine if the existing 

scheduling theory and resource allocation strategies are mature enough to 

accommodate the challenges presented with the emergence of the latest HPC 

platforms. In this thesis, we explore and analyze the existing resource-allocation 

techniques for scheduling real-time applications with temporal constraints on HPC 

platforms (grid, cloud, edge, fog, and multicore systems). This study further compares 

the resource allocation mechanisms based on different performance parameters and 

based on existing gaps, a model is proposed which predicts the application 

schedulability by analyzing time and data constraints before actually dispatching the 

application to the HPC resources. The main advantage of the prediction-based model 

is to save time by declining further analysis on unsuitable resources which improve 

resource utilization by considering application workload in advance. Furthermore, this 

research thesis devises time and cost-efficient variants of HPC resource allocation 

with provably correct formulations to cope with the aforementioned problems so that 

both the user and real-time application constraints are respected. The most celebrated 

results affirm the supremacy of the proposed techniques in obtaining the desired level 

of service. 
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 خلاصة البحث 
Abstrac Arabic 

 
التي يتم    اليةالحوسبة عالية الأداء هي عبارة عن منصة تقوم بالتخصيص المنسّق للموارد واسعة النطاق على التطبيقات الح

تشغيلها ضمن المجالات ذات الإدارات المتداخلة. تعتبر عملية جدولة وتخصيص الموارد ضمن مجال الحوسبة عالية الأداء  
بتحقي ترتبط  الأهمية حيث  غاية  مواعيد  مسألة في  هناك  عندما تكون  المتاحة، وخصوصاً  للموارد  الأمثل  الاستغلال  ق 

تقوم   البيانات.  تخزين  موارد  الملفات عبر  استنساخ  تتطلب  والتي  للموارد،  الكثيف  الاستهلاك  ذات  للتطبيقات  محددة 
التطبيق تنفيذ  يضمن  بما  البيانات  تخزين  موارد  وبين  الحوسبة  عمليات  بين  بالتنسيق  تعتبر    الجدولة  المحدد.  الوقت  في 

الأساليب التقليدية كافية فقط في حالة كان هناك اقتران بين موارد تخزين البيانات وبين موارد عمليات الحوسبة ضمن  
الأساليب   أن  إلا  الحوسبة.  موارد  ضمن  التطبيق  لتنفيذ  اللازمة  البيانات  توفير  يتم  بحيث  الأداء،  عالية  الحوسبة  بيئة 

إ  تؤدي  موارد  المذكورة  من  البيانات  نقل  يتم  عندما  وخصوصاً  المحددة  المواعيد  تفويت  في  تتسبب  فجوات  لى حدوث 
يتم تفويت المواعيد المحددة بسبب   التطبيقات. بشكل عام، فإنه  النائية إلى موارد الحوسبة التي يتم فيها تنفيذ  التخزين 

ا  البيانات المطلوبة، وبسبب عدم كفاءة عمليات  بيئة الحوسبة  عدم توفر ملفات  لجدولة وآليات تخصيص الموارد ضمن 
عالية الأداء. كما تصبح المشكلة أكثر تعقيداً عندما يتم جلب ملفات البيانات مسبقاً وجلب البعض الآخر لاحقاً أثناء  

اعيد  عملية تنفيذ التطبيق، حيث يؤدي ذلك في العادة إلى تأخر عمليات المعالجة، والذي يؤدي بدوره إلى تفويت المو 
المحددة. يمكن معالجة مشكلة تخصيص الموارد من خلال إعادة النظر في المعايير المختلفة للتحسين بما في ذلك: تقليل  
زمن التنفيذ الكلي، وكفاءة التكلفة والطاقة، والالتزام بالمواعيد المحددة، وغيرها ، ضمن السيناريو السابق، حيث يمكن  

ادة تصميم استراتيجية الجدولة بحيث تعمل على الاستغلال الأمثل للموارد، وفي  معالجة ذلك بشكل فعال من خلال إع
ذات الوقت، تقوم بالتنبؤ بجدوى التطبيق. لطالما كان هناك اهتمام من الباحثين بالجانب أعلاه وذلك لتحديد ما إذا  

لمواجهة التحديات التي برزت مع ظهور  كانت نظرية الجدولة الحالية واستراتيجيات تخصيص الموارد فعالة بما فيه الكفاية  
منصات الحوسبة عالية الأداء. سنقوم في هذه الأطروحة باستكشاف وتحليل الأساليب الحالية لتخصيص الموارد وجدولة  

ا والسحابية،    لحاليةالتطبيقات  الشبكية،  )الأنظمة  ذلك  بما في  الأداء  عالية  الحوسبة  منصات  الزمنية على  القيود  ذات 
، والطرفية، والأنظمة متعددة الأنوية(. كما تقوم هذه الدراسة أيضاً بالمقارنة بين آليات تخصيص الموارد القائمة  والضبابية 

التنبؤ   على  المقترح  النموذج  هذا  يعمل  حيث  الفجوات،  أساس  على  والقائمة  المختلفة،  الأداء  معايير  أساس  على 
منية والبياناتية قبل إرسال التطبيق فعلياً إلى موارد الحوسبة عالية  بالجدوى من جدولة التطبيق عن طريق تحليل القيود الز 

الأداء. تتمثل الميزة الرئيسية للنموذج القائم على التنبؤ في توفير الوقت من خلال رفض طلبات التحليل الإضافية للموارد  
إلى  مقدماً  النظر  الموارد من خلال  استغلال  ذلك على تحسين  يعمل  المناسبة، حيث  المجدول على  غير  العبء   حجم 

التطبيق. علاوة على ذلك، تعمل هذه الأطروحة على ابتكار متغيرات لتخصيص موارد الحوسبة عالية الأداء ذات كفاءة  
أكبر من ناحية الوقت ومن ناحية التكلفة، وذات إعدادات مناسبة للتعامل مع المشاكل الآنفة الذكر، وبحيث يتم الأخذ  

من   الحسبان كلًا  الأساليب  في  تفوق  إلى  المنشورة  النتائج  أبرز  تشير  للتطبيق.  الآنية  والقيود  للمستخدم  الآنية  القيود 
  المقترحة في تحقيق المستوى المطلوب من الخدمة. 
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1 

CHAPTER ONE 

INTRODUCTION 

 

 

 

1.1 BACKGROUND OF THE STUDY 

High Performance Computing (HPC) is an attractive platform for both academic 

research and ICT trade to execute computational-intensive applications which need 

powerful resources for generating celebrated results. Many of such applications are 

time critical which needs in time response for completion. Such applications are 

known as real-time applications. In real-time applications, the correctness of the 

system not merely depends on the produced results but the time in which these results 

are obtained. Real-time systems are characterized by some parameters like 

computation time, period, and deadline. The computation time is the system’s 

execution demand for the computing resource. Each real-time system generates 

infinite instances called as jobs. A job is generated after a specific time interval called 

as period. The time before which the application should complete its execution is 

called as deadline. Depending on the consequences of the missed deadlines, the real-

time systems are broadly categorized into hard and soft real-time systems 

(Qureshi, Alrashed, Min-Allah, Kolodziej & Arabas, 2015). In hard real-time systems, 

a deadline meeting is the most critical constraint. Examples of such systems include 

railway switching system, air traffic control system, nuclear plant control system, and 

military system. The hard-real-time systems must respect the deadline constraints. In 

soft real-time systems, there is a gap for deadlines miss which may not result in 

catastrophic behavior but system’s performance degradation. Examples of soft real-
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time systems include automated teller machines, virtual reality, multimedia systems, 

interactive computer games, mobile robotics, and telecommunication networks.  

A real-time system is composed of concurrent programs known as tasks 

(Laplante, 2004). A real-time task can be defined as an executable entity of work that 

is characterized by deadline and execution time which is the maximum estimated time 

needed by a processor to complete the task. This time is termed as worst-case 

execution time. By considering the aforementioned two basic characteristics, a real-

time task i is denoted by 𝜏𝑖(𝑐𝑖 , 𝑑𝑖), where ci and di represent execution time and 

deadline of the task i respectively. Since, real-time systems are time sensitive systems, 

so scheduling such systems got massive popularity in the literature and numerous 

algorithms for different scenarios have been proposed (Zhang, Tian, Fidge, & 

Kelly, 2016). Some of the scheduling algorithms guarantee in advance that the 

application constraints will be met during execution.  Such algorithms are known as 

static scheduling algorithms. In static priority assignment algorithms, the tasks 

priorities once set remain constant throughout the execution of the task. The well-

known static priority assignment algorithm is rate-monotonic (RM) algorithm. The 

RM algorithm prioritize tasks on the basis of their rates: the higher is the rate, the 

higher is the priority. The rate of the task is inversely proportional to the period of the 

task i.e., 𝑟𝑎𝑡𝑒 =  
1

𝑝𝑒𝑟𝑖𝑜𝑑
 . The other class of algorithms prioritizes application during 

execution. Such algorithms are known as dynamic scheduling algorithms. Both 

algorithms classes characterize tasks with additional parameters, which are used to 

analyze performance of the system.  

The HPC paradigm is attractive platform for deploying real-time applications 

mainly for three reasons:  
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1. the time sensitive nature of the real-time application requires parallel 

processing on distributed powerful resources to generate results in a timely 

manner,  

2. the concurrent execution on many high-speed interconnected nodes as 

compared to a single powerful CPU is economical to efficiently achieve 

the desired level of performance, and  

3. the distributed systems are highly reliable in cases of system failure.   

But the existing HPC platforms still face many challenges due to the 

heterogeneous nature of distributed resources like predicting system behavior in peak 

load conditions (when all tasks occur at critical instant), completing tasks with 

minimum total execution time and user budget, proper load balancing on resources, 

on-time resource provisioning, dealing with task and resource heterogeneity, fault 

tolerance, a-priori time management requirements, and so on.  Such challenges pave 

the way for further investigations and need to be addressed properly by developing 

adequate scheduling mechanisms to execute real-time applications within deadlines 

while meeting user QoS criteria. A proper resource allocation (RA) mechanism 

improves performance of all HPC classifications (Hussain, Malik, & Khan, et al., 

2013; Qureshi, Dehnavi, & Min-Allah, et al., 2014). 

Currently, task scheduling and resource allocation techniques attracted 

researchers towards HPC platforms considering diverse optimization criteria of virtual 

machines (VMs) renting cost, makespan minimization, QoS maximization, energy 

efficiency, and so on according to predefined agreed SLAs (Liu et al., 2015; Sangwan 

et al., 2016; Awad. A et al., 2015; Chen. H et al., 2015; Wu. X et al., 2013; Panda et 

al., 2015; Satish & Reddy, 2018).  In this thesis, we use system, application, task, and 

job interchangeably. 
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A generalized RA scenario in HPC systems is represented in Figure 1.1 High-

level view of resource allocation in HPC system A user submits request for RA to the 

broker which finds the resources status form the HPC information service directory. 

This directory holds information about resources. Based on this information, a large 

pool of resources is searched and resources which fulfil user QoS criteria are selected 

for application execution. The user application is submitted to the selected resources 

for execution. After successful execution of the application, the results are returned to 

the user. 

 

 

Figure 1.1 High-level view of resource allocation in HPC system 
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1.2 PROBLEM STATEMENT 

It is observed from literature that most of the existing solutions to the real-time task’s 

allocation problem in HPC domain provide room for deadline miss when such 

applications need data files for processing. This type of applications is called as data-

intensive real-time applications. The data and communicational aspects between 

computing and storage resources are unaccounted in the existing resource 

optimization (scheduling and mapping) settings when data storage resources are 

located remotely from the computational resources. The feasibility testing of the real-

time tasks under fixed priority scheduling technique has always been challenging in 

data-intensive real-time applications when some of the required data files are pre-

fetched while some post-fetched during tasks execution. The literature also lacks 

comprehensive mechanism for predicting tasks feasibility prior to execution on 

different HPC resources   when time and data constraints are considered. This gap 

provides opportunity for tasks scheduling on non-feasible resources and hence 

deadlines miss.  From data files processing aspects, it has also been of interest to 

include the data files transfer time in deciding tasks feasibility on computational 

resources. The research community focused on the deadline’s fulfilment concern of 

the real-time applications execution and ignores the user budget constraints.   

The aim of this research is to develop a novel and fine-tuned resource 

scheduling and allocation policy for real-time application on HPC resources to cope 

with the aforementioned problems. We believe that this attempt will result in 

remarkable contributions towards plethora of existing real-time systems scheduling 

literature. Based on the nature of research work and above discussed problems, it is 

mainly divided into three modules (portrayed in Figure 1.2) with clear objectives. 
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In Module – I, we study and analyze the real-time resource allocation (RA) 

strategies in HPC domain. The performance of each RA strategy is evaluated on the 

basis of common parameters. The Module – I describes and pictorially represents each 

studied strategy in detail which helps in understanding working of each mechanism.  

Module – II devises a prediction-based resource allocation model for real-time 

data-intensive application. The developed model checks the feasibility of tasks before 

actually allocating and dispatching tasks to the computing resources. The research 

work in Module – II devises a new scheduling model for scheduling real-time 

application to enhance schedulability of tasks by considering different optimization 

criteria. 

In Module – III, we propose a resource allocation strategy for real-time data-

intensive tasks by ranking computational resources and classifying tasks into groups 

that guarantee tasks execution with minimum possible time and cost while deadlines 

are kept intact. The ranking technique helps in selecting the most appropriate 

resources for application scheduling. The obtained results affirm the supremacy of the 

proposed technique over the existing counterparts. 

 

1.3 RESEARCH OBJECTIVES 

The aims and objectives of this research are: 

1. To collect and pictorially present the existing resource scheduling and 

allocation techniques in different HPC systems (grid, cloud, fog, edge, and 

multicore) at one place under the umbrella of real-time literature by 

considering common performance parameters. 

2. To propose a two-stage model where the first stage predicts the feasibility 

of real-time application before actually dispatching to the HPC resources 
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and, the second stage schedule the application on the feasible resources by 

considering objective function. 

3. To propose a time and cost-efficient resource allocation strategy for data-

intensive real-time application in the HPC system which reduces the 

priority levels. 

 

 
 

 Figure 1.2 Proposed resource allocation scenario. 

 

 

1.4 ULTIMATE RESEARCH QUESTIONS 

The HPC platforms offer celebrated capabilities if the encompass distributed resources 

are managed in an efficient way across heterogeneous environments. The existing 
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literature is still immature in modeling the HPC resources in a comprehensive manner 

which leave some questions open ended that need to be answered. The ultimate 

questions that the proposed resource allocation research addresses are: 

1. How HPC paradigm can help more efficiently in scheduling and 

processing real-time applications within deadlines as compared to other 

platforms? 

2. What issues can arise during real-time application scheduling and 

mapping, specially, when both computing and storage resources are 

heterogeneous in nature and involved in resource allocation strategy? 

3. How can it be verified in advance whether the real-time application 

constraints will be met during execution or not? 

4. How the resource allocation strategy allocates resources and executes real-

time data-intensive tasks in minimum possible execution time and limited 

budget constraints while respecting tasks deadlines?  

5. What effects the transfer time put on the tasks total execution time and cost 

when data files are replicated on remotely located storage resources? 

 

1.5 SIGNIFICANCE/EXPECTED OUTCOMES OF THE RESEARCH 

The HPC is resources rich paradigm which is considered the most promising platform 

for deploying real-time applications. The increasing complexity of the real-time 

applications make HPC model a handy candidate to place such systems. The accuracy 

of generated results deliberately depends on the resource allocation mechanism. An 

efficient resource allocation mechanism can contribute to the best performance of the 

resources in handling time critical applications in an eminent fashion, especially, when 

resources are heterogeneous in nature. 
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This research delivers broadly to the scheduling theory that opens new 

dimensions for extending the existing mechanisms in broad ways which contributes to 

the society. Schedulers and resource allocation mechanisms are considered to be the 

core components of operating systems, parallel systems, and real-time embedded 

systems.  It helps researchers how to take advantage of powerful resources in 

executing time-conscious applications in an efficient way such that the deadlines are 

respected. Moreover, the proposed model is flexible in order to adapt to the future 

paradigms and multiple domains by future researchers and scientists to immensely 

improve the throughput and reliability of the systems. 

This research work advances the current state-of-the-art of real-time scheduling 

theory using HPC platforms as follows. 

1. Identification of the positive and negative scheduling points 

The proposed work identifies the impact of negative points on deadlines 

miss during scheduling real-time application. Such points can be disjointed 

from the positive points in a set which need not to be checked during 

feasibility testing of the real-time application on HPC resources. This 

mechanism can help in reducing application completion time which in turn 

ensures fulfilling the deadlines. 

2. Specification of criteria for the selection of computing and storage 

resources for data-intensive real-time application 

 

This research accumulates real-time application which needs data-files for 

complete execution. The data-files are replicated on distributed data 

storage resources connected to the computing resources by network links. 

The proposed technique designs a criterion for the selection of storage and 
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computing resources in a way such that the resources are engaged for a 

short duration of time while respecting application deadlines.  

3. Designing a model for efficient utilization of resources 

HPC resource is an important entity that needs efficient utilization for 

enjoying its maximum capacity. The proposed study helps in developing 

effective mechanism for utilizing full capabilities of computing resources 

in minimum price. 

4. Developing a mechanism for selecting least cost HPC resources for 

executing real-time data-intensive application 

 

The advent of big data handling is a challenging task, specifically when 

application has real-time deadlines. The anticipated model helps in 

developing a mechanism for selecting least cost computing and storage 

resources for executing application with real-time and data constraints. The 

model considers both local and remote storage resources and helps in 

reducing data transfer time which ultimately reduces application 

processing time. 

 

1.6 RESEARCH DESIGN/METHODOLOGY 

This research work adopts quantitative approach which constructs mathematical 

models, theorems, simulations and quantitative evaluations. Quantitative research 

approach is a strong technique in validating proposed research claims. The research 

process is conducted by gradually following the undermentioned phases. 
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1.6.1 Literature Survey 

In this phase, the existing literature consisting of latest articles from well-known 

research journals, conferences, books, and pedagogical is studied in order to know the 

HPC resource allocation domain and its different dimensions. During this activity, the 

originality of the found research problems and the proposed solution method is 

ensured.  

 

1.6.2 Problem Formulation 

The identified problems in literature survey phase are mathematically formulated in a 

proper format and the answers to the research questions are prepared by the proposed 

research work. 

 

1.6.3 Answers to the Research Questions 

In this phase, the collected data is scrutinized to find answers and solutions to the 

research questions formulated in the previous phases. 

 

1.6.4 Analysis and Validation 

In the analysis and validation phase, synthetic data sets are generated to evaluate and 

validate the proposed solution. The synthetic data sets are generated using model 

presented by Bini, & Buttazzo, (2005). This is the most authentic and followed model 

in the existing literature. The computing and storage resources are modeled, and 

simulations are carried out using Matlab (2019 version). Matlab is a strong tool for 

complex mathematical modeling. The obtained results are compared, and cross 

checked against the existing counterparts to validate and evaluate the performance of 

the proposed mechanism. 
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CHAPTER TWO 

LITERATURE REVIEW 
 

 

 

 

2.1 INTRODUCTION 

The High-Performance Computing (HPC) paradigm paves the way to the large 

number of resources with high computing power and storage capabilities distributed 

across a network. The HPC platform is focused by the research community, mainly for 

three basic reasons: (a) the parallel nature of applications, (b) the need of data 

distribution and communication with other nodes through communication channels, 

and (c) the need for continuous availability and reliability of the resources. These 

facilities motivate the users to use distributed HPC systems for scalability, reliability, 

availability, exchanging and sharing of information, and achieving performance 

efficiency with low cost and high quality (Hussain et al., 2013; Qureshi et al., 2014; 

Y. Amir et al., 2000). Organizations and individuals increasingly generate and store 

huge amounts of data daily using IoT devices by executing different nature 

applications. Such applications need powerful resources for computation and storage.  

Due to the limited number of available resources, proper resource allocation 

schemes are used to cater with all types of applications. Resource allocation (RA) 

scheme in the HPC environment plays a vital role in managing limited resources 

among multiple competing applications in a fair way that guarantees providing agreed 

QoS. (P. Kokkinos et al., 2009). In HPC platform a resource is any computing, 

storage, or communication entity that takes part in user application execution. The RA 

schemes consider different performance parameters based on the nature of 

applications. Some of the parameters are makespan minimization, computation cost 
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minimization, energy efficiency, bandwidth optimization, etc. These are some of the 

common parameters that are considered by most applications. However, some 

applications prefer to complete execution within specific time duration. Such 

applications are attached a time parameter, commonly known an execution deadline. 

This type applications are called as real-time (RT) applications. Real-time applications 

or services are bounded by time constraints. Such applications not merely depend on 

producing the correct output but the time at which the results are generated (R. L. 

Panigrahi et al., 2000). We use an application, service, task, and system 

interchangeably in this thesis. Some common examples of RT applications can be 

found in chemical plants, robotics, antimissile systems, pacemakers, multimedia 

systems, and embedded systems (J. W. S. Liu, 2000). 

 

2.2 REAL-TIME APPLICATION MODEL 

Consider a real-time application T as a set of multiple tasks. Assume there are n 

number of tasks in T and each task is characterized by the following typical 

parameters as shown in Figure 2.1. 

 

 
 

Figure 2.1 Real-time application taxonomy 
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1. Deadline – the time instant at or before which the task must complete its 

execution. In RT applications, mainly two types of deadlines are used: 

absolute and relative deadlines. The absolute deadline is a time instant 

which must be followed by RT task for producing timely correct results. 

On the contrary, relative deadline is the time duration between the 

absolute deadline and the release time of a task. Mathematically,  

Relative deadline = Absolute deadline – Release time 

2. Release Time – The arrival time of a task in the ready queue. 

3. Execution Time – This is the worst-case computation time of a task for 

which a computational resource is required without any interrupt. 

4. Criticality – The consequences of missing the deadline. It can be hard, 

soft, or firm. 

5. Response Time – The difference between the time when a request for the 

resource is made and the finishing time on the resource when it is 

allocated. 

Apart from the aforementioned parameters, the real-time tasks can be 

distinguished based on activation times. If the instances (jobs) of a task are activated 

at a constant rate, then it is called as periodic task. On the other hand, if the jobs 

activations of a task are not regularly interleaved, then the task is called as aperiodic 

task. 

The focus of RA schemes for RT services is to complete execution within 

specified time. Based on timing constraints, RT services are broadly categorized into 

soft and hard RT services. In hard RT services, there is no room for missing deadline 

while in soft RT services, deadline missing put drastic effects on overall system 

performance (Bini. E & Buttazzo., 2005; Hussain et al., 2013; Qureshi et al., 2014). 
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2.3 BRIEF COMPARISON WITH THE EXISTING SURVEYS 

The existing state-of-the-art literature shows surveys on RA for different nature 

applications in HPC domains. But as per our exploration, no-one has consolidated RA 

schemes in all the emerging HPC paradigms like grid, cloud, fog, edge, and multicore 

systems in a single platform for special type applications i.e., real-time services. (Naha 

et al., 2018) surveyed RA techniques for IoT devices generating real-time data. They 

have considered latency parameters only and analyzed their applications in fog 

computing environment. They have confined their study mainly to different fog 

computing aspects and definitions. (W. Shu et al., 2016) provided an overview of RA 

in edge computing by presenting case studies ranging from smart homes to smart 

cities, real-time video analysis, augmented reality, healthcare monitoring, and virtual 

reality games. The authors (B. A. Hridita et al., 2016) surveyed mobility aware RA 

and scheduling algorithms. They have overviewed heuristic approaches to balance non 

real-time applications makespan and cloud resources monetary costs. (Mao et al., 

2017) surveyed RA techniques in mobile edge computing. They have considered the 

communication perspective of the intended applications. They have identified 

limitations like high infrastructure deployment and maintenance cost, changeable 

human activity interaction, etc. (Mangla et al., 2016) elaborated resource scheduling 

and allocation schemes in a cloud computing environment. They have evaluated RA 

schemes based on administrative domains, virtual machine allocation and migration 

strategies, energy efficiency, service level agreements, and cost effectiveness. Real-

time periodic systems were analyzed for schedulability on multicore systems in (Min-

Allah. N et al., 2012; Nasri. M et al., 2017). The authors identified basic 

schedulability parameters by utilizing static priority assignment algorithms. Energy-

aware RA schemes in a cloud computing environment were studied by (Beloglazov et 
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al., 2012). They have evaluated heuristics for efficient management of cloud data 

centers. The RA mechanisms for different non real-time applications on grid 

computing systems have been detailed by (Qureshi M. B et al., 2017). They have 

explained each mechanism in detail, but their study is limited to grid computing 

systems only. Another comprehensive survey on RA in distributed computing systems 

is given by (Hussain. H et al., 2013). They have studied the RA problem for mixed 

applications with different QoS parameters.  

The following contributions highlight the novelty of this chapter. 

1. The existing literature on RA shows techniques for mixed real-time and 

non-real-time applications on one or another distributed computing 

systems. There exists no comprehensive state-of-the-art comparative 

analysis conducted only for real-time applications. This chapter gathers 

and compares RA schemes only for real-time applications on HPC (grid, 

cloud, fog, edge, and multi-core) systems. 

2. The existing research gives a plethora of RA schemes by considering 

certain parameters which may not give proper comparison with respect to 

all aspects. Instead, in this chapter, the RA schemes are compared based 

on the most common parameters that cover almost all of the features of all 

RA schemes.  

3. This chapter surveys and compares real-time applications on both 

distributed (grid, cloud, edge, and fog computing) and non-distributed 

(multicore) HPC platforms, while current surveys are conducted for only 

one or another HPC environment. 

4. This chapter evaluates and portrays each RA scheme graphically in a 

convinced way that is easy to understand. 
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5. The survey in this chapter can assist the research and development 

stakeholders in synthesizing and identifying their requirements for 

different emerging HPC paradigms encompassing different architectures 

and implementations. The target readers can be categorized into 

architecture-interested readers, algorithm-interested readers, and general-

readers. 

 

2.4 CHAPTER ORGANIZATION 

The chapter structure is pictorially presented in Figure 2.2. Section 1 introduces basics 

of the HPC systems, the real-time application model, brief comparison with the 

existing surveys, and overall paper organization. This section also portrays real-time 

application taxonomy. Section 2 evaluates resource allocation problem for real-time 

services. The criteria are provided for evaluating the RA schemes. Section 2 also 

shows a broad taxonomy of RA schemes for real-time services on HPC (grid, cloud, 

fog, edge, and multicore) systems. Section 3 demonstrates RA schemes for RT 

services in grid computing systems. Section 4 focuses on describing RA schemes in 

cloud computing systems. These systems are explained for accommodating real-time 

applications. We review the edge computing resources allocation schemes for real-

time services in Section 5. Section 6 details fog computing RA mechanisms for 

executing real-time applications while Section 7 presents a multicore environment for 

such type applications. Finally, Section 8 concludes the survey.  

 

2.5 HPC RESOURCE ALLOCATION PROBLEM FOR RT SERVICES 

Resource Allocation (RA) problem in HPC systems can be defined as an issue of 

assigning limited HPC resources in order to satisfy the performance requirements of 
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the competing applications according to some predefined QoS criterion such as 

makespan minimization, profit maximization, cost and energy efficiency, load 

balancing, and deadline satisfaction. 

 

1. Introduction

Real-Time Application Model
Brief Comparison with the 

Existing Surveys Paper Organization

2. HPC Resource Allocation Problem for RT Services

Evaluation Criteria

3. Resource Allocation Schemes for Real-Time Services in Grid Computing

4. Resource Allocation Schemes for Real-Time Services in Cloud Computing

5. Resource Allocation Schemes for Real-Time Services in Edge Computing

6. Resource Allocation Schemes for Real-Time Services in Fog Computing

7. Resource Allocation Schemes for Real-Time Services in Multicore Systems

8. Conclusions

 

 

Figure 2.2 The structure of the chapter 
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The RT application T is composed of multiple tasks ti (1< i < n), where each 

task is characterized by a completion deadline di. The T is mapped to a set of HPC 

resources J = {j1, j2,…,jk} according to some predetermined criteria. Then the general 

RA problem of assigning task i to HPC resource j can be defined as 

{𝑡𝑖
𝑗
| 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑}.  

The feasibility of the RA scheme for RT application T to HPC resources J can 

be defined as a function. 

𝑅𝐴(𝑇) = {
𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒, 𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑖𝑠 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The HPC resource can be defined as a machine with different capabilities. The 

capabilities may be processing, storage, or communication, etc. The machines with 

processing and communication capabilities are known as computing and network 

resources respectively. Some of the HPC resources have both computing and storage 

capabilities. These resources have associated cost of processing. The allocation cost is 

calculated from the resource binding process that analyses the resource performance, 

architecture, utilization, and processing power. Based on the architecture, HPC 

resources can be classified into homogeneous or heterogeneous resources. 

Homogeneous resources have the same, while heterogeneous resources have different 

designing architectures. In case of heterogeneous resources, task allocation is 

performed by analyzing the allocation cost.  Figure 2.3 shows a broad taxonomy of 

RA schemes for real-time systems on the HPC platforms.  

 

2.6 EVALUATION CRITERIA 

The existing RA schemes for scheduling RT applications on HPC resources shown in 

Figure 2.3 can be compared and evaluated based on some common parameters. The  
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Figure 2.3 Distributed HPC RA schemes taxonomy for real-time systems 
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set of criteria we consider here for evaluating the work done so far include application 

type, operational environment, optimization goal, architecture, system size, resource 

type, optimality, simulation tool, comparison technique, and input data. We discuss 

the aforementioned aspects briefly in the following subsections and examine in detail 

in each RA scheme in Table 2.1. 

 

Application Type 

 

The HPC paradigm supports various types of applications and the RA schemes are 

modeled based on the application type requirements. Some of the application types 

include real-time applications, deadlines oriented dependent applications, data-

intensive real-time applications, workflow applications, etc. In this survey, we only 

focus on analyzing RA schemes which are developed for real-time applications. Some 

of the real-time applications may be data-intensive, which need data for complete 

processing. The dependent applications can be broadly categorized into workflow 

applications which consist of multiple divisible sub-applications with some sort of 

execution or data dependency. In case of dependency, there is communication 

between applications which use network bandwidth. 

 

Operational Environment 

 

The environment consisting of executing resources on which the RA scheme is 

operated can be termed as operational environment. It can be categorized based on 

nature of resources and their operational taxonomies. For example, distributed 

systems, grid computing, cluster computing, cloud computing and multicore systems. 

These systems can be accumulated under the umbrella of HPC environment. The HPC 

environment can be broadly categorized into distributed HPC systems which include 
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grid, cloud, edge, and fog computing systems, and non-distributed systems which 

consist of multicore systems. 

 

Optimization Goal 

 

Every RA scheme is designed to achieve specific metric based on which its 

performance is measured. For example, energy consumption, net profit gain, 

makespan, response time, system throughput, system utilization, applications 

execution within user budget constraints, etc. Some of these metrics should be 

maximized such as net profit gain, throughput, system utilization, application 

processing within user budget, while some should be minimized such as total energy 

consumption, makespan, and response time. 

 

Architecture 

 

System architecture defines the nature of resources or configuration of resources 

within operational environment. The resources can be homogeneous or heterogeneous. 

Homogeneous resources have the same configuration and application execution on a 

single resource shows the same status of the application on all resources. 

Heterogeneous resources have different configurations. The diversity may be due to 

the resource power, short term storage capacity or instruction sets. In a heterogeneous 

environment, different resources give different execution statistics of applications.  

 

System Size 

 

The system size shows the total number of resources in the operational environment. 

In distributed HPC environment, this number is the count of total computing and 

storage resource while in non-distributed HPC system, it is the total number of cores 
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in the system. The RA scheme considers the resource types required for the nature of 

executing application. If the executing application needs computing and storage 

resources, then the RA strategy is developed by considering the processing 

specifications of the resources. For example, if a system is composed of limited 

computing resources and a huge application needs more computing resources then the 

RA scheme implements proper load balancing mechanism to uniformly distribute 

application load on available limited resources. 

 

Resource Type 

 

The HPC environment is composed of different types of resources like computing, 

storage and network resources. The computing resources only perform computation 

tasks. They cannot give storage facilities. The storage resources provide data storage 

capabilities. The network resources offer communication facilities and work for 

transferring data from one resource to another resource. The RA mechanism is 

developed by considering resource type configuration. For example, the data-intensive 

application engages both computing and storage resources. If these resources are 

located far away from one another, then the RA scheme considers computing, storage, 

as well as network resources for execution and data exchange among nodes. 

 

Optimality 

 

The RA scheme that gives better results against performance metrics is called as 

optimal scheme. Every RA scheme strives to achieve the defined performance metric. 

Some of the RA schemes are near optimal or non-optimal. The near optimal RA 

schemes have acceptable results like optimal and very little margins exist for 

improving its performance, but in case of non-optimal, the RA scheme needs 
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revisiting. This parameter takes values like optimal, near optimal, non-optimal, or not 

applicable (NA) in case if it is not mentioned in the proposed scheme. 

 

Simulation Tool 

 

The RA scheme is tested by using some virtualized environment that gives the 

reflection of the actual physical environment. The simulation tool consists of the same 

operational architecture as a real environment. Different simulation tools are used for 

implementing RA schemes depending upon the nature of executing applications. The 

results obtained by simulating application on virtualized environment have much 

closer accuracy of the results obtained on the actual physical environment. 

 

Comparison Techniques 

 

This parameter reveals the validity of the proposed techniques in comparison with the 

other existing state-of-the-art counterparts. The results are compared, and a conclusion 

is drawn in the form of numerical values or graphical charts. 

 

Input Data 

 

The Input Data attribute indicates the dataset which is considered for experimentation 

or simulation of a specific task scheduling and allocation scheme. 

In all the above-mentioned parameters, the RT application execution within 

specified deadline is a common criterion for all HPC RA schemes.  

 



 

 

Table 2.1 Comparison of the state-of-the-art HPC resource allocation schemes for real-time applications 

 

RA Technique [Ref] 
Publishin

g Year 
Application Type 

Operational 

Environment 
Optimization Goal Architecture 

System 

Size 

Resource 

Type 

Optimalit

y 

Simulation 

Tool 

Comparison 

Techniques 
Input Data 

HGCS  

Min-Allah et al., (2019) 
2019 

Real-time data-

intensive tasks 

Cloud 

computing 

Makespan 

minimization and cost 

efficiency 

Heterogeneous 10, 20 

Computing, 

Storage, 

Bandwidth 

NA MATLAB GA, CS Synthetic dataset 

Task Buffering and 

Offloading Policy  

Lei et al., (2019) 

2019 Real-time tasks Fog computing 

Maximizing 

throughput and tasks 

completion ratio, RA 

balancing 

Heterogeneous Variant 
Computing, 

Memory 
NA CloudSim 

RR, MRU, 

AQW, FCFS, 

LTS, MOMIS, 

NMOMIS 

Not mentioned 

USG, EDZL  

Alhussian et al., (2019) 
2019 

Soft real-time 

tasks 

Cloud 

computing Sys 

Feasibility analysis, 

response time analysis 
Heterogeneous 

4 – 64 

nodes 
Computing NA 

Not 

mentioned 
EDF 

10000 synthetic 

tasksets 

EDF_DVFS_AC  

Georgios et al., (2019) 
2019 

Real-time 

workflow 

applications 

Cloud 

computing 

system 

Cost and energy 

efficiency, Tasks 

feasibility analysis, 

SLA violation ratio 

Heterogeneous 

Not 

mentio

ned 

Computing, 

Communicatio

n 

NA C++ 
EDF, 

EDF_DVFS 

Random synthetic 

workload 

FDHEFT  

Xiumin et al., (2019) 
2019 

Deadline-

constrained 

workflow 

applications 

IaaS Cloud 
Cost and Makespan 

minimization 
Heterogeneous 

Not 

mentio

ned 

Computing NA jMetal 

MOHEFT, 

NSPSO, 

SPEA2, -

Fuzzy PSO 

Real-world and 

synthetic workflows 

RS and RM  

Hengliang et al., (2019) 
2019 

Latency-critical 

computation-

intensive 

applications 

Cloud and 

Edge 

computing 

Network delay, User 

QoS 
Heterogeneous 

1 Edge 

Orchest

rator 

and 10 

ESs 

Computing, 

Communicatio

n, Storage 

Yes 

Hadoop 2.7.1 

consisting of 

YARN and 

MapReduce,  

RSH, GCP for 

RS and RMH, 

D-LAWS for 

RM 

Dataset of SNAP 

ENCAP  

Pavan et al., (2019) 
2019 Real-time tasks 

Multi-core 

systems 

Tasks schedulability 

analysis 
Heterogeneous 

2-32 

cores 

Computing, 

Communicatio

n 

NA 

Feather-

Trace, 

LITMUS 

OPENMP, 

EDF-EN 

Calandrino, Bastoni, 

Anderson dataset 

Lg-TDA  

Nasro Min-Allah, (2019) 
2019 Real-time systems 

Multi-core 

system 

Task schedulability 

analysis 
Not mentioned 

Not 

mentio

ned 

Computing NA MATLAB TDA Synthetic dataset 

PPDPS, K-mean  

Singh et al., (2018) 
2018 

Deadline-

constrained 

dependent data-

intensive tasks 

workflow 

Cloud 

computing 

system 

Deadline-constrained 

cost efficiency 
Heterogeneous 2, 3, 4 Computing NA ANOVA DPDS, IC-PCP 

Cybershake, Montage, 

Epigenomics, Inspiral, 

SIPHT 

DSB 

(Anwar & Deng, (2018) 
2018 

Scientific 

workflows 

Cloud 

computing 

system 

Cost efficiency, 

Deadline meeting 
Heterogeneous 16 Computing NA 

WorkflowSi

m 

WRPS, SCS, 

HEFT 

Cybershake, 

Epigenomics, LIGO 

Inspiral Analysis, 

Montage, SIPHT 

MAHP, BATS, BAR, 

LEPT, Divide-and-

conquer  

Gawali & Shinde, (2018) 

2018 
Scientific 

workflows 

Cloud 

computing 

system 

Turnaround time, 

response time 
Heterogeneous 20 

Computing, 

Memory, 

Bandwidth 

NA 
Real cloud 

environment 
BATS, IDEA 

Cybershake, 

Epigenomics 
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Data-aware 

Nadjaran et al., (2018) 
2018 

Deadline-

constrained bag-

of-tasks 

applications with 

data requirements 

Hybrid cloud 

computing 

system 

User specific 

deadlines meeting, 

Execution time 

Heterogeneous 19 

Computing, 

Storage, 

Bandwidth 

NA Aneka 

Default and 

Enhanced 

algorithms 

Walkability index 

application 

SCRUP  

Chaparro et al., (2018) 
2018 

Hard real-time 

systems 

Multi-core 

system 

Feasibility analysis 

and minimizing power 

dissipation 

Homogeneous 4, 16 
Computing, 

Memory 
NA 

Not 

mentioned 
HTTP, TATP 

3000 and 12000 

synthetic datasets 

Hybrid-EDF  

Georgios et al., (2018) 
2018 

Real-time IoT 

workflows 

Fog and Cloud 

computing 

systems 

Deadline miss-ratio, 

percent tasks executed 

on cloud, total 

momentary cost 

Heterogeneous 

3 fog 

hosts 

and 30 

cloud 

hosts 

Computing, 

Communicatio

n 

NA C++ Fog-EDF Synthetic workload 

DEFT  

Hui et al., (2019) 
2018 

Real-time 

applications 

Cloud 

computing 

systems 

Fault-tolerance, 

Resource utilization 

efficiency 

Heterogeneous 

Not 

mentio

ned 

Computing NA CloudSim 

NDRFT, 

DRFT, 

NWDEFT 

Google tracelogs 

RDTA  

Qureshi et al., (2017) 
2017 

Data-intensive 

real-time tasks 

Grid 

computing 

system 

Makespan 

minimization, Number 

of completed tasks 

maximization 

Heterogeneous 11, 34 

Computing, 

Storage, 

Bandwidth 

NA MATLAB PTA Synthetic dataset 

AGA  

Mahmood & Bahlool, 

(2017) 

2017 
Hard real-time 

tasks 

Cloud 

computing 

system 

Execution time and 

Cost efficiency 
Heterogeneous 30 Computing NA 

Wilcoxon-

ranked-sum 

test 

Greedy, GA 
DAG’s of varying 

sizes 

MinMinMAC, 

MinMinEAC, 

MaxMinMAC, 

MaxMinEAC, 

SufferageMAC, 

SufferageEAC  

Stavrinides & Karatza, 

(2017) 

2017 
Real-time bag of 

tasks 

SaaS cloud 

computing 

system 

SLA violation ratio, 

Average result 

precision, Average 

cost per job 

Heterogeneous 128 Computing NA C++ 

MinMin, 

MaxMin, 

Sufferage, 

Random synthetic 

workload 

DA-EDF, EDA-EDF  

Georgios et al., (2017) 
2017 

Real-time data-

intensive BoT 

applications 

SaaS Cloud 

Impact of data locality 

in terms of SLA 

violation percentage 

Heterogeneous 
256 

VMs 

Computing, 

Storage 
NA C++ NDA-EDF Synthetic workload 

SigLM-MMW [18] 

Sangwan & Gupta, 

(2016) 

2016 Multi-workflows 

Cloud 

computing 

system 

Load balancing, 

Average waiting time 
Heterogeneous 

Arbitra

ry 
Computing NA CloudSim Not mentioned 

Real load traces 

collected on PlanetLab 

GCSM  

Tarandeep & Inderveer, 

(2016) 

2016 
Deadline-

constrained tasks 

Cloud 

computing 

system 

Energy efficiency, 

Maximizing 

performance ratio 

Heterogeneous 25-50 Computing NA 
Not 

mentioned 

FCFS, SLA-

based resource 

constraint VM 

scheduling, 

Priority-based 

scheduling 

scheme 

Real-time workload 

traces available at 

Parallel Workload 

Archive 

Gang Scheduling 

Approach  

Georgios et al., (2016) 

2016 
Real-time parallel 

applications 
SaaS Cloud 

Deadlines meeting, 

High quality results, 

total momentary cost, 

Tackling with 

software failures  

Homogeneous 64 

Computing, 

Communicatio

n 

NA C++ 

EDF, 

EDF_RAC, 

EDF_FAC, 

EDF_ADC, 

EDF_ADC_R

AC, 

EDF_ADC_FA

Synthetic workload 

2
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C 

RM With Reduced 

Priority Levels  

Qureshi et al., (2015) 

2015 Real-time tasks 
Multi-core 

system 

Priority levels 

reduction, Cumulative 

utilization 

Heterogeneous 

12 

cores 

CPU 

Computing NA MATLAB 

Traditional 

Approach with 

scheduling 

points 

Synthetic dataset 

EFTD  

Liu et al., (2015) 
2015 DAG tasks 

Cloud 

computing 

system 

Normalized 

scheduling length 

(NSL) reduction, 

Computational cost 

and time minimization 

Heterogeneous 
10 – 

130 
Computing NA CloudSim 

HEFT-AEST 

HEFT-TL 
DAG tasks 

ATS   

Panda et al., (2015) 
2015 User requests 

Multi-cloud 

systems 

Makespan 

minimization, Average 

cloud utilization 

Heterogeneous 32 Computing NA MATLAB RR, CLS 

Two benchmark dataset 

consists of 512 tasks 

and a Synthetic dataset 

Bandwidth-aware  

Sindhu, (2015) 
2015 Workflow 

Cloud 

computing 

system 

Bandwidth efficiency, 

Execution time  
Heterogeneous 

Not 

mentio

ned 

Computing NA Eclipse Not mentioned Synthetic dataset 

BAT  

Raghavan et al., (2015) 
2015 

Workflow 

applications 

Cloud 

computing 

system 

Execution cost 

minimization 
Heterogeneous 3 Computing NA 

Not 

mentioned 
BRS 

Workflow consisting 

of 4 tasks 

CATP, G-CATP  

Qiushi et al., (2015) 
2015 

Hard real-time 

tasks 

Multi-core 

system 

Improving system 

schedulability under 

failures 

Heterogeneous 
4, 8 

cores 
Computing NA 

Multi-core 

system 
HAPS, BFD 

Task sets generated 

using UniFast 

algorithm 

EDF_BF_IC  

Georgios et al., (2015) 
2015 

Real-time 

workflow 

PaaS and IaaS 

clouds 

Deadlines, Cost 

efficiency, Execution 

time minimization 

Heterogeneous 64 Computing NA C++ EDF 
Real-world workflow 

application 

 

PRS  

Chen et al., (2015) 

 

2015 

 

Real-time tasks 

 

Cloud 

computing 

system 

 

Energy efficiency, 

improving resource 

utilization, minimizing 

execution time 

Heterogeneous 5 Computing NA 

Apache 

CloudStack 

4.2.0, 

CloudSim 

NMPRS, EDF, 

MCT, CRS 
ᴨ-app, CloudSim-app 

DVS  

Kołodziej et al., (2014) 
2014 

Independent batch 

scheduling 

Grid 

computing 

system 

Makespan, flow time 

and Energy efficiency 
Heterogeneous 64, 256 Computing NA 

Sim-G-Batch 

Grid 

Simulator 

GA, HGS – 

Sched, IGA 

Kiviat Graphs, 1024 

and 4096 tasks 

randomly generated 

by Gaussian 

distributions 

DGP  

Deniziak et al., (2014) 
2014 

Soft real-time 

tasks 

Cloud 

computing 

system 

Cost optimization Heterogeneous 6, 4 

Computing, 

Communicatio

n 

NA 
Not 

mentioned 
Not mentioned 

Adaptive navigation 

system converted into 

TGs 
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PTPS, WCPS, CRPS  

Xi et al., (2014) 
2014 

Real-time 

applications 

Cloud 

computing 

system 

Calculating deadlines 

miss ratio and number 

of context switches 

Heterogeneous 6 cores 
Computing, 

Memory 
NA 

RT-Xen 2.0., 

Fedora 13 

with para-

virtualized 

kernel 

2.6.32.25 

pEDF, gEDF, 

pDM, gDM 
Synthetic workloads 

PRS  

Huangke et al., (2014) 
2014 Real-time tasks 

Cloud 

computing 

system 

Energy efficiency Heterogeneous Infinite Computing NA 

Apache 

CloudStack 

4.2.0, 

CloudSim 

NMPRS, EDF, 

MCT, CRS 
ᴨ-app, CloudSim-app 

EARH  

Xiaomin et al., (2014) 
2014 

Real-time 

application 

Cloud 

computing 

system 

Energy efficiency and 

tasks feasibility 

analysis 

Heterogeneous Infinite Computing NA CloudSim 

NRHEARH, 

NMEARH, 

NRHMRARH, 

ProfRS, 

Greedy-R, 

Greedy-P, 

FCFS 

Random synthetic 

tasks, Google cloud 

tracelogs 

HCS  

Li & Yin, (2013) 
2013 

Flow shop 

scheduling 

problem 

Distributed 

non-HPC 

systems 

Makespan 

minimization 
Heterogeneous 

Not 

mentio

ned 

Computing NA MATLAB 

CS, ATPPSO, 

L-CDPSO, 

HDE, OSA, 

PSOMA, 

PSOVNS, 

HGA, BEST 

(LR), M-

MMAS, QDEA 

160 problems from 

OR library. (8 = car1 – 

car8 instances, 21 = 

rec01 – rec41 

instances, 120 

instances, 11= DMU 

instances) 

Task Shifting & Task 

Splitting  

Hameed Hussain et al., 

(2013) 

2013 Real-time tasks 
Multi-core 

system 
Load balancing Heterogeneous 

4 and 5 

cores 
Computing NA MATLAB Not mentioned Synthetic dataset 

DCLS, DCMMS  

Li et al., (2012) 
2012 DAG 

IaaS federated 

cloud 

computing 

system 

Resource contention, 

Energy efficiency 
Heterogeneous 

Cluster

s with 

1024, 

1152, 

2048 

nodes 

Computing, 

Bandwidth, 

Memory 

NA 
Not 

mentioned 

FCFS, FCFS 

(EL), DCLS 

(EL), DCMMS 

(EL) 

Parallel Workload 

Archive (LLNL-

Thunder, LLNL-Atlas, 

LLNL-uBGL) 

GA-SS, GA-ST, GA-EG  

Kolodziej et al., (2012) 
2012 

Independent batch 

scheduling 

Grid 

computing 

system 

Makespan and energy 

optimization, 

Dynamic load 

balancing 

Heterogeneous 

64, 

128, 

256 

DVS enabled 

computing 
NA HyperSim-G 

Min-Min, RC, 

TS, 

Synthetic dataset 

using Gaussian 

distributions 

LFS 

Nasro Min-Allah et al., 

(2012) 

2012 Real-time tasks 
Multi-core 

system 

Power efficiency, load 

balancing 
Heterogeneous 

8 and 

12 

cores 

Computing NA MATLAB FFS Synthetic dataset 

Online Accrued 

Scheduling  

Liu et al., (2011) 

2011 Real-time tasks 
Multi-core 

system 

Maximizing total 

utility 
Heterogeneous 

Not 

mentio

ned 

Computing NA 
Not 

mentioned 

EDF, GUS, PP, 

Risk/Reward, 

PPOC, PPS 

Randomly generated 

1000 task sets 

EDF-greedy  

Kumar et al., (2011) 
2011 

Real-time 

application 

IaaS cloud 

computing 

system 

Cost efficiency Heterogeneous 

Not 

mentio

ned 

Computing NA 
Not 

mentioned 

EDF. 

Temporal-

overlap, 

Exhaustive 

search 

Synthetic dataset 

2
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DVFS  

Kim et al., (2011) 
2011 

Real-time 

application 

Cloud 

computing 

system 

Power efficiency Heterogeneous 4 Computing NA CloudSim Not mentioned Synthetic dataset 

2
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2.7 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES IN 

GRID COMPUTING 

Grid computing is the integration of different hardware and the shared used of 

computing resources, i.e., shared infrastructure over a network for solving complex 

problems. In grid computing, the data is moved among different computing resources. 

So, managing and running distributed workflows automatically is a core feature of the 

grid computing. 

The core essentials of grid technology are shared heterogeneous infrastructure, 

support of collaboration, distributed workflow management, and secure access to 

shared data. The general architecture of grid computing consists of a user, grid 

information service, resource broker, and grid resources. The user sends tasks to the 

grid for processing to speed up the execution of the application. The grid information 

service is a system that collects information of the available grid resources and send 

this information to the resource broker. The resource broker distributes jobs to the 

available grid resources based on the user’s requirements for execution. The grid 

resources are the computing entities that execute the user jobs. The general 

architecture and taxonomy of grid computing environment is shown in Figure 2.4 and 

Figure 2.5. 

 

 
 

Figure 2.4 Grid computing environment 
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Figure 2.5 Taxonomy of grid systems 

 

 

The grid computing RA schemes for real-time services are described as 

follows. 

 

2.7.1 Dynamic Voltage Scaling 

(Joanna Kołodziej et al., 2014) addressed exertion of energy spent on scheduling in 

grid environment, considering various grid scenarios. Grid system consists of multi-

layer architecture with hierarchical management system, namely, grid fabric layer, 

grid core middleware, grid user layer, and grid application layer. For resource 

management and scheduling, two user and middleware layers are important. The three 

features of scheduling to define the task are static environment, batch task processing 

and task interrelations. The authors addressed batch scheduling in a static environment 

where tasks are grouped into batches and executed independently in hierarchical 

order. For power supply analysis, two main energy aware scheduling scenarios max-

min and power supply mode are considered. The genetic algorithm is applied to solve 

scheduling issues by considering its six features, namely, single population in risky 
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mode GA(R), single population in secure mode GA(S), Multi-population in risky 

mode HDS-Sched(R), Multi-population in the secure mode HGS-Sched(S),  multi-

population island in risky mode IGA(R), and multi-population island in secure mode 

IGA(S). Lastly, single and multi-population are compared using empirical analysis in 

grid environment. The high-level scenario is shown in Figure 2.6. 

 

Grid fabric Grid core middleware

Grid User Grid applications

Static grid
Batch task 
processing

Task inter-
relation

Min-max Power supply

GA(R) HDS-Shed(R) IGA(R)

GA(S) HDS-Shed(S) IGA(S)

 
 

Figure 2.6 High level scenario of dynamic voltage scaling scheme in grid computing 
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2.7.2 Real-Time Data-Intensive Tasks Allocation Technique 

In RDTA technique (Qureshi. M. B et al., 2017) have tested the feasibility of real-time 

tasks on grid computing resources. The tasks need data files for execution, which are 

transferred prior to or during the task processing. Initially, the basic execution demand 

of a task is checked on computing resources and a list of basic feasible resources is 

formed. Then the data file transfer time of the required files is calculated from data 

storage resources to the grid computing resources. After this calculation, the total 

execution time is calculated and if a task can be executed within its deadline by 

considering all the time constraints, then the task is termed as schedulable, otherwise, 

un-schedulable. The tasks set is schedulable only, if all the tasks in a set are 

schedulable. The task schedulability analysis process is portrayed in Figure 2.7. 

 

Tasks Set
Calculate EET on 
scheduling points

EET<= 
dealine

No

Yes
Calculate file transfer 

time

Calculate total 
execution time (TET)

TET<= 
dealine

NoTask is unschedulable

Task is schedulable Yes

 

Figure 2.7 RDTA approach 

 

 

2.7.3 Energy Efficient Genetic-based Scheduling 

To achieve efficient energy in computational grids (CGs) is a core concern now a 

days. (Joanna. Kołodziej et al., 2012) proposed tasks in batch mode with zero 

dependencies between them. The authors considered two effective scheduling 
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functions in hierarchy mode. There are three levels of hierarchical mode which 

communicate over the Internet.  Only one task is executed at one computational grid. 

No tasks are allowed to preempt the entire process. The two optimization goals used in 

scheduling are makespan minimization and average energy consumption.  In idle 

mode, each machine takes minimal energy, and maximal power supply to reload the 

process. Three genetic methods are used to solve difficult scheduling issues. Initially, 

the population is generated. After selecting a parent node, crossover and mutation are 

applied to the individual root node and replace the parent node with the new 

population.  Finally, an optimal individual population is generated. The proposed 

model outperforms than the other existing grid scheduling techniques such as relative 

cost, min-min, and tabu search.   

 

2.8 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES IN 

CLOUD COMPUTING 

Cloud computing is the deployment of servers located remotely on the internet to 

store, manage and process the data. Such servers have large processing powers rather 

than a local server. Cloud computing is on-demand services delivery on a pay-as-you-

go basis over the internet. There are two basic types of cloud models: service models, 

and deployment models. Service model refers to the kind of services the cloud offer, 

while deployment model refers how to deploy the application on the cloud. The 

service model is further sub-divided into three categories: software-as-a-service 

(SaaS), platform-as-a-service (PaaS), and infrastructure-as-a-service (IaaS). SaaS are 

the cloud hosted applications and virtual desktops, PaaS are operating systems, 

database management and deployment tools, and IaaS are physical data centers, 

servers, network, virtual machines, storage and load balancers. The three types 
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services are provided after establishing service level agreement (SLA) between 

consumer and provider. The basic SLA determines the time at which the service will 

be provided and the corresponding usage cost (Kalaiselvi et al., 2020). 

The cloud deployment models are further divided into three main categories: 

public, private, and hybrid clouds. Cloud computing is an automatic, pool of 

resources, on-demand service (pay-per-use), secure, economical, and easy 

maintenance system.  The main benefits of cloud include its flexibility, security, 

accessibility, recovery from disaster, increased collaboration, document control, and 

automatic software adaptable system. The RA problems in cloud computing are 

mainly driven by monitoring, analyzing, and thoroughly checking performance of the 

deployed resources which ensure the agreed QoS to the intended user applications 

(Jyoti et al., 2020). 

The general architecture of the cloud environment is presented in Figure 2.8 

and a taxonomy is provided in Figure 2.9. 

 

 
 

Figure 2.8 General architecture of cloud computing environment 
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Figure 2.9 Cloud computing taxonomy 

 

 

The cloud computing RA schemes for real-time services are detailed as 

follows. 

 

2.8.1 Partition Problem-based Dynamic Provisioning and Scheduling Scheme 

An innovative, cost-efficient technique known as Partition Problem based Dynamic 

Provisioning and Scheduling (PPDPS) for scheduling deadlines constrained workflow 

application was proposed by (Vishakha. Singh et al., 2018). The PPDPS algorithm 

works mainly in two phases, namely, Subset-Sum problem, and k-means clustering. 

The degree of heterogeneity of different machines is first decided and then the speed 

information of VMs in Millions of Instructions per Second (MIPS) is provided by the 
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Caching Service Provider (CSP). The k-mean algorithm is used to regulate the speed 

of VMs. The Subset-Sum problem approach is used to schedule the workflow to meet 

its deadlines at a low execution cost.  It’s an NP-Complete problem (Singh et al., 

2018), which determines whether a set can further be divided into subsets, such that 

the sums of the elements in the subsets are equal. The greedy approach is used which 

solves the problem in polynomial time. If any of the VMs get fail during task 

execution, then additional storage-based model transfers the data to another VM. This 

model helps in easy data recovery. The PPDPS technique is compared against IaaS 

Cloud-Partial Critical Path (IC-PCP) (S. Abrishami et al., 2013) and Dynamic 

Provisioning Dynamic Scheduling (DPDS) (M. Malawski et al., 2015) techniques. 

The working of the proposed PPDPS model is portrayed in Figure 2.10.  

 

Deadlines constrained 
workflow

Determine VM speed 
using CSP

Regulate speed of VM by 
k-mean clustering

Dynamic provisioning 
using greedy approach

VM mapping

Tasks grouping using 
pipeline approach

Ready queue
 

 

Figure 2.10 Workflow of PPDPS scheme 
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2.8.2 Dynamic Scheduling Bag of Tasks 

(Nazia. Anwar et al., 2018) proposed a Dynamic Scheduling Bag of Tasks (DSB) 

method for scheduling scientific workflows dynamically and elastic provisioning of 

VMs. The main objective of this study is to maximize the total utilization of 

computing resources with minimum execution cost satisfying the task deadline 

constraints. The proposed technique works in five steps. Initially, all tasks are 

assigned priorities in order to guarantee task dependencies using Heterogeneous 

Earliest-Finish-Time (HFT) approach. The tasks are then grouped horizontally in the 

same level to provide parallelism. The execution time of a task is pre-calculated that 

determines whether the task will fulfil the deadlines during processing. If the tasks 

execution exceeds deadline, the next cost-efficient VM is used to process the task. 

After mapping the tasks on VMs, all tasks are put into a ready queue.  The task is 

considered ready for execution if all the precedence tasks can be completed 

successfully. Further, the elastic resource provisioning method is used to dynamically 

adjust the number of VMs instances to ensure the completion of workflow within its 

deadlines. It is claimed that the DSB outperforms WRPS, SCS, and HEFT techniques. 

Figure 2.11 shows the working flow of the DSB algorithm. 

 

2.8.3 Heuristic-based Resource Allocation Schemes 

(Gawali et al., 2018) proposed heuristic methods to accomplish resource allocation 

and task scheduling efficiently in a cloud computing environment. Numerous size and 

type of data is offloaded to the cloud for execution. The Analytical Hierarchy Process 

(AHP) assigns a rank to each task based on priorities. Then each task is assigned to the 

VM using Bandwidth Aware Divisible Scheduling (BATS) and BAR optimization 

techniques. The load on the VM is continuously checked by using Longest Expected 
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Processing Time (LEPT) algorithm. If resources are unavailable, the task must wait 

for its turn in the waiting queue. If a resource is overloaded, the tasks are distributed 

on other resources using Divide and Conquer algorithm. The proposed heuristic 

methods improved the performance in terms of resource allocation. 
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Figure 2.11 Flowchart of DSB technique 

 

 

The task allocation process of the heuristic is depicted in Figure 2.12. 
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2.8.4 Data-aware Resource Allocation Scheme 

To reduce the cost of execution while meeting the deadline constraints is one of the 

important considerable factors in hybrid clouds. A data-aware scheduling 

methodology is proposed by (Nadjaran. Toosi et al., 2018) to support deadline 

requirements of data intensive applications. Data intensive is one of the applications 

which are used to analyze many datasets. 
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Figure 2.12 Task allocation process of heuristic-based allocation scheme 
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The proposed method considers the data locality, transfer time, and network 

bandwidth and then checks if current private cloud resources are enough to complete 

the task within a specific time interval. It calculates the extra resources required to 

execute tasks within deadlines. The remaining time in meeting the deadlines is first 

calculated and then the remaining number of needed resources is computed. The 

remaining tasks are scheduled on dynamic resources. The proposed algorithm 

executes data-intensive independent tasks within strict deadlines while minimizing 

total execution cost and the total number of required resources. Figure 2.13 shows the 

working of the proposed data-aware scheduling methodology. 
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Figure 2.13 Overview of the data-aware resource allocation scheme 

 

 

2.8.5 Earliest Finish Time Duplication Approach 

Fully utilization of the selected resources is an important factor in cloud task 

scheduling. Delay in communication between resources degrades overall system 

performance. To overcome these limitations, (Liu. Z et al., 2015) proposed Earliest 

Finish Time Duplication (EFTD) approach to pre-process the cloud resources 

effectively.  Directed Acyclic Graph (DAG) method is used to improve the utilization 
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of resources. In this method, tasks with the highest priority are assigned to the selected 

resource for further processing. Three steps are performed to assign resources to 

specific tasks: calculating Earliest Start Time (EST), Earliest Finish Time (EFT), and 

task allocation. In this approach, initially EST is calculated to regulate processing unit 

and an EST value is assigned to processing resource. Then the EFT is calculated to 

choose processing unit and assign it smallest EFT value. Finally, the results of both 

times (EST and EFT) from ready tasks are compared. The high priority task is 

assigned to that resource whose both times are same. The next task with lower priority 

which has both times different is chosen from the ready queue. 

To reduce the processor scheduling time, parent nodes of two key tasks are 

duplicated. In this way, the communication process is improved as compared to the 

other counterparts (HEFT, AEST, HEFT-TL). The whole scenario is depicted in 

Figure 2.14.  
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Figure 2.14 Workflow of EFTD RA scheme 
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2.8.6 Task Scheduling and Load Balancing Technique 

Load balancing is an important factor while dealing with numeral requests sent to the 

server through a network. (Sangwan. A et al., 2016) proposed task scheduling 

algorithm in cloud computing based on load balancing to meet user demands and 

make full use of resources. The whole process considers the above mentioned two 

aspects in four phases. Initially, when new workflow arrives, it is submitted to the pre-

processor component for computing different attributes of all ready tasks. Then the 

ready task is placed in a ready queue for further processing. When services become 

available, the scheduler executes all tasks available in the ready queue and when the 

task completes its execution, the executor notifies the pre-processor of the completed 

task. This technique tries to balance the load on all available resources so that tasks 

can be completed in prespecified deadlines. The whole process is briefly summarized 

in Figure 2.15. 
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Figure 2.15 Task scheduling and load balancing technique 

 

 

2.8.7 Proactive and Reactive Scheme  

To meet real time cloud computing environment, there was a need to reduce system’s 

energy consumption. To resolve this issue, the authors (Chen. H et al., 2015) proposed 

PRS (Proactive and Reactive Scheduling) procedure to make efficient utilization of 

system resources with reduced energy consumption. When a new task is arrived in the 

system, the PRS algorithm checks whether the task has urgency. If it has urgency 

parameter, then it is referred to the urgent task queue. Otherwise, task is further sent to 

waiting queue in ascending order by their laxity. Additionally, PRS checks the 

requirements of waiting task not to exceed the available system resources. Later, tasks 

are scheduled to virtual machines for execution. The whole scenario is illustrated in 

Figure 2.16. 



 

45 

Task arrival

System 
overload

Assign VM Waiting queue

No Yes

Task
Urgent task

Yes

No

 
 

Figure 2.16 Working of PRS RA scheme 

 

 

2.8.8 Allocation-aware Task Scheduling 

Allocation aware Task Scheduling (ATS) algorithm is proposed by Sanjaya K. Panda 

for multi-cloud environment (Panda. S. K et al., 2015). Each cloud consists of 

different datasets to deploy virtual machines (VMs). The proposed model comprises 

of three steps, i.e., matching, allocating, and scheduling.  In matching phase, cloud 

manager preserves a universal queue to insert an incoming request from users. The 

requests are served as First in First Out (FIFO). The manager matches the task with 

other virtual machines to find optimized VM among all. Then, the request is removed 

and the completion time of task on a specific virtual machine is computed. Thus, one 

task is selected from the global queue at a time. Additionally, the virtual machine is 

found by manager to grasp minimum completion time for task supervised by cloud. 

Task scheduling is decided in allocation phase. In allocation phase, resources are 

assigned to tasks. The scheduler executes all tasks to carry out the computation. Each 

cloud resource executes more than one task concurrently. The experimental results 
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demonstrate better performance than Round Robin (RR) and Cloud List (CLS) 

scheduling algorithms. The entire process is portrayed in Figure 2.17. 
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Figure 2.17 High level view of ATS algorithm 

 

 

2.8.9 Bandwidth-aware Resource Allocation 

Quality of Service (QoS) attainment is incredible essential of all the users. In cloud 

computing, processing a task in a flow is vital. A non-linear programming model for 

task scheduling is proposed by Sindhu, (2015). In this model, several tasks are ready 

to be scheduled. Various resources are assigned to each task. Among all, some 

resources are used, and the remaining are being idle. To avoid resource power 

wastage, limited network bandwidth is considered. Based on accessible bandwidth, 

each task is forwarded to every VM. The proposed model produced better accuracy 

than other existing models by taking full utilization of resources and reducing the 

waiting time. The working flow of this technique is shown in Figure 2.18. 
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Figure 2.18 Bandwidth-aware RA scheme workflow 

 

 

2.8.10 Bat Approach for Resource Allocation 

(S. Raghavan et al., 2015) proposed Bat approach for the optimum solution of 

workflow scheduling.   The workflow scheduling contains two chunks, namely, task 

scheduling and mapping tasks and resources. In this approach, task and resources are 

mapped together to reduce the entire cost of execution. The model contains three 

resources and four tasks, each resource has different execution costs.  Furthermore, the 

cost of each task is computed on each resource. With the help of mapping function, a 

list is maintained when every task is mapped with resource based on minimal value. 

Each resource doesn’t contain more than one task. Finally, the result is computed and 

compared to the Best Resource Selection (BRS) algorithm. The model showed overall 

nominal cost. The working of BAT algorithm is shown in Figure 2.19. 
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Figure 2.19 Working of BAT algorithm 

 

 

2.8.11 Developmental Genetic Programming 

In real-time computing, practicing cloud infrastructure is a new concept. Resources 

are assigned to the tasks through cloud infrastructure. It is very important to design an 

efficient and effective procedure for resource allocation through cloud. (Slawomir. 

Bak et al., 2014) analyzed the problem of cloud resource allocation to minimize 

execution cost in real-time applications. The existing methodologies i.e., Iterative 

Improvement (Panda. S. K et al., 2015) and Constrained Logic Programming (Sindhu, 

2015), briefly explained and resolved the application cost problem, but still there is a 

chance of improvement to minimize the execution cost. An efficient genetic procedure 

is proposed to minimize the cost of applications with high QoS in a cloud computing 

environment. Initially, the system comprises of distributed methods considering the 

worst-case scenario where all tasks are started at equal time. All tasks are scheduled in 
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a fixed order with a definite time frame. In addition, the methods are converted into 

several task graphs due to static scheduling.  Also, primary population of genotypes is 

created and solved through genetic procedure. Here, the developmental scheduling 

algorithm is used for assigning and scheduling all tasks which outperform the ideal 

solution. The whole process in shown in Figure 2.20. 
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Figure 2.20 Flowchart of Developmental Genetic algorithm 

 

 

2.8.12 Federation-based Resource Allocation Scheme 

(Jiayin. Li et al., 2012) proposed a new approach in a cloud computing environment 

online for task scheduling on Infrastructure-as-a-Service (IAAS) cloud. In this 
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research, various data centers meet with the help of federated method. Each data 

center contains manager server which holds information about VMs and communicate 

with each other respectively. The tasks are stored in a database in the cloud, then 

cloud collects tasks and distribute it in the entire cloud system considering resource 

accessibility in the other clouds. The resource scheduling is being checked by 

monitory infrastructure. The infrastructure, producer, and consumer are communicated 

with each other in two modes, namely, push and pull mode. While making decisions, 

consumer pulls information about resources from other existing clouds. After 

finishing task execution, producer pushes the data to the consumer. Two distinct 

methods, namely, Advance Reservation (AR) and Best Effort (BE) are used for hiring 

capacities from cloud computing infrastructure. Both push and pull modes are used in 

the basic resource allocation model. Finally, Directed Acyclic Graph (DAG) is used in 

the application model. Energy aware local mapping significantly reduces energy 

consumption in the federated cloud computing environment.  This procedure is 

illustrated in Figure 2.21. 
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Figure 2.21 Federation-based RA scheme 

 

 

2.8.13 Adaptive Genetic Approach 

Allocation and scheduling of tasks on a VM is a difficult job in a hard-real-time 

environment. To resolve this problem, (Amjad. Mahmood et al., 2017) proposed 

Adaptive Genetic Algorithm (AGA) in a cloud computing environment. The model 

consists of numerous tasks having the work pressure to complete its tasks while 

meeting the deadline. Tasks have a precedence relationship when communicate with 

each other on VM denoted by a Directed Acyclic Graph (DAG). The scheduling of 

tasks is done using chromosomes to generate the population. Multiple crossover is 

performed on randomly selected chromosomes without troubling the scheduler. 

Furthermore, mutation is accomplished by selecting a gene from chromosome. Each 

gene is capable of changing bits with some probability. The proposed AGA model is 

compared with the other techniques such as DAG technique, greedy search approach 
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and non-adaptive GA. Better outcomes are achieved by the proposed algorithm. This 

process is shown in Figure 2.22.   

 

2.8.14 Dynamic Fault-tolerant Elastic Scheduling (DFES) 

It is vital to improve the resource utilization in cloud computing environment. (Hui. 

Yana et al., 2019) proposed a fault tolerant algorithm to accomplish resource 

utilization. The data center comprises of multiple hosts, each having its own VM. A 

user maintains task flow in a task queue. The system schedules the task which keeps 

record of both task scheduler and performance monitor. The monitor is responsible to 

retain the status of the system performance. On the other hand, task scheduler 

schedules task when getting feedback from monitor. The task scheduler, data center, 

and monitor communicate with each other by using star topology. The performance of 

the model is verified by using CloudSim simulator through Google tracelogs. Figure 

2.23 shows the whole process of DFES algorithm.    
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Figure 2.22 Simplified flowchart of AGA scheme 

 

 

2.8.15 Earliest Deadline First Greedy Approach 

(Karthik. Kumar et al., 2011) proposed a VM allocation procedure for real-time tasks.  

The main objective of the proposed technique is to decrease the cost of tasks 

allocation while meeting deadlines. The authors proposed a greedy approach based on 

Earliest Deadline First (EDF) algorithm. Initially, tasks are allocated separately to 

access VMs. When VMs became inadequate to accomplish the task on time, then 

based on lookup table, other low-priced VMs are selected by greedy approach to 

complete the tasks before expiry of the time constraint.  When tasks overlap each 

other and produce high cost, then identifying overlapping tasks and allocating 

resources together create outcomes in polynomial time.  The proposed model shows 

the allocation of tasks. This process is shown in Figure 2.24. 
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Figure 2.23 Workflow of DFES algorithm 

 

 

2.8.16 Deadline-oriented VM Allocation Approach 

(Kyong. Kim et al., 2011) proposed an algorithm not only to reduce the task allocation 

cost but, also increase the system consistency for both hard and soft real-time services.  

In hard real-time service, if a task does not meet the timing constraint, then penalty is 

charged. In soft real-time service, if a task does not meet time constraints, then there is  
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Figure 2.24 EDF Greedy task allocation procedure 

 

 

no penalty and results are accepted, but the Quality of Service (QoS) is decreased. 

Depending on the deadline type, the user requests hard or soft VM for further 

processing. Initially, the user requests a VM by providing all the information to the 

vendor about real-time applications. Then the provided information is first analyzed 

for creating one real-time VM (RT-VM) request and the vendor offers a VM from the 

cloud computing environment. The VM meets the task’s requirement constraint and 

its information is submitted to the user later. Finally, the user executes the real-time 

applications. The whole scenario is depicted in Figure 2.25.     
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Figure 2.25 Deadline-oriented VM allocation approach 

 

 

2.8.17 Approximate Computation-based Resource Allocation Scheme 

In a cloud computing environment, QoS provision is preferable requirement for the 

consumer. (Georgios L. Stavrinides et al., 2019) proposed approximate computation-

based scheduling technique for real-time system. To schedule tasks in a ready queue, 

heuristic is applied to select task and VM. In the beginning, tasks are prioritized based 

on EDF policy. In case of tie, task with the highest cost is selected. Once the task is 

selected by the scheduler, it is assigned to a virtual machine based on the Earliest 

Estimated Finish Time (EEFT) approach. The proposed model is made energy 

efficient through the utilization of DVFS technique during the VM selection process. 

Also, the model is cost effective when it reduces the idle time of the VM. The 
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proposed model provides better results than other existing techniques considering total 

energy consumption, SLA violation ratio, average result precision, and total monetary 

cost as performance parameters. The working of the proposed model is represented in 

Figure 2.26. 
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Figure 2.26 Flow of approximate computation-based RA scheme 

 

 

2.8.18 Periodic Server Scheduling Scheme 

Numerous systems share single computing platform to enrich flexibility and reduce 

the execution cost through virtualization equipment instead of using separate hosts. To 

overcome this issue, (Xi. Sisu, 2014) proposed novel scheduling structure in real-time 

environment. All the incoming tasks are prioritized considering pre-emptive fixed 

scheduling. Then, these tasks are scheduled according on the virtual processing units. 

Every operating system is liable on tasks scheduling. The processing is executed in 

two conditions: runnable and non-runnable. Xen scheduler schedules dependent 

functions on distinct VM and spread its other parts. The jobs continued to execute on a 
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single core hierarchy considering soft real-time tasks. Also, tasks are implemented on 

sporadic server where do-schedule method is called when virtual processing differs 

from running tasks. The proposed model performance is computed on different quanta 

whose range lies in 1ms – 10ms. The proposed model achieved better results at fine-

grained quantum considering tasks overhead.  

 

2.8.19 Heuristic-based Earliest Deadline First Scheme 

In software services, the data locality problem exists nowadays. There is a need to 

reduce the problem of workload during execution of multiple tasks. (Georgios. L et 

al., 2017) presented a solution to overcome heavy workload problem. In this scenario, 

tasks are dynamically scheduled in cloud computing under different circumstances. 

Three heuristics are applied on a real-time task set such as Non-Data-aware Earliest 

Deadline First (ND-EDF), Data-aware Earliest Deadline First (DA-EDF), and Earliest 

Data-aware Earliest Deadline First (EDA-EDF). In ND-EDF, tasks are entered in 

global queue for central scheduling. Then tasks are sorted in descending order of mean 

computational costs. Tasks having largest cost are selected first for scheduling. After 

scheduling, tasks are assigned to the VM with the earliest start time. The VM executes 

tasks according to the earliest deadline. In DA-EDF, tasks are scheduled like NDA-

EDF via the largest mean computational costs. The tasks are assigned to the VM 

having earliest start time. But the tasks are executed with their job’s deadline. In 

EDA-EDF, the procedure of tasks selection is same as other two procedures.  Here, 

tasks are executed according to the earliest start time employing EDF policy.  NDA is 

matched with the other two heuristics DA and EDA-EDF to aware the system 

performance on data locality. In the proposed model, data locality is considered during 

scheduling.   
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2.8.20 Application-directed Check Pointing and Approximate Computation 

Scheme 

 (Georgios. L et al., 2017) focused on reducing cost and fault tolerance in SaaS cloud 

computing environment to achieve good quality within time constraints.  The six 

scheduling techniques Earliest Deadline First (EDF), Earliest Dead-line First with 

Restricted Approximate Computations (EDF-RAC), Earliest Deadline First with Full 

Approximate Computations (EDF-FAC), Earliest Deadline First with Application-

directed Checkpoints (EDF-ADC), Earliest Deadline First with Application-directed 

Checkpoints and Restricted Approximate Computations (EDF-ADC-RAC), and 

Earliest Deadline First with Application-directed Checkpoints and Full Approximate 

Computations (EDF-ADC-FAC) are compared to compute the performance of overall 

system. In EDF, tasks are in queue according to earliest Estimated Start Time (EST). 

The tasks are engaged in selected queue considering EDF. In EDF-RAC, tasks in 

queue are allocated through EDF. In EDF-FAC, tasks selection is same as EDF and 

EDF-RAC procedures. The tasks are scheduled only to execute the mandatory portion.  

In EDF-ADC, tasks are employed according to directed check pointing technique. In 

EDF-ADC-RAC, tasks are employed considering both applications directed check 

pointing and approximate computations. In EDF-ADC-FAC, tasks are scheduled to 

execute mandatory portions.  The comparison among scheduling algorithm proved 

that EDF-FAC produced better results and EDF-ADC gave the best results in worst 

scenarios.  

 

2.8.21 Earliest Deadline First and Unfair Semi-Greedy Approach 

(H. Alhussian et al., 2019) proposed cloud computing architecture that consists of two 

parts: Master Node (MN) and Virtual Machine (VM). In this scenario, it is assumed 
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that MN has VMs pool. When real-time job comes to the MN, the master scheduler 

picks a VM resource from the pool and assign tasks to it until VM is fully loaded. 

When the minimum required number of VM is determined, the MN scheduler assigns 

real-time services to them. Each VM node has deadline look-a-head module that gives 

information regarding deadline-miss event. In case of such event, the event is removed 

from scheduling queue and put into urgent queue. The MN scheduler at that point 

looks for a VM node with an unoccupied processor and assigns the urgent tasks to any 

such node that is found unoccupied. Sometimes, the MN scheduler also makes another 

VM node and appoints the urgent tasks to it. When VM deadline is suspected, it 

removes those tasks from waiting queue and sends the suspected tasks to the MN. By 

following this procedure, tasks are expected to meet the deadlines. 

 

2.8.22 Dynamic Proactive Reactive Scheduling 

(H. Chena et al., 2014) proposed Proactive and Reactive Scheduling (PRS) algorithm 

that dynamically exploits PRS methods for scheduling real-time tasks. The tasks are 

assumed aperiodic and independent. The authors examined how to reduce the 

system’s energy consumption while guaranteeing the real-time constraints for green 

cloud computing where uncertainty of task execution exists. The proposed PRS 

algorithm achieved improved performance as compared to four typical baseline 

scheduling algorithms: non-Migration-PRS (NMPRS), Earliest Deadline First (EDF), 

Minimum Completion Time (MCT), and Complete Rescheduling (CRS).    

 

2.8.23 Energy-aware Resource Allocation 

Energy conservation is a big issue in cloud computing systems. If it is handled 

properly, then reducing operating costs, system reliability, and environmental 
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protection factors can be achieved effectively.  Existing power-aware scheduling 

approaches provide promising way to achieve this goal, but the issue is that they are 

not real-time tasks oriented and thus lacking the ability of guaranteeing system 

schedulability in such situations. To solve the aforementioned problem, (X. Zhu et al., 

2014) proposed rolling-horizon scheduling architecture for real-time tasks scheduling 

in virtualized clouds and energy-aware scheduling algorithm for real-time tasks. The 

tasks are aperiodic and independent. Two other strategies “scaling up” and “scaling 

down” are proposed for making trade-offs between task’s schedulability and energy 

conservation. 

 

2.8.24 Bag of Tasks Scheduling with Approximate Computation 

The authors (G. Stavrinides et al., 2017) devised six different techniques, that are 

MinMinMAC, MinMinEAC, MaxMinMAC, MaxMinEAC, SufferageMAC, and 

SufferageEAC for scheduling batch of real-time tasks (BoT) on SaaS cloud computing 

systems. All tasks are independent and non-preemptive which avoid performance 

degradation. Each task is assigned some weight which shows its total number of 

required computations. If a task fails to finish on time, it takes non-completed status 

and gets out of the scheduling queue because its deadline is non extendable. A task 

gets completed status when all its mandatory parts (jobs/subtasks) are executed on 

time. The completion of optional subtasks may refine the results. In the proposed 

model, a task can get a finished, partially finished, or skipped status. If a task is 

partially finished, it is called as approximate and the output may get affected. In any 

case other than approximate, a job is lost. 
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In the proposed model, when a task arrives at the central scheduler, it enters the 

queue and scheduler is invoked. The load on VM is calculated and the following steps 

are performed. 

1. Estimate the completion time of a task. 

2. Calculate idle time of a processor. 

3. Arrange queue according to the EDF algorithm. 

4. Calculate minimum completion time (MCT) of a task. 

The detailed working of the proposed framework is depicted in Figure 2.27. 

 

2.8.25 Green Cloud Scheduling Approach 

(T. Kaur et al., 2016) proposed a technique to efficiently utilize the nodes in a cloud 

computing system to save energy consumed during the process. With the help of 

virtualization, heterogeneous types of tasks are efficiently assigned to the nodes within 

their deadline limits that are energy efficient using Green Cloud Scheduling Model 

(GCSM). Running tasks, resources utilization, and energy statistics information are 

stored in a database.  Cloud user submits the task(s) and provides the deadline 

information for the task(s). The tasks handler and analyzer section check whether the 

current task along with the constraints provided by the user exists in the database. If it 

is there, the task is assigned the required resource. If the task is not found in the 

current database, then a special unit called Green Cloud Scheduler (GCS) efficiently 

perform scheduling of tasks on appropriate nodes within the deadline limits of the 

tasks. The GCS also tries to eliminate idle node(s) within the system, and thus 

minimizes the energy consumed by unnecessary nodes. The proposed system saves 

energy up to 71%, while 82% of the tasks are completed within their deadline 

constraints.  
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2.8.26 Fuzzy Dominance Sort-based Resource Allocation Technique 

(X. Zhou et al., 2019) minimized cost and makespan simultaneously for workflows 

deployed and hosted on IaaS clouds. This scheme proposes a Fuzzy Dominance sort-

based Heterogeneous Earliest Finish Time (FDHEFT) algorithm which closely 

integrates the fuzzy dominance sort mechanism by using Heterogeneous Earliest 

Finish Time (HEFT) list scheduling heuristic. The proposed scheme achieved 

significantly better cost-makespan tradeoff fronts with remarkably higher hyper 

volume and can run up to hundreds of times faster than the state-of-the-art algorithms. 

Two sets of simulation experiments are implemented on real-world workflows and 

synthetic applications to validate the effectiveness of the proposed FDHEFT. The 

experiments are based on the actual pricing and resource parameters of Amazon EC2. 

The produced results show supremacy of the FDHEFT approach with respect to cost-

makespan trade-offs and a lower CPU runtime when compared to the other peer 

approaches like ɛ-Fuzzy PSO, NSPSO, SPEA2, and MOHEFT. 

 

2.8.27 Best Fit with Imprecise Computations 

(G. Stavrinides et al., 2015) proposed variant of EDF scheduling scheme called EDF-

BF-IC for the real-time workflow applications scheduling in heterogeneous Platform-

as-a-Service (PaaS) cloud that combines inaccurate bin techniques and computations. 

This scheduling technique consists of two main objectives. First, to ensure that all 

applications are not exceeding the deadlines and that results in high quality output. 

Second, to decrease the time spent by execution of every workflow that causes cost to 

the user. The EDF-F-IC scheduling heuristic consists of two phases: tasks selection, 

and VM selection. In the first phase, priority is assigned to each task according to 

EDF policy. The task having the highest EDF priority is the task which has earliest  
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Figure 2.27 Workflow of BoT with approximate computation scheduling approach 
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end to end deadline. All the tasks are organized in ascending order of priorities. If 

there are two tasks and both have same deadlines, then both tasks are organized in 

descending order. In the second phase, when task selection is completed, then task is 

assigned to that VM which delivers it with the earliest estimated start time. The 

authors first find the initial position on which the ready task is located in the VM 

queue, agreeing to their priority so that least priority task does not precede the least 

one. Then they evaluate if the time saved by avoiding some part of the ready task is 

equal or greater than the total average time forced on the ready task sub-tasks. The 

proposed EDF-BF-IC technique is compared to EDF by considering communication 

workflow, intensive, and moderate application parameters. 

 

2.8.28 Hybrid Genetic and Cuckoo Search (HGCS) Algorithm 

The authors (Min-Allah. N et al., 2019) proposed a hybrid approach for scheduling 

real-time applications on cloud computing resources. The main performance 

parameters are total cost and makespan minimization. The schedulability of 

application is checked on cloud VMs. If application is feasible for execution, then the 

cost of execution is checked. The proposed HGCS algorithm selects low cost cloud 

computing resources where real-time applications are executed with total minimum 

execution time. The performance of the HGCS is compared with the other two well-

known algorithms, the genetic, and cuckoo search. 

 

2.9 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES IN 

EDGE COMPUTING 

When various things (devices etc.) and information are connected to the internet, it 

refers to the internet of things (IoT). Now a day’s billions of IoT devices are 
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connected to the internet and huge amount of data produced by these devices need to 

be processed in a very short span of time. One solution to the huge data storage and 

processing is the cloud environment. As the distance between the IoT device and 

cloud increases, the transmission latency also increases, which also increase the 

response time. Furthermore, smart handheld devices have limited storage and 

computation capabilities which cannot accommodate applications demanding high 

storage and real-time processing (Zhang et al., 2020). The solution to this problem is 

the edge computing platform. The mobile edge computing technology helps in 

overcoming the limited memory and storage constraints problems by providing cloud 

computing facility adjacent to the smart IoT devices. The edge computing platform 

allows some application processing to be performed by small edge servers located 

between the IoT devices and the cloud in location curiously physically closer to the 

IoT device. 

In edge computing, server is located in the edge network. The distance between 

the IoT devices and the computation resource is a single hop, due to which the latency 

is low, and the jitter is also very low. Edge computing is geo-distributed with location 

awareness and mobility support. Edge computing provides limited service scope with 

limited hardware capabilities to the mobile users. The storage capacity and 

computational power are also limited in edge computing. Figure 2.28 shows the 

general architecture of edge computing while Figure 2.29 portrays the taxonomy of 

edge computing presented by (E. Ahmed et al., 2017). 
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Figure 2.28 General architecture of edge computing 

 

 

 

Figure 2.29 Taxonomy of edge computing 
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2.9.1 Resource Matching-based Allocation Scheme 

Due to the low latency in resource allocation, edge computing is becoming essential 

nowadays. There is a need to provide optimal solution in a cloud computing 

environment. (Hengliang. Tang et al., 2019) proposed an algorithm for dynamic 

resource allocation in edge computing environment. The resource allocation 

comprises of resource matching and scheduling processes on edge servers. To reduce 

network traffic and improve the user experience is a main part of every application. 

All information related to data is stored in memory for further use. In resource 

scheduling algorithm, the resources are scheduled with the help of edge orchestrator 

(EO). The traffic data is scheduled into the disk of edge servers (ESs). All the jobs are 

submitted to the corresponding edge server by the access point (AP) where every job 

contains multiple tasks. Now, the corresponding container for the tasks is configured 

by the edge server. Every edge server can present multiple containers containing RAM 

and CPU. Furthermore, each container executes single task at a time. Lastly, every 

edge server matches its tasks and containers by a Resource Matching (RM) algorithm. 

The proposed model presented better results than the existing techniques.  

 

2.10 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES 

IN FOG COMPUTING 

With the increasing volume of IoT devices, the main problem faced by cloud 

computing is the latency. IoT devices need huge bandwidth for transferring huge 

amounts of data for communication as these devices send all the data to the cloud for 

processing and storage which consume bandwidth and energy. The processing of real-

time data is not possible for the cloud due to its high latency. 
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The cloud model has insufficient ability to handle the IoT requirements in case 

of bandwidth, latency, and huge data volume produced by the IoT devices. Hence, 

there is a need to bring the cloud facility closer to the IoT devices to minimize the use 

of bandwidth and energy consumption and to reduce the latency. 

CISCO introduced Fog computing to overcome the deficiencies of the cloud 

computing. Conceptually, Fog is the intermediate layer between the IoT devices and 

the cloud. The general architecture of the fog layer is represented in Figure 2.30. 

 

 
 

Figure 2.30 General architecture of fog computing 

 

 

Fog is not the replacement of cloud due to the limited number of resources but 

its extension which is dominant in terms of lower service delay, processing cost, and 

response time. Similarly, augmented reality, virtual reality, and time sensitive 

applications which have rigid service delivery deadlines are also not efficiently 

execute on remote cloud resources (Sun et al., 2020). Using Fog computing, the 
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produced data is pre-analyzed on the asset, minimize the volume of data, and efficient 

management of run time behavior is carried out. Conversely, due to the wireless 

connectivity, power failure and devolved management, the failure ratio is high in the 

Fog computing (R. Mahmud et al., 2018). Naha et al., (2018) presented taxonomy of 

fog computing based on the requirements of application, infrastructure and platform 

which is presented in Figure 2.31. 

 

 

Figure 2.31 Taxonomy of fog computing 
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(Georgios et al., 2017) proposed hybrid technique to scheduled real-time workflows in 
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which transmit data via Wi-Fi network to the fog layer. The data arrive dynamically at 

central scheduler towards Poisson stream. Each job is non preemptible and denoted by 

a directed acyclic graph (DAG). The tasks are initially prioritized using EDF policy. 

Then, the tasks are scheduled and assigned to the VM according to earliest finish time 

(EFT) technique. The proposed model produced improved results as compared to fog-

EDF. This general process is shown in Figure 2.32. 
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Figure 2.32 General process of hybrid EDF approach 

 

 

2.10.2 Tasks Buffering and Offloading Policy 

A task shows poor performance on the execution nodes due to limited capacity. Cloud 

computing resolves this issue by utilizing powerful resources which produce better 

quality results in reduced time. But it increases chances of data loss because several 

tasks transfer information over the network. To overcome this issue, (Lei. Li et al., 
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2019) proposed an algorithm for processing heterogeneous real-time tasks. It 

comprises of three tiers to increase the QoS. Initially, the end tier is accessible by the 

data source of fog system. Secondly, the fog tier shows a minor latency during 

transmission between the fog and end devices. Thirdly, the cloud tier contains 

unlimited resource capacity to attain extra-ordinary performance. A single parallel 

virtual queue at the fog node is made to reduce time complexity. The proposed model 

performance is compared with the two resource allocation techniques, i.e., the round 

robin and maximum resource utilization. The results showed that greater value is 

achieved by a task when task buffering, and offloading policy is adopted.  This 

scenario is depicted in Figure 2.33.   

 

Tires architecture

Tasks

Virtual queue

Resource allocation

Performance 
evaluation

End Fog Cloud

 
 

Figure 2.33 Task buffering and offloading scenario 
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2.11 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES 

IN MULTICORE SYSTEMS 

The RA schemes for real-time services in multicore environment are mainly 

categorized into online, offline, and mixed approaches (Zarrin et al., 2017). The online 

RA approaches map real-time applications dynamically at run-time without any prior 

knowledge of the system (B. Yang et al., 2013; Anagnostopoulos et al., 2013; F. Dong 

et al., 2006; G. Sabin et al., 2007). In offline RA approaches, the applications have 

advanced knowledge of the whole system and the resources status (Y. Jiang et al., 

2008; D.W. Kim et al., 2002; J. E. Boillat et al., 1990; C. Marcon et al., 2007). These 

approaches have drawback of lack of knowledge how to solve variant application 

workload problem at runtime dynamically.  In mixed approaches (H. Hoffmann et al., 

2011; H. Shojaei et al., 2009; L. Schor et al., 2012), application mapping and selection 

is pre-calculated at design time.  

 

2.11.1 Rate Monotonic Scheduling with Reduced Priority Levels Approach 

In reduced priority levels technique (Qureshi M. B et al., 2015), the hard-real-time 

tasks are grouped into multiple classes. Priority is assigned to a class instead of 

individual task which means that if there are total n tasks in a set, then the number of 

priority levels will be less than n which shows that one of the class has more than one 

task. The tasks within a class are prioritized based on the Rate Monotonic scheduling 

approach. This procedure reduces the assignment of priority levels. 

 

2.11.2 Hybrid Cuckoo Search-based Algorithm 

(Xiangtao. Li et al., 2013) proposed hybrid cuckoo search (HCS) based algorithm to 

resolve permutation flow shop scheduling problem (PFSSP).  The core purpose of the 

PFSSP scheduling is to minimize the makespan. Based on a random key, largest rank 
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value (LRV) rule is proposed to create a appropriate cuckoo search. Additionally, with 

the combination of Nawaz Enscore Ham (NEH) heuristic algorithm, a population with 

an assured value and range is generated. A Fast-Local Search (FLS) is injected to 

increase the local utilization for consideration. Finally, comparison is carried out for 

better performance of the HCS model with the PSOMA, OSA, PSOVNS, and HDE 

algorithms.  

 

2.11.3 Online Accrued Scheduling Scheme 

(Shuo. Liu et al., 2011) proposed scheduling algorithm for real-time system on the 

task model online with the utility functions. Two different utility functions that are 

profit and penalty are associated with the task. If the task completes its execution 

within a specific time period, it is considered as profit. On the other hand, if the task 

misses its deadline, then it must pay a penalty. To schedule several real-time services 

requests, two non-pre-emptive heuristic scheduling are used. The purpose of using 

heuristics is to accept, schedule, or abort real-time services to maximize the sing time 

utility function. Initially, all the incoming real-time tasks are accepted to assess the 

requirement for the system. Then, all the incoming tasks in a ready queue are 

scheduled for execution. Lastly, reject awaiting requests and terminate the task when 

accomplished. The proposed model shows better results than EDF, GUS, risk-reward, 

and PP-aware scheduling algorithms. The high level working of the proposed scenario 

is depicted in Figure 2.34. 

 

2.11.4 Least Feasible Speed (LFS) Technique 

(Nasro Min-Allah et al., 2012) introduced LFS technique for checking the 

schedulability of the real-time systems with minimum energy consumption procedure 
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on multicore systems. The authors suggested that the first point in a scheduling points 

set cannot guarantee the schedulability of the tasks with minimum power 

consumption. So, each task feasibility is checked by multiple scheduling points in a 

set. The proposed LFS technique outperforms the existing First Feasible Speed (FFS) 

counterpart. Furthermore, the authors have also suggested a strategy for load 

balancing on cores. 

 

2.11.5 Load Balancing by Tasks Splitting and Tasks Shifting Strategy 

Load balancing plays a vital role in improving multicore systems efficiency. In ref 

(Hussain. H et al., 2013), the authors distribute the real-time tasks on multicore 

systems in a way that the computational demand of tasks is fulfilled in specified 

deadlines and the total utilization of the core remains in bound. They perform 

utilization-based tests. When a core utilization becomes greater than 100%, then tasks 

are shifted to the other underutilized core.  
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Figure 2.34 High level flow of online accrued scheduling scheme 

 

 

2.11.6 Compatibility-aware Task Partitioning Scheme 

It is essential to improve task execution within deadline constraints on multicore 

platforms. (Qiushi. Han et al., 2015) provide efficient tasks scheduled using rate 

monotonic scheduling (RMS) on multiple core platforms under fault tolerant 

requirements. In the proposed scheme, multicore scheduling is divided into two 

groups, namely, global and partitioning scheduling. In global scheduling, every task is 

executed on any core, while in partitioning scheduling, every task is assigned to a core 
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and all tasks are executed on that specific core. The authors considered partitioning 

scheduling because of low overhead. Only one task can be allocated at a time. Also, a 

task is assigned to a respective core which computes the compatibility. The task is re-

executed when fault is identified. A check pointing scheme is merged with the 

compatible task to increase system utilization. Figure 2.35 shows this phenomenon. 
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Figure 2.35 Compatibility-aware tasks partitioning scheme 

 

 

2.11.7 Simple Combined Resource Usage Partitioning 

The usage of reserve memory on the CPU is increased by some task running on the 

system due to which latency is also increased during the execution of tasks. To 

overcome this problem, (Gustavo et al., 2018) focused on the memory resource 

division for real-time systems.  Initially, fixed priority is assigned to several tasks and 
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then the tasks are scheduled on multiple core platforms which share a single memory 

known as cache. The scheduling of hard real-time tasks is improved by co-scheduling 

memory and CPU. Then, memory bandwidth and memory latency are progressing 

using three dimensional systems with on-chip dynamic random access memory 

(DRAM). This is how tasks are scheduled to meet the deadline for the memories. The 

proposed model scheduled 19.5% more tasks than the other existing classic scheduling 

methodologies such as SCRUP and TATP.  

 

2.11.8 Enhancing Shared Cache Performance-based Approach 

(P. Kumar et al., 2019) proposed task reprocessing scheme to enhance the 

performance of a common cache memory on a real-time multicore system (with 

quantum-placed universal recurring co-scheduling model) and to reduce the overhead 

in real-time scheduling by encouraging eligible task sets to reprocess based on 

heuristics called ENCAP (Enhancing shared Cache Performance). By utilization, 

processing rates are determined by splitting tasks into sub-tasks having pseudo cutoffs 

(intermediate cutoffs). These sub-tasks are processed using EDF scheme. Among sub-

tasks, there exist cutoff miss or tie with the same cutoffs. The tie is broken by 

ENCAP.  

The ENCAP is used to reschedule loads which are ignored due to the low 

priority load. Loads are assigned statically and processed based on a cache aware real-

time EDF.  Every load in a task is discharged regularly which is called an activity of 

the load. A periodic load can be derived by a slot which is partitioned between its 

consecutive load discharges and reprocessing cost.  It implies the largest reprocessing 

time. Every activity of a load has a cutoff corresponds to the discharge time.  
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2.11.9 Large Time Demand Analysis Technique 

In scheduling points test, the basic feasibility of a task is determined by testing 

scheduling points for the lowest priority task first. But main drawback of such tests is 

that it is not possible to address the total execution demand of such tasks at a small 

number of points. Instead, the feasibility is determined at very large scheduling points 

set. Nasro Min-Allah (2019) performs the feasibility analysis of periodic real-time 

tasks by testing large number of scheduling points. At each scheduling point, the 

cumulative demand of a task is tested. The task is declared un-schedulable if at any 

point, the task execution demand is greater than the total processor capacity. 

 

2.12 CHAPTER SUMMARY 

The resource allocation scheme in HPC systems plays a vital role in allocating 

resources to the user applications, especially when such applications have associated 

time parameters and need resources within specified time and user budget constraints. 

In this chapter, we have surveyed resource allocation schemes for real-time services in 

HPC paradigms, including grid, cloud, fog, edge computing, and multicore systems. 

Working of these schemes has been evaluated theoretically and presented pictorially 

so that a new researcher can be facilitated on a single platform. The detailed 

comparison based on common parameters provide an opportunity to easily find 

architectural and implementation related similarities and differences among different 

RA schemes. We have provided comprehensive analysis, which distinguishes this 

survey from the existing surveys in the RA domain. This survey specifically 

consolidated RA schemes only for real-time services which involve execution 

deadlines. In this chapter, RA schemes are classified based on real-time workloads 

and an overview of the most commonly used schemes was presented in large-scale 
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HPC systems. Each scheme was uncovered based on some common performance 

parameters.  
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CHAPTER THREE 
 

PREDICTION-BASED RESOURCE ALLOCATION MODEL FOR 

REAL-TIME TASKS 
 

 

 

 

3.1 INTRODUCTION 

In this chapter, we consider real-time tasks scheduling as an HPC resource 

management technique. The proposed resource allocation model considers real-time 

tasks which need data files for processing. Task requirements are specified and passed 

to the prediction analyzer module. The prediction analyzer predicts whether task 

execution will be completed within deadlines by considering all the task requirements. 

If the task is schedulable, then the scheduler schedule it on the feasible resources 

specified during prediction phase. In this way the resources are allocated to the 

feasible tasks. 

In recent years, real-time systems scheduling on HPC platforms contributed 

huge volume to the plethora of scheduling theory. It has become the passable platform 

for executing computational-intensive applications on powerful resources (Abdullahi 

& Ngadi, 2016). The effectiveness of the real-time scheduling algorithm can be 

measured from the deadline miss ratio (Xie & Qin, 2005; Qureshi M. B et al., 2014) 

which can be calculated as follows. 

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 =  
𝑁𝑜. 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠
 

Real-time scheduling algorithms are classified in to static and dynamic 

algorithms. In static scheduling algorithms, the tasks are characterized by static 

priorities which are assigned to the tasks before starting execution on computing 
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resources and remain unchanged throughout the execution of the tasks (Qureshi M. B 

et al., 2015). In dynamic scheduling, tasks priorities may change during execution.  

 

3.2 PROPOSED RESOURCE ALLOCATION MODEL 

It can be observed that most of the existing solutions to the real-time data-intensive 

tasks allocation problem in HPC domain leave gaps for deadline miss. The data and 

communicational aspects between computing and storage resources and specification 

of the feasible resources and task execution time on these resources is unaccounted in 

the existing resource optimization settings. The advanced feasibility testing of the 

real-time tasks under fixed priority scheduling technique has always been challenging 

when data constraints are considered. From data files processing perspective, it has 

also been of interest to include data files transfer time in feasibility analysis on 

computational resources when some of the files are locally available to the tasks and 

some to be transferred from the remotely located storage resources.  

In this chapter, a novel and fine-tuned resource allocation model for real-time 

application on HPC resources is developed to cope with the aforementioned problems. 

The proposed model is referenced in Figure 3.1.  

In the proposed model, batch of real-time tasks is submitted to the Tasks 

Demand Specifier module which specifies the basic tasks parameters. The parameters 

include required execution time, period, deadline and number of required data files. 

After specifying the parameters, the batch is forwarded to the Offline Prediction 

Analyzer which analyzes tasks in advance for feasible allocation. In this module, 

computational resources ranking strategy is applied which guarantees tasks execution 

within deadline with minimum possible time. The ranking technique helps in selecting 

the most appropriate resources for application scheduling. The tasks grouping 
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approach based on some common parameters is adapted to achieve schedulability 

without compromising tasks deadlines constraints. By positive negative points 

technique, the points on which task schedulability is feasible are identified and rest are 

discarded. The points are then passed to the Prediction Analyzer where task’s 

feasibility is checked on each positive point. When tasks are declared suitable, then 

they are assigned execution priorities by using priority assignment technique. When 

tasks are prioritized then the batch is forwarded to the scheduler which then select 

resources from a pool of resources and allocate to the tasks. If tasks are declared not 

schedulable on resources by Offline Prediction Analyzer, then the batch of tasks is 

discarded, and further evaluation is not performed. The advantage of the prediction 

analysis stage is to save time by refraining further analysis on non-schedulable tasks. 

 

3.3 MATHEMATICAL MODELING AND PROBLEM FORMULATION 

3.3.1 Proposed Task and Resource Model 

The proposed model is characterized by the following modules. We consider a real-

time application which is composed of multiple tasks. The application considered here 

is termed as metatask Г. Each task i has pre-defined parameters; execution time ci , 

needed by a task i to execute on a computational resource, period pi , which is the time 

interval between the activation of two consecutive jobs of a task i, and deadline di 

which is the time by which the task i should complete its execution. The task model 

can be expressed mathematically as, 
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3.3.2 Basic Task Model 

𝜏𝑖(𝑐𝑖, 𝑝𝑖, 𝑑𝑖)  (3.1) 

where 

pi: period of task i 

ci: computation time of task i 

di:  deadline of task i 

 

 
 

Figure 3.1 Proposed prediction-based resource allocation model 
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In our proposed model, we are considering tasks with data requirements. We 

assume that the data files are replicated on multiple data storage resources. By 

considering the data requirements, the modified task model is represented by 

Equation. 3.2. 

 

3.3.3 Modified Task Model 

𝜏𝑖(𝑐𝑖, 𝑝𝑖, 𝑑𝑖, 𝐹𝑖)  (3.2) 

 where 

Fi: Set of files required by task i 

Fi ⊂ F {f1, f2, …, fk} where F is set of total k files located on distributed data storage 

resources. 

The metatask is a set of total n tasks represented by Equation 3.3. 

 

3.3.4 Metatask Г  

Г = {τ1, τ2 , τ3, …, τn}        (3.3) 

The feasibility of the metatask is determined by individual tasks. If all the tasks (1, 2, 

…, n) in a metatask are feasible, then a metatask is schedulable.  

 

3.3.5 Offline Prediction Analyzer 

This function analysis the feasibility of a task and determine in advance whether the 

task will fulfill deadline if allocated to a particular resource by considering task and 

user constraints.  The Offline Prediction Analyzer component take into consideration 

the following sub-components for predicting task’s feasibility on resources. 
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3.3.5.1 Positive Negative Points Set for Task i 

𝑃𝑁𝑃𝑖 = {𝑥. 𝑝𝑗|𝑗 = 1, … , 𝑖; 𝑥 = 1, … , ⌊
𝑝𝑖

𝑝𝑗
⌋}   (3.4) 

where pj is the period of the higher priority task than task i. 

From the PNP set, the positive points (time instants) are identified by checking task’s 

feasibility, and the rest of the points are declared as negative points on which the task 

is infeasible. This technique will help in minimizing the makespan because the 

negative points will be further excluded from the task feasibility analysis. 

 

3.3.5.2 Resource Demand Calculator 

𝑅𝐷𝑖(𝑇) = 𝑐𝑖 + 𝑅𝐷𝑧(𝑇) ; 𝑇 ∈ 𝑃𝑁𝑃𝑖      (3.5) 

𝑅𝐷𝑧(𝑇) = ∑ ⌊
𝑇

𝑝
𝑗
⌋𝑖−1

𝑗=1 𝑐𝑗      (3.6) 

 where              

RDi (T): Resource demand of task i at time T 

RDz(T): Resource demand of all higher priority tasks than task i at time T. 

The resources are HPC heterogeneous resources each one is equipped with pre-

defined processing power. The resources are distinguished based on their architecture. 

 

3.3.5.3 Execution Time of Task i on Computing Resource r  

 𝐸𝑇𝑖𝑟 =
𝑅𝐷𝑖(𝑇)

𝑝𝑜𝑤𝑟
 ; 𝑟 ∈ 𝑅    (3.7) 

where  

R: set of computing resources 

𝑝𝑜𝑤𝑟 : power of resource r in MIPS 
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3.3.5.4 Resource Ranking Function 

𝑅𝑎𝑛𝑘 = 𝑝𝑜𝑤𝑟 + 𝐵𝑟𝑑   (3.8) 

where  

Brd: bandwidth of computing resource r to data storage resource d 

The rank of the computing resource is calculated for each task. If a single file is 

replicated on more than one storage resources, then the rank of a single computing 

resource r where the task is initially feasible will be calculated to all the storage 

resources on the required file is stored. The file will be retrieved from the storage 

resource for which the rank value is high. Figure 3.2 illustrates this scenario. 

For example, file f1 is stored on both data resources d1 and d2 which is required 

by the task executed on computing resource r. The file will be fetched from the data 

resource for which the corresponding rank is high. Also, if a task is feasible on more 

than one computing resources, then the computing resource for which the rank is high 

will be selected for task execution while ties are broken arbitrary. 

 

 
 

Figure 3.2 Resource rank calculation 
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3.3.5.5 Tasks Grouping 

𝐺𝑘 = {𝜏𝑖, 𝜏𝑖+1, … , 𝜏𝑛}  (3.9) 

where 

Gk: Group k of n tasks 

Tasks are grouped based on common demands or based on priorities. For 

example, if tasks are grouped based on common files demands and there are 10 tasks 

in a set and total 5 files are available on storage resources. If 𝜏1, 𝜏4, 𝜏5 need files f1 

and f5, 𝜏2, 𝜏3, 𝜏6, 𝜏7 need files f2, f3, f4, 𝜏8, 𝜏9, 𝜏10 need files f1 and f3, then tasks can be 

grouped into 3 groups. 

G1 = {𝜏1, 𝜏4, 𝜏5} 

G2 = {𝜏2, 𝜏3, 𝜏6, 𝜏7} 

G3 = {𝜏8, 𝜏9, 𝜏10 } 

 

3.3.5.6 Priority Assigner  

This function assigns priorities to the tasks using some traditional algorithm like Rate 

Monotonic (RM). 

RM priority assignment:   

priority (𝜏) α 1/period (𝜏)  (3.10) 

 

3.3.5.7 Objective Function 

The Quality of Service (QoS) parameters that may be considered, are 

a) makespan minimization 

b) cost efficiency 

c) maximum resource utilization etc. 
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Task constraints are completing task and metatask within deadlines. If all tasks 

within a metatask are completed within deadlines by considering all the task and user 

constraints, then the metatask is completed within deadline. 

 

3.3.5.8 Resource Model 

In our proposed model, we consider computing, storage and network resources. By 

network resource we mean the bandwidth allocated for transferring data files from 

storage locations to the computing resources. The resources are heterogeneous in 

nature which means that they have different architectures and different processing 

powers. 

By considering all the task’s demands and concerned requirements for the 

resources, the prediction analyzer predicts whether the given task is schedulable on 

some computing resources. If the task is schedulable, then it is forwarded to the 

scheduler for further allocation. 

 

3.4 CHAPTER SUMMARY 

In this chapter, we have proposed prediction-based model for allocating HPC 

resources to real-time tasks. We assumed that the tasks need data files for completing 

their processing on computing resources. The resources are computing, storage and 

network resources. The files are transferred from the far away located data resources 

to the computing resources which consume network bandwidth. The prediction 

analyzer considers different parameters and predicts whether, the arrived task will 

meet the deadline or not.  The advantage of this model is to reduce the overall 

processing time of the real-time tasks. The model was mathematically formulated.  
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CHAPTER FOUR  
 

EFFICIENT RESOURCE ALLOCATION TECHNIQUE FOR 

REAL-TIME DATA-INTENSIVE TASKS IN CLOUD 

COMPUTING SYSTEMS 
 

 

 

 

4.1 INTRODUCTION 

Cloud computing is the de facto platform for deploying resource-intensive tasks due to 

the collaboration of large-scale resources operating in cross-administrative domains. 

The cloud computing resource scheduling and allocation is a crucial issue in achieving 

efficient utilization of available resources especially when resource-intensive tasks 

have real-time deadlines and data requirements. Traditional approaches are sufficient 

only when data resources are located locally, since data is available at the computing 

resources for tasks execution. However, the computational cost and execution time of 

the resources has not been thoroughly deliberated when data storage resources are 

remotely located. In such approaches there is a chance that some tasks may miss their 

deadlines during execution due to the urgency of the tasks and limited budget 

constraints. The timing requirements exacerbates efficient task scheduling and 

resource allocation problem. To cover the aforementioned challenges, we propose a 

time and cost-efficient resource allocation strategy for real-time data-intensive tasks in 

the cloud computing environment which minimizes the data files transfer overhead to 

computing resources where the tasks are executed by selecting appropriate computing 

and storage resources. The proposed algorithm considers heterogeneity of resources 

and data files transfer time and cost in task’s feasibility analysis when files are 

replicated on remotely located storage resources. The celebrated results show the 

effectiveness of the proposed technique in terms of resource selection and tasks 
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processing within time and budget constraints when compared with the RDTA 

(Martel, 2020) and Greedy algorithms. 

With fast growing advancements in IT industry, the real-time applications are 

handy candidates for utilizing computing power in cloud computing environment in 

order to maintain deadline constraints. In addition, the cloud storage resources provide 

facilities such as accommodating data replication to satisfy data requirements of the 

data-intensive real-time applications that need to access, process and transfer data files 

stored in distributed data repositories (Venugopa & Buyya, 2008). Examples of such 

applications are self-driving vehicles which depend on the data and computations 

under a complex network of interconnected devices such as GPS, surveillance 

cameras, radar, laser light, odometry, etc. to perceive the surroundings (Martel, 2020; 

Statista, 2020).  The cloud providers such as Amazon EC2 (Amazon, 2020) provide 

computing facilities (virtual machines) on pay-as-you-go basis at the rate of 10 cents 

per hour. The lease prices vary depending on the virtual machines (VMs) 

specifications. The normal VM offers an approximate processing power of 1.2 GHz 

Opteron processor with storage capacity of 160 GB disk space and 1.7 GB of memory 

(Amazon, 2020; Li et al., 2012; Armbrust et al., 2009). Such facilities pave the way 

for executing time critical and IoT applications which demand high processing and 

storage capabilities (Amadeo et al., 2017). The IoT devices offload many tasks to the 

cloud environment from the smart systems because these devices have very limited 

processing and storage capabilities. Leveraging the capabilities of virtualization 

technology, VMs can be scaled up and down depending on the current system 

workloads (Chen et al., 2015). However, there is a lack of efficient resource 

scheduling and allocation strategies for deploying real-time applications with stringent 

QoS and data requirements in cloud computing environments.  
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The Global Institute report on analyzing economic impact of IoT devices show 

that it will increase upto $11 trillion by the year 2025 (Mckinsey, 2015). This increase 

is because the IoT devices and smart homes appliances ranging from small sensors to 

large scale biometrics offload data and computation to the cloud computing 

environment on regular basis. For this purpose, the IT companies provide solutions 

such as Apple’s HomeKit (Davidson, 2017), Samsung’s SmartThings (Ambient, 

2020), Amazon’s Alexa (Amazon, 2020), and Google’s Home (Google, 2018), etc.  

The driving force of the cloud computing is virtual machine manager (VMM) 

that creates the virtual resources of the physical machines. The basic functionality of 

the VMM is to separate virtual computing environment from the underlying physical 

infrastructure. In this research work, we implement the rate monotonic (RM) 

scheduling policy to allocate cloud computing resources to the real-time periodic 

tasks. The scheduling problem is divided into three parts: the processing environment 

(cloud virtual machines), the nature of real-time task (fixed priority system), and the 

optimization criteria (time and cost-efficient allocation).  The real-time task set is a 

collection of multiple tasks, each of which requires data files for processing. The 

required data files are requested from the remotely located storage resources. The 

intelligent selection and assignment of cloud computing resources is investigated 

while data files are replicated on decoupled storage resources and accessed by 

utilizing networks of varying capabilities. These files are fetched to the computing 

resources where tasks are executed which add transfer time to the tasks total execution 

time.  

The major research contributions of this chapter are as follows. 
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1. Creating a model for selecting appropriate cloud computing and storage 

resources to execute tasks with timing and data constraints when data files 

are replicated on multiple resources, 

2. Partitioning the task sets into groups based on common data-files demands 

such that timing constraints of the original tasks set do not disturb, 

3. Allocating cloud computing resources to periodic tasks such that the 

overall timing constraints remain intact. 

 

4.2 TASK, RESOURCE AND COST MODELS 

In this research, we consider scheduling feasibility of real-time periodic tasks in an 

HPC environment. Our concerned HPC environment is composed of both 

computational and storage resources located remotely and connected by network links 

of different bandwidths. The resources are heterogeneous and characterized by power 

and cost constraints. In this chapter, we concentrate on two basic constraints; (a) the 

real-time tasks deadlines, and (b) user specified budget. The presented model extends 

the RDTA model (Martel, 2020) by introducing cost parameters, data files replication 

scenario, and tasks grouping criteria. 

 

4.2.1 Task and Resource Model 

We consider batch processing of real-time periodic tasks each of which can generate 

infinite number of jobs. In periodic tasks set T =  {task1, task2, … , taskn}, each taskk 

is defined by the quadruple: 

taskk = (rk, ek, dk, periodk) (4.1) 

where rk shows the release time of the first job, ek the required computation 

time, dk the relative deadline of taskk which is the time difference between the 
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absolute deadline and release time of a job, and periodk the period which is the time 

different between the two successive jobs of a task k.  

In the above discussed model, a job i released at time instant rk +

(i − 1). periodk needs to execute for ek units before the time rk + (i − 1). periodk +

dk. In our task model, we concentrate on constrained deadline model which assumes 

that dk ≤ periodk, Ɐ k ∊ T . Tasks preemption is not allowed and context switching 

overhead is subsumed into ek . We also assume that rk = 0, Ɐ k ∊ T which means that 

feasibility of tasks is checked when the system is most loaded.  

We consider computing resource set CR such that CR = {CR1, CR2, … , CRr} 

each one is characterized by a computing power CPy (1 ≤ y ≤ r) such that CPy ∈ CP  

where CP = {CP1, CP2, … , CPr} and measured in Millions of Instructions per Second 

(MIPS). The execution time of a taskk on resource CRy can be computed by 

       EETky =  
ek+ ehigher

CPy
        (4.2) 

where ehigher is the execution time of the higher priority tasks than taskk. 

Mathematically, 

ehigher =  ∑ ⌈
t

periodj
⌉ ej

k−1
j=1  , t ∈  PNPj (4.3) 

where PNP set accumulates points or time instants on which task feasibility is 

analyzed. The PNP set is defined as follows. 

 

Definition 1.  PNPk is a set of positive and negative points for taskk constituted by the 

relation x. periodj  such that  1 ≤ j ≤ k and 1 ≤ x ≤ ⌊periodk/periodj⌋ , where 

periodj represents periods of higher priority tasks than taskk. The point tP ∊  PNPk is 

said to be positive if task k is declared feasible (i.e., completes its execution before 
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deadline) at some point t by considering all associated time and data constraints. The 

point tN ∊  PNPk  declares the taskk infeasible when it misses the deadline. Each point 

in PNPk is called rate-monotonic scheduling point.  

From Definition (1), it is concluded that the set PNP is the union of positive 

points set PP and negative points set NP where PP = PNP − NP and P = PNP − PP . 

In other words, PNP = PP ⋃ NP. 

 

4.2.2 Data Files Model 

In our task model, a tasks set T =  {task1, task2, … , taskn} consists of data-intensive 

real-time tasks where each task taskk needs set of data files DFk for its execution. The 

set DFk =  {fk1, fk2, … , fkm}  ⊆ DF. The file fkx ∈  DFk is stored on data storage 

resource drw where drw ∈  DRk and DRk  ⊂ DR. The DR is the set of total storage 

resources in the HPC environment. In other words, files in DFk are stored on DRk 

storage resources. We assume that the data files are replicated on more than one data 

storage resources.  

The total execution time TT of a task taskk is the sum of actual computation 

time EET of taskk on computing resource CRy and the transfer time taken by the 

required m data files in the set DFk by transferring from storage resources DRk to the 

computing resource CRk where task k is executed. Mathematically, 

TTk = EETky + ∑ FTfkz

m
z=1   (4.4) 

where FTfkz
= ℝw + Sizefkz

BWwy⁄  is the transfer time of the file fkz. 

The ℝw represents the response time of the data storage resource drw ∈  DRk 

where the data file fkz is stored. The response time is the time when the request to 
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fetch the file is made to the time when the request is entertained. Algebraically, 

response time of data resource drw is calculated as: 

ℝw =  STfkz
+ WTfkz

  (4.5) 

where STfkz
 is the service time and Wfkz

is the waiting time of the request 

respectively for accessing the file fkz. Also, the Sizefkz
 denotes the size of the file fkz , 

and BWwy shows the link bandwidth between data storage resource drw and 

computing resource CRy. The proposed model selects that storage resource for file 

access for which FT is minimum i.e., min(FT). 

 

4.2.3 Tasks Grouping 

The data-intensive real-time tasks in T are grouped into x groups based on common 

data files demands. The tasks in a group represent subset of T or we can say each 

group is a set of tasks for easy understanding. The task grouping taxonomy is 

pictorially represented in Figure 4.1. 

 

 
 

Figure 4.1 Tasks grouping taxonomy 
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Based on real-time tasks grouping criteria, the group of tasks, its cardinality, 

and priority assignment is defined in the following sections. 

 

Definition 2. A group of real-time tasks Υx is a subset of tasks i.e., Υx ⊆ T(x ≤ n) 

having common data files demands. Each group Υx contains minimum one task which 

concludes that Υx ≠ {} .  

 

Definition 3. The cardinality of a task group defines total number of tasks in a group. 

Let there are total x number of groups then cardinality of the original tasks set T =

 {task1, task2, … , taskn} can be defined as: 

card(T) = ∑ card(Υl)
x
l=1               (4.6) 

The advantage of the tasks grouping mechanism is to reduce the total number 

of priority levels (Qureshi et al., 2015). Additionally, tN ∊ NP for a higher priority 

task taskj ∊ Υx  remains the member of NP for all lower priority tasks than taskj in Υx 

since tasks in the same group are also sorted on the basis of RM priorities. In this way 

a smaller number of points is tested in the PNP set which decreases the execution 

time. 

From the above definitions, the following can be observed, 

 

Observation 1. Let each tasks group Υl constituted from task set T =

 {task1, task2, … , taskn} contains a single task in worst case scenario and x represents 

total number of groups in the system, then x = n 

where n represents card(T) . 

Each real-time task in our task model has deadline d which demonstrates the 

maximum allowed time for a task to complete its execution on a single computing 
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resource. Let the maximum and minimum deadlines of the tasks in a group Υx are 

denoted by dmax and dmin respectively. Here an interesting observation can be made. 

 

Observation 2.  dmax of the tasks {task1, … , taskl} ϵ Υx(l ≤ n) sorted by RM priority 

assignment technique and following the implicit deadline model (where period = 

deadline) is the period of the last task while dmin is the period of the first task in Υx . It 

follows the relation: 

dmax = periodl 

   dmin = period1               (4.7) 

where  periodl and period1 represent periods of the last and the first task in Υx 

respectively. 

 

Proof: The RM technique sorts the tasks based on priorities assignment criterion: the 

lesser is the period of the task, the higher is the priority. It means that the last task 

taskl ϵ Υx has the lowest priority and first task task1 ϵ Υx has the highest priority 

among all tasks in Υx . The task1 is executed in the first and taskl is executed in the 

last slots. In other words,  priority(task1) ≥ priority(task2), … , ≥ priority (taskl) 

which follows thatperiod(task1) ≤ period(task2), … , ≤ period (taskl). It also 

follows that dmax = periodl and dmin = period1 which completes the proof. 

Liu et al., (1973) discussed that rate-monotonic (RM) assigns static priorities to 

tasks and considered as optimal scheduling algorithm among static priorities 

assignment scheduling algorithms. By optimal they mean that RM should must 

schedule a task if any other static priority assignment algorithm can schedule that task. 

Following are the general characteristics of RM scheduling technique which play role 

in proving its optimality. 
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1. the system should consist of fixed number of tasks; 

2. the tasks should have execution times known in advance; 

3. each task has completion deadline equal to its period; 

4. tasks should be periodic which means that instances or jobs of a task 

should arrive after a fixed time interval; 

5. tasks should be independent; 

6. all tasks should arrive at time 0. This time instant is also known as critical 

instant and the system is considered as the most overloaded at this instant. 

 

Definition 4. The period of a tasks group is defined as the temporary period attached 

to the group of tasks which is the period of the last task in a group. In other words, 

periodl is the group period because the tasks in a group are sorted using RM 

technique. For example, if a group Υx accommodates tasks {task1, task2 … , taskl} , 

then 

period(Υx) = periodl    (4.8) 

Since the groups are sorted on the basis of RM priorities, so period(Υ1) ≤

period(Υ2), … , ≤ period(Υl) which states that priority(Υ1) ≥ priority(Υ2), … , ≥

priority(Υl). Equation (4.8) states that all tasks in Υx  must complete execution at or 

before periodl . It is further evaluated that since the tasks in the same group Υx are 

also sorted by RM priorities, so tN ∊ NP for a higher priority task taski ∊ Υx  remains 

the member of NP for all the lower priority tasks than taski in Υx . 

 

Definition 5. The group capacity can be defined as the total number of tasks in a 

group. Tasks in a group are added based on common data files demand. The group 

capacity can be analyzed based on resource utilization by a group of tasks called 
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group utilization (GU) which is defined as the sum of the resource utilization of each 

task in the group. The computing resource utilization of each task is termed as the task 

utilization (TU). Let n denotes the total number of tasks in a group Υx , then GU and 

TU can be found as follows. 

GUΥx
=  TU1 + TU2 + ⋯ + TUn 

                        = ∑ TUi
n
i=1                             (4.9) 

where 

                   TUi =  ei
periodi

                   (4.10) 

 

Theorem 1. Let Υx  is a group of n periodic tasks, where each task is characterized by 

TU. The Υx is RM feasible if the following condition holds. 

GUΥx
≤ n(21 n⁄ − 1)             (4.11) 

The inequality (11) is called as Liu & Layland (LL) test reported by (Liu et al., 

1973). The expression n(21 n⁄ − 1) is the threshold value of a group which means that 

a group Υx can accommodate tasks as for as the GU remains lower than or equal to the 

threshold value. Equation (4.11) is checked repeatedly when a new task is added to the 

group. If adding a task changes the inequality GU > n(21 n⁄ − 1)), then the incoming 

tasks are added to another group. The authors in [2] refer the LL test as the sufficient 

condition test. They claim that it is not necessary that the tasks in a group are not 

feasible for scheduling if Equation (4.11) does not hold. It means that utilization-based 

tests are enough only but not necessary. Let us explain by the following example task 

set taken from (Min Allah Nasro & Khan Samee, 2011; Liu, 2000). 
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Example 1. Consider a tasks group Υ = {task1, task2, task3, task4} where tasks 

follow RM ordering and having following characteristics, 

 

Tasks 𝒄𝒊 𝒑𝒆𝒓𝒊𝒐𝒅𝒊 

𝑡𝑎𝑠𝑘1 

𝑡𝑎𝑠𝑘2 

𝑡𝑎𝑠𝑘3 

𝑡𝑎𝑠𝑘4 

2 

1.5 

0.5 

1 

3 

6 

12 

24 

 

The TU and GU values for Υ are; 

TU1 = 0.666 

TU2 = 0.250 

TU3 = 0.041 

TU4 = 0.041 

GUγ =̃ 1 

threshold = 0.756 

It shows that the example 1 tasks group is not schedulable by using LL test 

because it does not satisfy Equation (4.11). But the Gantt Chart in Figure 4.2 shows 

the schedulability of these tasks within deadlines under RM technique. 

From the above discussion it is clear, that LL test is sufficient only, so we use 

LL test for checking group capacity only. For analyzing task or group feasibility, we 

use positive-negative points (PNP) test which is necessary and sufficient conditions 

test. 
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Figure 4.2 RM scheduling of γ in Example 1 

 

 

Theorem 2.  A group of real-time tasks Υx  = {task1, task2, … , taskl} is schedulable 

if all tasks in Υx are schedulable. 

 

Theorem 3. The batch of real-time tasks called periodic tasks set represented by 𝑇 =

{𝑡𝑎𝑠𝑘1, 𝑡𝑎𝑠𝑘2, … , 𝑡𝑎𝑠𝑘𝑛} is deemed feasible if all tasks groups Υ1, Υ2, … , Υx  are 

schedulable. 

 

4.2.4 Cost Model 

Scheduling decisions by integrating cost parameters change the way computational 

resources are selected to fulfill the user QoS criteria. The data-intensive real-time tasks 

are submitted to the broker which searches resources to process tasks within deadlines 

and user specified budget constraints. The feasibility of tasks groups on computational 
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resources is checked by considering data transfer time, transfer costs, computational 

cost, tasks deadlines, and computational power of the resources. The basic parameters 

considering for feasibility decisions in this research are: 

1. user specified budget, 

2. tasks deadlines 

The resources which can execute tasks within deadlines in a minimum cost by 

considering all data and processing constraints are selected. By introducing cost 

model, Theorem 3 can be extended in Theorem 4 for checking schedulability of 

modified task set. 

 

Theorem 4.  The batch of real-time tasks called periodic tasks set represented by 𝑇 =

{𝑡𝑎𝑠𝑘1, 𝑡𝑎𝑠𝑘2, … , 𝑡𝑎𝑠𝑘𝑛} is deemed feasible with minimum cost if all tasks groups 

Υ1, Υ2, … , Υx  are schedulable by following all constraints and holding inequality 

(4.12). 

                                  costT ≤ Budget       (4.12) 

where costT is the total cost incurred by the batch of tasks, and Budget is the 

total user specified budget. The cost of a resource can be expressed as execution cost 

per Million of Instructions (MI), processing cost per unit time, processing cost per 

task, or simulation cost per unit time etc. The cost for a single task is the sum of task 

execution cost and the data files transfer cost. 

 

4.3 TIME AND COST-EFFICIENT SCHEDULING ALGORITHM 

The Algorithm 1 determines the schedulability of real-time independent tasks set 

consisting of tasks with different data files and timing constraints. The execution 

procedure of the tasks involves checking tasks groups feasibility which cumulatively 
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constitutes tasks set. The m number of tasks in a group are checked on r number of 

distributed computing resources where r >> m. Depending on the user budget and 

tasks scheduling preferences, the main objective of the algorithm is to execute 

distributed data-oriented applications by selecting computing resources such that the 

tasks are processed with minimum total execution time and cost while tasks deadlines 

are respected.  The proposed algorithm works in three parts: (a) task initial feasibility 

checking which predicts task’s basic feasibility within deadline by searching initial 

feasible computing resources, (b) task final feasibility and cost analysis which 

determines task’s schedulability after considering all the associated constraints, and 

finally (c) task’s dispatching to the best suitable resources after fulfilling all the pre-

requisites. The first two parts are the matching and mapping parts which create set of 

time- and cost-efficient computing-storage resources pairs. The third part is the 

dispatching part which ensures that the selected resources can process tasks within 

time and budget constraints. By cost we mean the sum of task’s execution cost and 

data-files transfer cost. Similarly, the total execution time to minimize is the sum of 

tasks actual execution time and transfer time incurred by transferring data-files from 

the storage resources to the computing resources where the task is executed. The data-

files are replicated on multiple storage resources and the resource which has minimum 

transfer cost is selected for data-file transfer. The computing resource capability for 

executing task is checked by analyzing task feasibility on PNP points. As a result, the 

compute resource that can execute task by maintaining the deadline is initially 

selected from the list of available computing resources. The selected resource is called 

as initially feasible resource. The service requests are provisioned according to the 

described scheduling strategy. The service request is provisioned such that the total 

execution time of the task set, and incurred cost is minimized. To ensure the fulfilment 
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of the aforementioned two objectives, the set of storage resources are demonstrated 

which accommodate data-files needed for the task taski after identifying the initially 

feasible resources. A single file is assumed to be replicated on more than one storage 

resources, so the resource which has less transfer time and cost is selected. All such 

computing-storage resources pairs are further checked for calculating total execution 

time. The total execution time is the sum of all-time factors. If the total time is within 

the task taski deadline and the total cost is within the user specified budget, the 

compute-storage resources pair is declared feasible for assigningtaski. After selecting 

all such pairs for all tasks in a group, the tasks are then dispatched to the qualified 

resources by the dispatcher and all required files are transferred. The tasks are 

scheduled, and computations are carried out. In this way, if all tasks in a group Υx are 

scheduled, then the group Υx is said schedulable by the Algorithm 1. Furthermore, if 

all groups are scheduled then the original task set T is declared schedulable with 

minimum time and cost. The resource allocation procedure completes when all the 

tasks are dispatched to the resources and the unmapped queue becomes empty. The 

pseudocode of the tasks mapping and dispatching procedures is given in Algorithm 1. 

The purpose of Procedure 1 is to find the suitable compute-storage resource 

pairs for each data-file required by a task. For each task, set of required data-files and 

initially feasible computing resources are passed as input arguments to the file transfer 

time calculating function. For each data file, the storage resources are identified and 

the best data storage resource which qualifies the minimization criteria (transfer time 

and cost) are selected for retrieving data file. For each data file, all possible 

combinations of initially feasible compute-storage resource pairs are tried and finally, 

the right combination is returned with decreased transfer time and execution cost. 
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Algorithm 1 Time and cost-efficient assignment of real-time data-intensive group of tasks 

to the HPC resources 

Input: Computing resources sorted in descending order of processing capacities, and a group 𝛶𝑥 of 

unmapped real-time tasks ordered by RM priorities and having budget constraints. 

Output: Time and cost-efficient real-time data-intensive tasks schedule on HPC resources. 

Procedure 

for all 𝑡𝑎𝑠𝑘𝑖 ∈ 𝛶𝑥 do 

compute 𝑃𝑁𝑃𝑖 = {𝑥. 𝑝𝑒𝑟𝑖𝑜𝑑𝑙| 𝑙 = 1, … , 𝑖; 𝑥 = 1, … , ⌊𝑝𝑒𝑟𝑖𝑜𝑑𝑖\𝑝𝑒𝑟𝑖𝑜𝑑𝑙⌋}; 

// Determining task initial feasibility 

for all available computing resources 𝐶𝑅𝑟 ∈ 𝐶𝑅 do 

for all 𝑡 ∈ 𝑃𝑁𝑃𝑖 do 

calculate 𝐸𝐸𝑇𝑖𝑟; ► gives minimum EET because resources are already   

                                sorted 

if 𝐸𝐸𝑇𝑖𝑟 ≤ 𝑡 then  

𝐶𝑅𝑖 ← 𝐶𝑅𝑟 ; ► 𝐶𝑅𝑖 is set of comp resources on which 𝑡𝑎𝑠𝑘𝑖  is  

                           initially feasible 

break;                      ► break if 𝑡𝑝 is found 

end if 

end for 

end for 

if  𝐷𝐹𝑖  do not locally exist then 

                   𝐶𝐷𝑖 ← 𝐹𝑇(𝐶𝑅𝑖 , 𝐷𝐹𝑖) ; ►CDi is comp-storage resource pairs set for which 𝐷𝐹𝑖 has min   

                                                            transfer time and cost 

end if 

calculate 𝑇𝑇𝑖𝑟;                                                 ► TT on  𝐶𝐷𝑖 

// Determining the task final schedulability and cost analysis 

if 𝑇𝑇𝑖𝑟 ≤ 𝑡  𝐴𝑁𝐷 𝑐𝑜𝑠𝑡𝑖 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡  then     ►if cost of 𝑡𝑎𝑠𝑘𝑖  is within the user budget 

mark 𝐶𝐷𝑖 feasible for 𝑡𝑎𝑠𝑘𝑖; 

end if 

end for 

// Dispatching tasks to the feasible computing resources 

for all schedulable tasks 𝑡𝑎𝑠𝑘𝑖  do 

submit 𝑡𝑎𝑠𝑘𝑖  to 𝐶𝑅𝑟; 

transfer all required files to 𝐶𝑅𝑟; 

update resource information directory; 

remove 𝑡𝑎𝑠𝑘𝑖  from unmapped tasks list; 

end for 

initialize computing resources to maximum processing powers and update resource information 

directory; 

end procedure 

Procedure 1 𝐹𝑇(𝐶𝑅𝑖 , 𝐷𝐹𝑖)        

Specify 𝐷𝑅𝑖;            ►storage resources on which files 𝐷𝐹𝑖 are stored 
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4.4 PERFORMANCE EVALUATION 

This section discusses the experimental set-up, the input data, and performance 

metrics used to evaluate the proposed resource allocation technique. 

 

4.4.1 Experimental Setup 

The proposed RA technique and the existing counterparts were simulated using 

synthetic task sets. These experiments were carried out in MATLAB 2019 on Intel 

Core i5 processor, 2.50 GHz CPU and 8 GB RAM running on Microsoft Windows 10 

platform. The reason for using MATLAB is that it provides multiprocessing 

environment for solving complex mathematical problems demanding powerful 

computations. The HPC systems are difficult to implement practically due to the lack 

of real-life experimentation environment and multiple domain administration 

problems which make it difficult to acquire stable configuration for evaluation. In 

addition, acquiring practical HPC environment is almost impossible due to the 

dynamic variations in the number of users and resources at a particular moment, their 

characteristics, limited access, and inconsistent network conditions over the public 

network (Venugopal & Buyya, 2008). In addition, effective evaluation needs the study 

of RA technique using different user inputs and varying resource conditions. 

Therefore, we have created the same HPC simulated environment by managing 

for all 𝑓𝑥 ∈ 𝐷𝐹𝑖   do 

    for all 𝐶𝑅𝑧 ∈ 𝐶𝑅𝑖 do          ►Compute resource z on which 𝑡𝑎𝑠𝑘𝑖  is initially feasible 

        for all 𝑑𝑟𝑗 ∈ 𝐷𝑅𝑖  do           ►Storage resource j where fx is stored 

                𝐶𝑧𝑗 ← (𝐹𝑇𝑧𝑗 , 𝑐𝑜𝑠𝑡𝑥)     ►transfer time and cost pair for file fx in matrix C 

         end for  

    end for 

    𝐴𝑥 ← (𝑧𝑑𝑟, min (𝐶))      ►pair of comp-storage resources for which transfer time and cost for fx  is min 

end for 

return (𝐴); ►return comp-storage resources vector on which transfer time and cost for fx is min 
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predefined resource and network configurations such as number of computing and 

storage resources connected by network links of various bandwidths randomly 

assigned within the range {1024, 2048} MB.  

The heterogeneity in the modeled simulation environment was carried out by 

randomly generated resource characteristics, network bandwidths connecting 

computing and storage resources, files sizes, tasks workloads, and number of files 

required for each task. The data files requirements for each task were also randomly 

assigned in the range {x, y} showing minimum and maximum values respectively 

where x is assumed 1. It means that a task can demand at least 1 and at most y number 

of files. The files sizes are fixed at 100 MB each. To model the data files distribution, 

each of the data file was replicated on more than one storage resources. In our 

experimentation, we assume that there exist maximum 5 copies of any data file on the 

storage resources. The storage resources were decoupled from the nodes where 

computing resources are deployed. The computing resources were initially equipped 

with the full processing capabilities randomly chosen within the range {10000, 

40000} Millions of Instructions per Second (MIPS). The data files were replicated on 

multiple storage resources. The files required by a task are either pre-fetched or 

transferred during execution. When the data files fetched for some higher priority task 

on the same computing resource is used by the lower priority task or when the 

required file is locally available, the file transfer time is taken as zero. This technique 

exploits both temporal and spatial locality of data access. This file transfer incurs 

communication cost and time.  

The periodic tasks parameters i.e., required execution time and periods are 

generated by using normal distribution function. The execution time ei for each taski 

was generated in the range {a, b} representing the best- and worst-case execution 



 

109 

times respectively. We have considered worst case execution time equal to the 

𝑝𝑒𝑟𝑖𝑜𝑑𝑖 for taski in order to ensure the tasks schedulability in any changing 

environment. Similarly, each task generates a job after interval of {α, β} seconds 

where α = 100 and β = 10000. In our task model, the period of the taski is equal to its 

deadline i.e., 𝑝𝑒𝑟𝑖𝑜𝑑𝑖 = 𝑑𝑖. Initially, tasks were assigned RM priorities such that the 

task with high rate has higher priority, where rate =  
1

period
. The tasks from the 

superset are grouped into subsets based on data files demands.  

The tasks groups as well as tasks inside each group are sorted based on RM 

priority assignment technique. Each task in the group has respective computation 

requirements and is entitled to get computational resource no later than the deadline.  

The tasks in a group are scheduled on the HPC system and computing resources are 

allocated based on RM priorities. Each task generates multiple jobs. Each job is 

generated after interval of {α, β} seconds. The experimentation was carried out by 

considering different number of computing and storage resources. The above 

discussed setting is subsumed in Table 4.1. 

The computation time and cost of each job is summed into the computational 

requirements of each task. It is assumed that the communication cost of each job is 

minimal and is merged with the computation demand ei of the task in our 

experimental setup. The data file is supplied to the task when it is requested from the 

storage resource and hence response time is zero. The transfer cost per unit size of the 

data file between data storage and computational resource was randomly generated 

between 1 and 5.  In addition, the unit processing cost of the computing resources was 

generated between 5 and 50 depending upon the resource computing power. It is 

assumed that the file transfer within the same node incurs 0 transfer cost. 
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Table 4.1 Simulation parameters settings 

 

Parameters Values 

Bandwidth 1024 ~ 2048 MB 

Task data files demand 
{x, y} 

File size 
100 MB 

Computing resource capacity 
10000 ~ 40000 MIPS 

ei 
{a, b} 

periodi 
100 ~ 10000 

Data files transfer cost 
{1, 5} 

Computing resource unit processing cost 
{5, 50} 

 

 

 

4.4.2 Performance Metrics 

The proposed RA approach evaluates the HPC resource set for each task, and the 

overall objective is to minimize the total execution time and cost. The total execution 

time is the cumulative time consumed by the task set after assigning all tasks groups 

to the available computing resources. This time is also known as makespan and 

mathematically defined as follows. 

Makespan = max  (TT1, TT2, … , TTl)  (4.13) 

where TTj represents the total execution time of tasks group j. 

Similarly, cost of a task set T is the overall cost incurred by all tasks groups. 

Mathematically, 

CostT = max  (Cost1, Cost2, … , Costl)   (4.14) 

and      Costj =  ∑ costi
x
i=1   

The costi is a combined cost incurred by a task processing on a computing 

resource and data files transfer taken by a taski in a group j. The time and cost for 

tasks context switching is negligible in our experiments and hence not included in the 

objective function. 
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4.5 RESULTS AND DISCUSSION 

In this section, we evaluate the performance of our proposed algorithm by comparing 

it with the two methodologies, RDTA (Martel, 2020) and Greedy.  

The makespan and cost minimization behavior of the proposed and the 

aforementioned two techniques was checked for the randomly generated task sets 

consisting of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 tasks. The plots 

reported in this paper are the average values of 300 runs of all the task sets. According 

to the tasks grouping criteria discussed in section 3(iii), the task sets are grouped into 

5, 7, 7, 4, 8, 5, 7, 9, 9, and 10 groups respectively. Each group accommodates different 

number of tasks based on applied grouping criteria. The tasks grouping details is given 

in Table 4.3. The experiments were performed by checking system behavior on 

different number of computing resources. The number of computing resources was 

randomly generated within the range {10, 100}. We assume that the data storage 

resource gives response immediately when a request is made by a task for data file 

access and hence the response time is ignored. The time delay in preparing the 

computing resource is also taken as zero because in our system, the computational 

resource is supposed to be ready for task execution as soon as the task arrives at that 

resource.  

It was observed that for small task sets, a smaller number of computing 

resources was involved as compared to the larger task sets. It is also understandable 

that choosing proper number of computing resources can contribute in maintaining 

tasks deadlines. If a smaller number of computing resources is selected as compared to 

the large number of task sets, then it is likely that some tasks may not be RM feasible 

due to long waiting queues which is very crucial in real-time systems.  
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The main objective of this evaluation is to reduce the makespan and execution 

cost of the application while tasks deadlines are intact. Figure 4.3 (a) and (b) depicts 

the normalized values of the makespan. The variation in magnitude depends upon the 

total number of tasks per task set, number of data files demands, and the computation 

and deadline requirements of each task. The lower the makespan value, the better the 

performance of the RA scheme.  The other performance measurement criterion is the 

execution cost minimization. From Figure 4.4 (a) and (b) it is evident that decrease in 

makespan results in reduced processing cost.  

It is known from Figure 4.3 (a) and (b), that the proposed technique continues 

to make scheduling decision by analyzing tasks feasibility on searching PNP sets and 

checking each scheduling point until some positive point 𝑡𝑃 is found. Although the 

size of PNP set for tasks group Υx becomes large if the ratio between the periods of the 

first and the last task (
periodn

period1
) in Υx is large which consumes time because large 

number of inequalities are tested but this procedure enhances the chance of task 

feasibility because more positive-negative points becomes available for testing tasks 

schedulability. Furthermore, all the initial feasible computing resources are 

encountered and the resource having minimum cost for the task execution is selected 

for task processing. The RDTA approach merely deals with executing tasks within 

deadlines and hence does not consider the cost parameters which is considerably high 

in that case. In the case of Greedy technique, the graph is steeply higher because a 

feasible resource is selected at random without considering the low time and cost 

constraints. So, the resources with high computing power are selected when termed 

feasible.  
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To further investigate the effectiveness of the proposed technique, we have 

conducted more experiments with different system settings.  It is also noticeable from 

Figure 4.3 (a) and (b) that the time taken by all tasks test also increases uniformly as 

the number of tasks increase because more tasks are tested. It is obvious that the 

makespan of some task sets is high although the computing resources were operated at 

full speed because they need data files from remote storage resources which increase 

the total completion time. The resources when operate on full capacities consume high 

energy, but currently, energy efficiency is out of the scope of this research. The 

situations where makespan is low demonstrates that the data files are locally exist or 

perfected for some higher priority tasks and do not need re-fetching for the lower 

priority tasks which adds zero file transfer time to the overall execution time.  The 

plots show that as the task set size increases, the makespan of the Greedy and RDTA 

grow as compared to the proposed approach. This growth in case of Greedy approach 

is because of making a greedy selection for the data storage and computing resources 

among multiple choices for data files accessing and task execution. This selection 

does not intelligently consider the minimization criteria. The RDTA mechanism also 

encounters high execution time and hence cost as shown in Figure 4.4 (a) and (b) 

because the data files replication is not taken into account when making a choice for 

data files fetch among storage resources. In the case of the proposed approach, the 

ratio 
periodn

period1
 results in a larger value which constitutes a larger PNP set that provides 

more points for schedulability checking. This phenomenon provides more 

opportunities for task scheduling and hence results in large number of tasks meeting 

the deadlines constraints. Table 4.2 shows the formation of task groups in our 
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experimental evaluation based on randomly generated data files demand. The tasks 

groups are created as for as the inequality GUΥx
≤ n(21 n⁄ − 1) in Theorem 1 holds. 

 

Table 4.2 Tasks groups 

 

Task set size Group (No. of tasks) 

100 TG1(25), TG2(10), TG3(30), TG4(8), TG5(27) 

200 
TG1(31), TG2(5), TG3(53), TG4(12), TG5(48), TG6(32), TG7(19) 

300 
TG1(4), TG2(64), TG3(20), TG4(25), TG5(40), TG6(126), TG7(21) 

400 
TG1(101), TG2(32), TG3(130), TG4(137) 

500 
TG1(10), TG2(23), TG3(116), TG4(67), TG5(50), TG6(39), TG7(120), 

TG8(75) 

600 
TG1(146), TG2(3), TG3(43), TG4(201), TG5(207) 

700 
TG1(2), TG2(133), TG3(108), TG4(7), TG5(211), TG6(120), TG7(119) 

800 
TG1(234), TG2(21), TG3(233), TG4(41), TG5(19), TG6(115), TG7(123), 

TG8(5), TG9(9) 

900 
TG1(112), TG2(21), TG3(34), TG4(321), TG5(232), TG6(18), TG7(116), 

TG8(29), TG9(17) 

1000 
TG1(12), TG2(109), TG3(120), TG4(32), TG5(19), TG6(129), TG7(127), 

TG8(245), TG9(21), TG10(186) 
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(a) 

 
(b) 

Figure 4.3 Average makespan 
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(a) 

 
(b) 

Figure 4.4 Average cost 
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4.5.1 Effect of Data Files Transfer on Performance 

One of the basic components of calculating execution time is the data files transfer 

time incurred by transferring data files from the remotely located storage resources to 

the decoupled computing resources if the required files are not locally available.  In 

addition to the makespan and cost values, the two more performance measures 

considered in the evaluation results are the percent share of the data transfer time and 

local data access.  

In our experiments, the percent share of the data files transfer time in the 

makespan calculation is evaluated.  The Figure 4.5 (a) and (b) plot the impact of the 

average data transfer time on the task sets. The lower value can put significant impact 

on reducing the overall makespan of the task set.   

As it is known from the task workload that the lower priority tasks scheduled 

on the same computing resource can utilize the same data files retrieved for the higher 

priority tasks if the data requirements of the tasks are same. In that case, the data 

transfer time is zero. Additionally, the transfer time is also zero if the required file 

resides on the same node locally where the task is executing. In this case, the more 

locally accessed files decrease the impact of remote data files transfer on the 

performance. It is less likely that the task is scheduled on the same computing 

resource for which all the required data files are locally exist.  

The above two factors can be correlated with the makespan calculation to 

indicate the impact of resource selection made by the RA scheme on achieving the 

decided objective.  It is evident from Figure 4.5 that the Greedy and RDTA schemes 

do not intelligently adapt for the data files locality of access procedure and hence 

contribute to high data transfer percentage. The percentage of locality of access rises 

with the increase in the task set size. In comparison to the RDTA and Greedy 
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counterparts, there is a high chance for the lower priority tasks to reuse the pre-

transferred data files by using the proposed RA scheme. In addition, it is more likely 

that the assigned tasks find the required data files locally. The Greedy approach 

exhibits degraded performance because there is a very less probability of finding 

appropriate computing resource for tasks assignment. 

 

 
(a) 

 
(b) 

Figure 4.5 Data transfer time 
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4.5.2 Impact on Resource Utilization 

The utilization of the proposed RA scheme is measured on the basis of computing 

resources utilization in the HPC system. The resource utilization is directly related 

with the computation workload; when the task workload increases, the resource 

utilization also increases. The cumulative resource utilization can be calculated by the 

following equation. 

Utilcum =  ∑
tasks workload processing time by a resource

resource active time

r
j=1  (4.15) 

where 𝑈𝑡𝑖𝑙𝑐𝑢𝑚 represents the cumulative utilization of all computational 

resources spent on processing tasks workload, and r represents the total number of 

computing resources engaged in processing tasks sets.  

It is observed from Figure 4.6, that the proposed RA scheme improves the 

resource utilization by keeping resources as busy as possible. The resource utilization 

is lower for the tasks sets having a smaller number of tasks, but as soon as the number 

of tasks increases the resource utilization also increases. It means that the resource 

will be 100% utilized for the large task sets. This is an understandable phenomenon, 

because when the workload increases, more computational power is needed to 

complete tasks by their respective deadlines. If the computational power of the 

resources is relaxed for energy efficient allocation, then it is very likely that some of 

the tasks groups may not be feasible. Moreover, this also will pertain to an unfair 

comparison. When the number of tasks increases, the proposed procedure pushes the 

system power to grow rapidly in order to accommodate more tasks to maintain the 

deadline constraints. This behavior results in high energy consumption but in this 

research, we do not deal with the energy efficient perspective.  
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Figure 4.3 reveals that implementing the proposed approach, the minimum 

system utilization is between 70% and 72% for small task sets but touches 100% when 

the task computational demands increase. The maximum system utilization 

approaches 85% by the other counterparts.  

 

 
 

Figure 4.6 Effect on resource utilization 

 

 

4.6 CHAPTER SUMMARY  

This chapter presented the problem of mapping a real-time application that requires 

data files that are replicated on multiple storage resources, to cloud computing 

resources. A task grouping technique was introduced that reduces the priority levels 

and execution time. The scheduling and resource allocation decision is driven by the 

need to improve the traditional performance parameters such as resource utilization 

and decrease the total application execution time and cost. In cloud computing 
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environment, the providers are incentivized by profit motives; while consumer would 

have a limited budget and would therefore, aim to execute the application at resources 

that provide service within the budget. In such environment, both provider and 

consumer aim to improve their utility. This research is user-centric which select 

computing and data storage resources in such way that makespan and cost is 

minimized while keeping the real-time deadlines. The results were obtained through 

mathematical formulations by modifying the original task model to incorporate the 

data files requirements. The proposed resource allocation scheme was compared with 

RDTA and Greedy approach and celebrated results were achieved. 

As a future work, it will be interesting to rank the cloud resources based on 

different criteria such as resource computational powers, storage capacities, imbalance 

workloads, and cost and allocate them using machine learning algorithms. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 
 

 

 

 

5.1 CONCLUSION  

In this thesis, we have discussed the real-time application scheduling and resource 

allocation problem in HPC environment. The resource allocation strategies in HPC 

paradigms (grid, cloud, fog, edge, and multicore) are studied in detail and working of 

each strategy is portrayed pictorially for easy understanding.  The HPC strategies were 

particularly explored for applications with stringent timing constraints. The detailed 

analysis is provided on the basis of common parameters that are application type, 

operational environment, optimization goal, architecture, system size, resource type, 

optimality, simulation tool, comparison techniques, and input data. The taxonomies 

for different HPC systems show the structure of the systems and multi-objective 

criteria for scheduling real-time applications. From the literature study, the emergence 

of data-intensive real-time applications and their deployment on HPC systems 

motivated us to develop a resource scheduling and allocation strategy that predicts in 

advance the feasibility of such application on HPC resources. The results correctness 

of such applications not merely depend on the processing time on computational 

resources but the data files transfer which are needed for successful completion of the 

application. The proposed prediction-based model considers tasks multiple criteria 

such as resource ranking, tasks grouping, and user QoS parameters etc. for making 

scheduling decisions. In such RA scenario, some of the data files are transferred 

before the application starts execution on the computing resources while some are 

transferred during the execution. The tasks are prioritized for execution using a well-
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known rate-monotonic scheduling algorithm. The prominent feature of this algorithm 

is its simple implementation and optimality. The proposed model is mathematically 

formulated. 

We have also addressed problem of resource allocation for periodic real-time 

data-intensive tasks in cloud computing environment.  In the proposed RA scheme, 

the tasks characteristics are modified by including the set of files needed by the task 

and the overall execution time and cost is minimized by grouping the tasks on the 

basis of common data-files demands. Additionally, the proposed technique considered 

the remotely located data storage resources on which the files are replicated. The best 

computing and storage resource pairs were selected for executing tasks based on user 

QoS criteria. The resource utilization perspective was also evaluated along with the 

other performance parameters. The achieved results by mathematical formulations 

verify the supremacy of the proposed RA scheme over the existing counter parts, 

RDTA and Greedy approaches. 

 

5.2 THEORETICAL, PRACTICAL AND METHODOLOGICAL 

CONTRIBUTIONS 

The prime rationale of this research work was to explore and find limitations in the 

existing RA methodologies for deploying real-time applications having different 

optimization constraints. The other challenge was to propose a model to overcome the 

identified limitations. The main contributions are summarized as follows.  

1. discussed and advanced the plethora of resource allocation algorithms for 

real-time applications by categorizing under two broad classes; distributed 

and non-distributed HPC systems. The distributed HPC systems include 

grid computing, cloud computing, fog computing, and edge computing 
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while non-distributed systems consist of multicore systems. The working 

of each mechanism is discussed in detail theoretically by identifying the 

successes and failures of each mechanism and presented pictorially which 

helps the common reader to understand the basic theme of each strategy. 

The evaluation and comparison on the basis of different performance 

parameters adds to the basic understanding which algorithm to adapt for 

different QoS criteria.   

2. presented resource allocation prediction model on the basis of different 

task and resource constraints in the HPC environment that analyzes the 

feasibility of the real-time application before actually deploying on the 

computational resources. This model considers not only the timing 

constraints but also the data requirements of the data-intensive real-time 

application. The prediction analyzer takes into account different 

parameters like resource ranking, tasks grouping, positive negative points, 

and priority assignment.  

3. identified the impact of investigating scheduling (positive) and non-

scheduling (negative) points on task feasibility.  This mechanism helps in 

reducing application completion time which in turn ensures fulfilling the 

deadlines. 

4. specified a criterion for selecting computing and storage resources for 

real-time applications which need data-files for processing. The data-files 

are replicated on distributed data storage resources connected to the 

computing resources by network links. The proposed technique designs a 

criterion for the selection of storage and computing resources in a way 
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such that the resources are engaged for a short duration of time while 

respecting application deadlines. 

5. developed a strategy for selecting cloud least cost computing and storage 

resources which can execute real-time application within deadlines and 

user budget constraints. The model considers both local and remote 

storage resources and helps in reducing data transfer time which ultimately 

reduces makespan. The mathematical modeling proves the validity of the 

proposed methodology. 

 

5.3 FUTURE WORK 

The primary objective in executing real-time systems is to satisfy the deadlines which 

can be achieved by operating the HPC computational resources with full capacities. 

But this comes at the cost of high energy consumption. To cover this aspect, it is of 

interest to develop energy efficient mechanisms to execute real-time applications 

while respecting the deadlines. Another perspective of real-time system is the 

generation of infinite jobs while an HPC resource cannot be engaged forever. So, there 

is a need to extend the developed RA strategies to control number of jobs which can 

be completed within specified time on HPC resource. 

Most of the existing literature on real-time system revolves around the 

dependent tasks with precedence constraints. In such systems the tasks execution is 

depending on the results of another tasks. But the real-time tasks cannot wait for a 

long time. So, the devised mechanisms can be modified to consider dependent tasks.  

In another direction, the proposed scheme can consider tasks assignment to 

HPC resources using heuristic approaches to solve the unconstrained optimization 
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problems. The advantage of using heuristics is to accommodate applications with 

dynamic demands during execution.     
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