
TIME AND COST-EFFICIENT RESOURCE

ALLOCATION FOR REAL-TIME APPLICATION IN

HIGH PERFORMANCE COMPUTING SYSTEMS

BY

MUHAMMAD SHUAIB QURESHI

A thesis submitted in fulfilment of the requirement for the

degree of Doctor of Philosophy in Computer Science

Kulliyyah of Information and Communication Technology

International Islamic University Malaysia

AUGUST 2021

http://www.google.com.my/url?url=http://www.iium.edu.my/educ&rct=j&frm=1&q=&esrc=s&sa=U&ei=KHqFVJaTIZKyuATNwoGoBw&ved=0CBMQFjAA&usg=AFQjCNH8CPBB4-yr6XSF1EeEZS5f3iT02w

ii

ABSTRACT

High Performance Computing (HPC) is the de-facto platform for deploying real-time

applications due to the collaboration of large-scale resources operating in cross-

administrative domains. HPC resource scheduling and allocation is a crucial issue in

achieving efficient utilization of available resources, especially when resource-

intensive applications have real-time deadlines and need data files replicated over the

data storage resources. Such scheduling engages both computing and data storage

resources to carry out application execution in a timely manner. Traditional

approaches are sufficient only when data storage resources are coupled with the

computing resources in HPC environment, since data is available at the computing

resources for application execution. However, the said domain leaves gaps for

deadline miss when data is transferred from remotely located data storage resources to

the computing resources where application is being executed. The deadline miss

mainly occurs due to the unavailability of the required data files, inadequate

scheduling and allocation mechanism of the HPC resources. The problem becomes

more complicated when some of the data files are pre-fetched while some post-fetched

during application execution which usually results in delayed processing and in turn

deadlines miss. The allocation of such resources by considering different optimization

criteria such as makespan minimization, cost and energy efficiency, respecting

application deadlines, etc. in the aforementioned scenario can be gracefully addressed

by designing a scheduling strategy which can result in improved resources utilization

while predicting application feasibility. It has always been of interest to the research

community to pose the abovementioned situation to determine if the existing

scheduling theory and resource allocation strategies are mature enough to

accommodate the challenges presented with the emergence of the latest HPC

platforms. In this thesis, we explore and analyze the existing resource-allocation

techniques for scheduling real-time applications with temporal constraints on HPC

platforms (grid, cloud, edge, fog, and multicore systems). This study further compares

the resource allocation mechanisms based on different performance parameters and

based on existing gaps, a model is proposed which predicts the application

schedulability by analyzing time and data constraints before actually dispatching the

application to the HPC resources. The main advantage of the prediction-based model

is to save time by declining further analysis on unsuitable resources which improve

resource utilization by considering application workload in advance. Furthermore, this

research thesis devises time and cost-efficient variants of HPC resource allocation

with provably correct formulations to cope with the aforementioned problems so that

both the user and real-time application constraints are respected. The most celebrated

results affirm the supremacy of the proposed techniques in obtaining the desired level

of service.

iii

 خلاصة البحث
Abstrac Arabic

التي يتم اليةالحوسبة عالية الأداء هي عبارة عن منصة تقوم بالتخصيص المنسّق للموارد واسعة النطاق على التطبيقات الح

تشغيلها ضمن المجالات ذات الإدارات المتداخلة. تعتبر عملية جدولة وتخصيص الموارد ضمن مجال الحوسبة عالية الأداء
بتحقي ترتبط الأهمية حيث غاية مواعيد مسألة في هناك عندما تكون المتاحة، وخصوصاً للموارد الأمثل الاستغلال ق

تقوم البيانات. تخزين موارد الملفات عبر استنساخ تتطلب والتي للموارد، الكثيف الاستهلاك ذات للتطبيقات محددة
التطبيق تنفيذ يضمن بما البيانات تخزين موارد وبين الحوسبة عمليات بين بالتنسيق تعتبر الجدولة المحدد. الوقت في

الأساليب التقليدية كافية فقط في حالة كان هناك اقتران بين موارد تخزين البيانات وبين موارد عمليات الحوسبة ضمن
الأساليب أن إلا الحوسبة. موارد ضمن التطبيق لتنفيذ اللازمة البيانات توفير يتم بحيث الأداء، عالية الحوسبة بيئة

إ تؤدي موارد المذكورة من البيانات نقل يتم عندما وخصوصاً المحددة المواعيد تفويت في تتسبب فجوات لى حدوث
يتم تفويت المواعيد المحددة بسبب التطبيقات. بشكل عام، فإنه النائية إلى موارد الحوسبة التي يتم فيها تنفيذ التخزين

ا البيانات المطلوبة، وبسبب عدم كفاءة عمليات بيئة الحوسبة عدم توفر ملفات لجدولة وآليات تخصيص الموارد ضمن
عالية الأداء. كما تصبح المشكلة أكثر تعقيداً عندما يتم جلب ملفات البيانات مسبقاً وجلب البعض الآخر لاحقاً أثناء

اعيد عملية تنفيذ التطبيق، حيث يؤدي ذلك في العادة إلى تأخر عمليات المعالجة، والذي يؤدي بدوره إلى تفويت المو
المحددة. يمكن معالجة مشكلة تخصيص الموارد من خلال إعادة النظر في المعايير المختلفة للتحسين بما في ذلك: تقليل
زمن التنفيذ الكلي، وكفاءة التكلفة والطاقة، والالتزام بالمواعيد المحددة، وغيرها ، ضمن السيناريو السابق، حيث يمكن

ادة تصميم استراتيجية الجدولة بحيث تعمل على الاستغلال الأمثل للموارد، وفي معالجة ذلك بشكل فعال من خلال إع
ذات الوقت، تقوم بالتنبؤ بجدوى التطبيق. لطالما كان هناك اهتمام من الباحثين بالجانب أعلاه وذلك لتحديد ما إذا

لمواجهة التحديات التي برزت مع ظهور كانت نظرية الجدولة الحالية واستراتيجيات تخصيص الموارد فعالة بما فيه الكفاية
منصات الحوسبة عالية الأداء. سنقوم في هذه الأطروحة باستكشاف وتحليل الأساليب الحالية لتخصيص الموارد وجدولة

ا والسحابية، لحاليةالتطبيقات الشبكية،)الأنظمة ذلك بما في الأداء عالية الحوسبة منصات الزمنية على القيود ذات
، والطرفية، والأنظمة متعددة الأنوية(. كما تقوم هذه الدراسة أيضاً بالمقارنة بين آليات تخصيص الموارد القائمة والضبابية

التنبؤ على المقترح النموذج هذا يعمل حيث الفجوات، أساس على والقائمة المختلفة، الأداء معايير أساس على
منية والبياناتية قبل إرسال التطبيق فعلياً إلى موارد الحوسبة عالية بالجدوى من جدولة التطبيق عن طريق تحليل القيود الز

الأداء. تتمثل الميزة الرئيسية للنموذج القائم على التنبؤ في توفير الوقت من خلال رفض طلبات التحليل الإضافية للموارد
إلى مقدماً النظر الموارد من خلال استغلال ذلك على تحسين يعمل المناسبة، حيث المجدول على غير العبء حجم

التطبيق. علاوة على ذلك، تعمل هذه الأطروحة على ابتكار متغيرات لتخصيص موارد الحوسبة عالية الأداء ذات كفاءة
أكبر من ناحية الوقت ومن ناحية التكلفة، وذات إعدادات مناسبة للتعامل مع المشاكل الآنفة الذكر، وبحيث يتم الأخذ

من الحسبان كلًا الأساليب في تفوق إلى المنشورة النتائج أبرز تشير للتطبيق. الآنية والقيود للمستخدم الآنية القيود
 المقترحة في تحقيق المستوى المطلوب من الخدمة.

iv

APPROVAL PAGE

The thesis of Muhammad Shuaib Qureshi has been approved by the following:

Asadullah Shah

Supervisor

Amelia Ritahani Bt. Ismail

Co-Supervisor

Rizal Bin Mohd. Nor

Co-Supervisor

Amir ‘Aatieff Bin Amir Husin

Internal Examiner

Ali Selamat

External Examiner

Radwan Jamal

Chairman

v

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where

otherwise stated. I also declare that it has not been previously or concurrently

submitted as a whole for any other degrees at IIUM or other institutions.

Muhammad Shuaib Qureshi

Signature ... Date …………………………

vi

Copyright Page

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF

FAIR USE OF UNPUBLISHED RESEARCH

TIME AND COST-EFFICIENT RESOURCE ALLOCATION

FOR REAL-TIME APPLICATION IN HIGH PERFORMANCE

COMPUTING SYSTEMS

I declare that the copyright holders of this thesis are jointly owned by the student

and IIUM.

Copyright © 2020 Muhammad Shuaib Qureshi and International Islamic University Malaysia. All

rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise without prior written permission of the

copyright holder except as provided below

1. Any material contained in or derived from this unpublished research

may be used by others in their writing with due acknowledgement.

2. IIUM or its library will have the right to make and transmit copies

(print or electronic) for institutional and academic purposes.

3. The IIUM library will have the right to make, store in a retrieved

system and supply copies of this unpublished research if requested by

other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM

Intellectual Property Right and Commercialization policy.

Affirmed by Muhammad Shuaib Qureshi

……..………………… …………………….

Signature Date

vii

ACKNOWLEDGEMENTS

I offer heartiest “Darood-O-Salam” to Holly Prophet “MUHAMMAD” (Peace Be

Upon Him). I am grateful to almighty ALLAH who is merciful and beneficent, and

who enabled me to work on this research successfully. Accomplishment of a research

thesis requires the help of many people who steer, guide, give confidence and help

you. First, I would like to express my sincere gratitude to my supervisor, “Prof. Dr.

Asadullah Shah” for his esteemed supervision, encouragement and guidance for

successful completion of this research work. I will be forever grateful to him for being

a great mentor in my professional life as well as in my personal life. He made my time

a precious and joyful memory. I am thankful to my co-supervisors, Dr. Amelia

Ritahani Bt. Ismail and Dr. Rizal Bin Mohd. Nor for their useful comments,

suggestions and guidance. I am thankful to my colleagues, friends and family

members who encouraged me to complete this work. My special thanks to my brother

Dr. Muhammad Bilal Qureshi, who encouraged me at every step of my research work.

I am really grateful for his sincere and unconditional help throughout my educational

career. Last but not the least, special thanks to my parents for their unconditional,

unwavering, and untiring support, wishes, and encouragement. They have been my

strongest motivation throughout my thesis.

.

Muhammad Shuaib Qureshi

viii

TABLE OF CONTENTS

Abstract .. ii
Abstrac Arabic ... iii
Approval Page .. iv
Declaration ... v
Copyright Page... vi

Acknowledgements .. vii
Table of Contents ... viii
List of Tables ... xi

List of Figures .. xii
List of Abbriviations .. xiv
Notations And Description .. xv

CHAPTER ONE: INTRODUCTION .. 1

1.1 Background of the Study .. 1

1.2 Problem Statement .. 5
1.3 Research Objectives ... 6

1.4 Ultimate Research Questions.. 7
1.5 Significance/Expected Outcomes of the Research 8
1.6 Research Design/Methodology... 10

1.6.1 Literature Survey.. 11

1.6.2 Problem Formulation ... 11
1.6.3 Answers to the Research Questions ... 11
1.6.4 Analysis and Validation ... 11

CHAPTER TWO:LITERATURE REVIEW .. 12

2.1 Introduction .. 12
2.2 Real-time Application Model ... 13
2.3 Brief Comparison with the Existing Surveys ... 15
2.4 Chapter Organization .. 17

2.5 HPC Resource Allocation Problem for RT Services 17
2.6 Evaluation Criteria .. 19
2.7 Resource Allocation Schemes for Real-Time Services in Grid

Computing .. 30
2.7.1 Dynamic Voltage Scaling .. 31
2.7.2 Real-Time Data-Intensive Tasks Allocation Technique 33
2.7.3 Energy Efficient Genetic-based Scheduling 33

2.8 Resource Allocation Schemes for Real-Time Services in Cloud

Computing .. 34
2.8.1 Partition Problem-based Dynamic Provisioning and

Scheduling Scheme ... 36
2.8.2 Dynamic Scheduling Bag of Tasks .. 38

2.8.3 Heuristic-based Resource Allocation Schemes 38
2.8.4 Data-aware Resource Allocation Scheme 40
2.8.5 Earliest Finish Time Duplication Approach 41

ix

2.8.6 Task Scheduling and Load Balancing Technique 43

2.8.7 Proactive and Reactive Scheme ... 44
2.8.8 Allocation-aware Task Scheduling .. 45

2.8.9 Bandwidth-aware Resource Allocation 46
2.8.10 Bat Approach for Resource Allocation 47
2.8.11 Developmental Genetic Programming 48
2.8.12 Federation-based Resource Allocation Scheme 49
2.8.13 Adaptive Genetic Approach ... 51

2.8.14 Dynamic Fault-tolerant Elastic Scheduling (DFES) 52
2.8.15 Earliest Deadline First Greedy Approach 53
2.8.16 Deadline-oriented VM Allocation Approach 54
2.8.17 Approximate Computation-based Resource Allocation

Scheme .. 56

2.8.18 Periodic Server Scheduling Scheme .. 57
2.8.19 Heuristic-based Earliest Deadline First Scheme 58

2.8.20 Application-directed Check Pointing and Approximate

Computation Scheme ... 59
2.8.21 Earliest Deadline First and Unfair Semi-Greedy Approach 59
2.8.22 Dynamic Proactive Reactive Scheduling 60

2.8.23 Energy-aware Resource Allocation ... 60
2.8.24 Bag of Tasks Scheduling with Approximate Computation 61

2.8.25 Green Cloud Scheduling Approach ... 62
2.8.26 Fuzzy Dominance Sort-based Resource Allocation

Technique .. 63

2.8.27 Best Fit with Imprecise Computations 63

2.8.28 Hybrid Genetic and Cuckoo Search (HGCS) Algorithm 65

2.9 Resource Allocation Schemes for Real-Time Services in Edge

Computing .. 65

2.9.1 Resource Matching-based Allocation Scheme 68
2.10 Resource Allocation Schemes for Real-Time Services in Fog

Computing .. 68

2.10.1 Hybrid Earliest Deadline First Approach 70

2.10.2 Tasks Buffering and Offloading Policy 71
2.11 Resource Allocation Schemes for Real-Time Services in Multicore

Systems ... 73
2.11.1 Rate Monotonic Scheduling with Reduced Priority Levels

Approach ... 73

2.11.2 Hybrid Cuckoo Search-based Algorithm 73
2.11.3 Online Accrued Scheduling Scheme.. 74

2.11.4 Least Feasible Speed (LFS) Technique 74
2.11.5 Load Balancing by Tasks Splitting and Tasks Shifting

Strategy .. 75
2.11.6 Compatibility-aware Task Partitioning Scheme 76
2.11.7 Simple Combined Resource Usage Partitioning 77

2.11.8 Enhancing Shared Cache Performance-based Approach 78
2.11.9 Large Time Demand Analysis Technique 79

2.12 Chapter Summary ... 79

x

CHAPTER THREE: PREDICTION-BASED RESOURCE

ALLOCATION MODEL FOR REAL-TIME TASKS 81
3.1 Introduction .. 81

3.2 Proposed Resource Allocation Model .. 82
3.3 Mathematical Modeling and Problem Formulation................................ 83

3.3.1 Proposed Task and Resource Model .. 83
3.3.2 Basic Task Model... 84
3.3.3 Modified Task Model... 85

3.3.4 Metatask Г .. 85
3.3.5 Offline Prediction Analyzer ... 85

3.3.5.1 Positive Negative Points Set for Task i 86
3.3.5.2 Resource Demand Calculator .. 86
3.3.5.3 Execution Time of Task i on Computing Resource r 86

3.3.5.4 Resource Ranking Function .. 87
3.3.5.5 Tasks Grouping ... 88

3.3.5.6 Priority Assigner .. 88
3.3.5.7 Objective Function .. 88
3.3.5.8 Resource Model ... 89

3.4 Chapter Summary ... 89

CHAPTER FOUR: EFFICIENT RESOURCE ALLOCATION

TECHNIQUE FOR REAL-TIME DATA-INTENSIVE TASKS IN

CLOUD COMPUTING SYSTEMS ... 90
4.1 Introduction .. 90

4.2 Task, Resource and Cost Models ... 93

4.2.1 Task and Resource Model .. 93

4.2.2 Data Files Model .. 95
4.2.3 Tasks Grouping .. 96

4.2.4 Cost Model ... 102
4.3 Time and Cost-Efficient Scheduling Algorithm 103
4.4 Performance Evaluation ... 107

4.4.1 Experimental Setup .. 107

4.4.2 Performance Metrics .. 110
4.5 Results and Discussion ... 111

4.5.1 Effect of Data Files Transfer on Performance 117
4.5.2 Impact on Resource Utilization .. 119

4.6 Chapter Summary ... 120

CHAPTER FIVE: CONCLUSION AND FUTURE WORK 122

5.1 Conclusion .. 122
5.2 Theoretical, Practical and Methodological Contributions 123
5.3 Future Work .. 125

REFERENCES ... 127

xi

LIST OF TABLES

Table 2.1 Comparison of the state-of-the-art HPC resource allocation schemes

for real-time applications 25

Table 4.1 Simulation parameters settings 110

Table 4.2 Tasks groups 114

xii

LIST OF FIGURES

Figure 1.1 High-level view of resource allocation in HPC system 4

Figure 1.2 Proposed resource allocation scenario. 7

Figure 2.1 Real-time application taxonomy 13

Figure 2.3 Distributed HPC RA schemes taxonomy for real-time systems 20

Figure 2.4 Grid computing environment 30

Figure 2.5 Taxonomy of grid systems 31

Figure 2.6 High level scenario of dynamic voltage scaling scheme in grid

computing 32

Figure 2.7 RDTA approach 33

Figure 2.8 General architecture of cloud computing environment 35

Figure 2.9 Cloud computing taxonomy 36

Figure 2.10 Workflow of PPDPS scheme 37

Figure 2.11 Flowchart of DSB technique 39

Figure 2.12 Task allocation process of heuristic-based allocation scheme 40

Figure 2.13 Overview of the data-aware resource allocation scheme 41

Figure 2.14 Workflow of EFTD RA scheme 42

Figure 2.15 Task scheduling and load balancing technique 44

Figure 2.16 Working of PRS RA scheme 45

Figure 2.17 High level view of ATS algorithm 46

Figure 2.18 Bandwidth-aware RA scheme workflow 47

Figure 2.19 Working of BAT algorithm 48

Figure 2.20 Flowchart of Developmental Genetic algorithm 49

Figure 2.21 Federation-based RA scheme 51

Figure 2.22 Simplified flowchart of AGA scheme 53

xiii

Figure 2.23 Workflow of DFES algorithm 54

Figure 2.24 EDF Greedy task allocation procedure 55

Figure 2.25 Deadline-oriented VM allocation approach 56

Figure 2.26 Flow of approximate computation-based RA scheme 57

Figure 2.27 Workflow of BoT with approximate computation scheduling

approach 64

Figure 2.28 General architecture of edge computing 67

Figure 2.29 Taxonomy of edge computing 67

Figure 2.30 General architecture of fog computing 69

Figure 2.31 Taxonomy of fog computing 70

Figure 2.32 General process of hybrid EDF approach 71

Figure 2.33 Task buffering and offloading scenario 72

Figure 2.34 High level flow of online accrued scheduling scheme 76

Figure 2.35 Compatibility-aware tasks partitioning scheme 77

Figure 3.1 Proposed prediction-based resource allocation model 84

Figure 3.2 Resource rank calculation 87

Figure 4.1 Tasks grouping taxonomy 96

Figure 4.2 RM scheduling of γ in Example 1 102

Figure 4.3 Average makespan 115

Figure 4.4 Average cost 116

Figure 4.5 Data transfer time 118

Figure 4.6 Effect on resource utilization 120

xiv

LIST OF ABBRIVIATIONS

HPC High Performance Computing

QoS Quality of Service

RA Resource Allocation

DVS Dynamic Voltage Scaling

RDTA Real-time Data-intensive Tasks Allocation

GA-SS Steady State Genetic Algorithm

GA-ST Struggled Genetic Algorithm

GA-EG Elitist Generational Genetic Algorithm

PPDPS Partition Problem based Dynamic Provisioning and Scheduling

DSB Dynamic Scheduling of Bag of Tasks

MAHP Modified Analytic Hierarchy Process

BATS Bandwidth Aware Tasks Scheduling

LEPT Longest Expected Processing Time

AGA Adaptive Genetic Algorithm

EFTD Earliest Finish Time Duplication

PRS Proactive and Reactive Scheduling

ATS Allocation-aware Task Scheduling

DGP Developmental Genetic Programming

DCLS Dynamic Cloud List Scheduling

DCMMS Dynamic Cloud Min-Min Scheduling

EDF Earliest Deadline First

DVFS Dynamic Voltage Frequency Scaling

HGCS Hybrid Genetic and Cuckoo Search

PTPS Purely Time-driven Periodic Server

WCPS Work-Conserving Periodic Server

CRPS Capacity Reclaiming Periodic Server

USG Unfair-Semi Greedy

EDZL Earliest Deadline until Zero-Laxity

EARH Energy Aware Rolling Horizon

GCSM Green Cloud Scheduling Model

FDHEFT Fuzzy Dominance sort based Heterogeneous Earliest Finish Time

DA-EDF Data Aware – Earliest Deadline First

EDA-EDF Enhanced Data Aware – Earliest Deadline First

RS Resource Scheduling

RM Resource Matching/Rate Monotonic

HCS Hybrid Cuckoo Search

LFS Least Feasible First

CATP Compatibility Aware Task Partition

G-CATP Group-wise Compatibility Aware Task Partition

SCRUP Simple Combined Resource Usage Partitioning

ENCAP Enhancing Shared Cache Performance

TDA Time Demand Analysis

DEFT Dynamic Fault-Tolerant Elastic

xv

NOTATIONS AND DESCRIPTION

T Task set

𝑟𝑘 Release time of task k

𝑒𝑘 Execution time of task k

𝑑𝑘 Deadline of task k

CPy Computing power of resource y

PNP Positive-negative points set

DFk Data files set required by task k

𝐸𝐸𝑇𝑘𝑦 Execution time of task k on resource y

𝛶𝑥 Tasks group x

𝐺𝑈𝛶𝑥
 Group utilization of tasks group x

𝑇𝑈𝑖 Utilization of task i

CD Compute and storage resource pair

CR Computing resource set

𝑡𝑃 Positive point

𝑡𝑁 Negative point

TT Total execution time

DR Data storage resource set

ℝ𝑤 Response time of the storage resource w

𝑓𝑘𝑧 File z needed by task k

𝐹𝑇𝑓𝑘𝑧
 Transfer time of the file 𝑓𝑘𝑧

𝑐𝑎𝑟𝑑(𝑇)

𝑑𝑟𝑤

Cardinality of task set T

Data storage resource w

1

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

High Performance Computing (HPC) is an attractive platform for both academic

research and ICT trade to execute computational-intensive applications which need

powerful resources for generating celebrated results. Many of such applications are

time critical which needs in time response for completion. Such applications are

known as real-time applications. In real-time applications, the correctness of the

system not merely depends on the produced results but the time in which these results

are obtained. Real-time systems are characterized by some parameters like

computation time, period, and deadline. The computation time is the system’s

execution demand for the computing resource. Each real-time system generates

infinite instances called as jobs. A job is generated after a specific time interval called

as period. The time before which the application should complete its execution is

called as deadline. Depending on the consequences of the missed deadlines, the real-

time systems are broadly categorized into hard and soft real-time systems

(Qureshi, Alrashed, Min-Allah, Kolodziej & Arabas, 2015). In hard real-time systems,

a deadline meeting is the most critical constraint. Examples of such systems include

railway switching system, air traffic control system, nuclear plant control system, and

military system. The hard-real-time systems must respect the deadline constraints. In

soft real-time systems, there is a gap for deadlines miss which may not result in

catastrophic behavior but system’s performance degradation. Examples of soft real-

2

time systems include automated teller machines, virtual reality, multimedia systems,

interactive computer games, mobile robotics, and telecommunication networks.

A real-time system is composed of concurrent programs known as tasks

(Laplante, 2004). A real-time task can be defined as an executable entity of work that

is characterized by deadline and execution time which is the maximum estimated time

needed by a processor to complete the task. This time is termed as worst-case

execution time. By considering the aforementioned two basic characteristics, a real-

time task i is denoted by 𝜏𝑖(𝑐𝑖 , 𝑑𝑖), where ci and di represent execution time and

deadline of the task i respectively. Since, real-time systems are time sensitive systems,

so scheduling such systems got massive popularity in the literature and numerous

algorithms for different scenarios have been proposed (Zhang, Tian, Fidge, &

Kelly, 2016). Some of the scheduling algorithms guarantee in advance that the

application constraints will be met during execution. Such algorithms are known as

static scheduling algorithms. In static priority assignment algorithms, the tasks

priorities once set remain constant throughout the execution of the task. The well-

known static priority assignment algorithm is rate-monotonic (RM) algorithm. The

RM algorithm prioritize tasks on the basis of their rates: the higher is the rate, the

higher is the priority. The rate of the task is inversely proportional to the period of the

task i.e., 𝑟𝑎𝑡𝑒 =
1

𝑝𝑒𝑟𝑖𝑜𝑑
 . The other class of algorithms prioritizes application during

execution. Such algorithms are known as dynamic scheduling algorithms. Both

algorithms classes characterize tasks with additional parameters, which are used to

analyze performance of the system.

The HPC paradigm is attractive platform for deploying real-time applications

mainly for three reasons:

3

1. the time sensitive nature of the real-time application requires parallel

processing on distributed powerful resources to generate results in a timely

manner,

2. the concurrent execution on many high-speed interconnected nodes as

compared to a single powerful CPU is economical to efficiently achieve

the desired level of performance, and

3. the distributed systems are highly reliable in cases of system failure.

But the existing HPC platforms still face many challenges due to the

heterogeneous nature of distributed resources like predicting system behavior in peak

load conditions (when all tasks occur at critical instant), completing tasks with

minimum total execution time and user budget, proper load balancing on resources,

on-time resource provisioning, dealing with task and resource heterogeneity, fault

tolerance, a-priori time management requirements, and so on. Such challenges pave

the way for further investigations and need to be addressed properly by developing

adequate scheduling mechanisms to execute real-time applications within deadlines

while meeting user QoS criteria. A proper resource allocation (RA) mechanism

improves performance of all HPC classifications (Hussain, Malik, & Khan, et al.,

2013; Qureshi, Dehnavi, & Min-Allah, et al., 2014).

Currently, task scheduling and resource allocation techniques attracted

researchers towards HPC platforms considering diverse optimization criteria of virtual

machines (VMs) renting cost, makespan minimization, QoS maximization, energy

efficiency, and so on according to predefined agreed SLAs (Liu et al., 2015; Sangwan

et al., 2016; Awad. A et al., 2015; Chen. H et al., 2015; Wu. X et al., 2013; Panda et

al., 2015; Satish & Reddy, 2018). In this thesis, we use system, application, task, and

job interchangeably.

4

A generalized RA scenario in HPC systems is represented in Figure 1.1 High-

level view of resource allocation in HPC system A user submits request for RA to the

broker which finds the resources status form the HPC information service directory.

This directory holds information about resources. Based on this information, a large

pool of resources is searched and resources which fulfil user QoS criteria are selected

for application execution. The user application is submitted to the selected resources

for execution. After successful execution of the application, the results are returned to

the user.

Figure 1.1 High-level view of resource allocation in HPC system

5

1.2 PROBLEM STATEMENT

It is observed from literature that most of the existing solutions to the real-time task’s

allocation problem in HPC domain provide room for deadline miss when such

applications need data files for processing. This type of applications is called as data-

intensive real-time applications. The data and communicational aspects between

computing and storage resources are unaccounted in the existing resource

optimization (scheduling and mapping) settings when data storage resources are

located remotely from the computational resources. The feasibility testing of the real-

time tasks under fixed priority scheduling technique has always been challenging in

data-intensive real-time applications when some of the required data files are pre-

fetched while some post-fetched during tasks execution. The literature also lacks

comprehensive mechanism for predicting tasks feasibility prior to execution on

different HPC resources when time and data constraints are considered. This gap

provides opportunity for tasks scheduling on non-feasible resources and hence

deadlines miss. From data files processing aspects, it has also been of interest to

include the data files transfer time in deciding tasks feasibility on computational

resources. The research community focused on the deadline’s fulfilment concern of

the real-time applications execution and ignores the user budget constraints.

The aim of this research is to develop a novel and fine-tuned resource

scheduling and allocation policy for real-time application on HPC resources to cope

with the aforementioned problems. We believe that this attempt will result in

remarkable contributions towards plethora of existing real-time systems scheduling

literature. Based on the nature of research work and above discussed problems, it is

mainly divided into three modules (portrayed in Figure 1.2) with clear objectives.

6

In Module – I, we study and analyze the real-time resource allocation (RA)

strategies in HPC domain. The performance of each RA strategy is evaluated on the

basis of common parameters. The Module – I describes and pictorially represents each

studied strategy in detail which helps in understanding working of each mechanism.

Module – II devises a prediction-based resource allocation model for real-time

data-intensive application. The developed model checks the feasibility of tasks before

actually allocating and dispatching tasks to the computing resources. The research

work in Module – II devises a new scheduling model for scheduling real-time

application to enhance schedulability of tasks by considering different optimization

criteria.

In Module – III, we propose a resource allocation strategy for real-time data-

intensive tasks by ranking computational resources and classifying tasks into groups

that guarantee tasks execution with minimum possible time and cost while deadlines

are kept intact. The ranking technique helps in selecting the most appropriate

resources for application scheduling. The obtained results affirm the supremacy of the

proposed technique over the existing counterparts.

1.3 RESEARCH OBJECTIVES

The aims and objectives of this research are:

1. To collect and pictorially present the existing resource scheduling and

allocation techniques in different HPC systems (grid, cloud, fog, edge, and

multicore) at one place under the umbrella of real-time literature by

considering common performance parameters.

2. To propose a two-stage model where the first stage predicts the feasibility

of real-time application before actually dispatching to the HPC resources

7

and, the second stage schedule the application on the feasible resources by

considering objective function.

3. To propose a time and cost-efficient resource allocation strategy for data-

intensive real-time application in the HPC system which reduces the

priority levels.

 Figure 1.2 Proposed resource allocation scenario.

1.4 ULTIMATE RESEARCH QUESTIONS

The HPC platforms offer celebrated capabilities if the encompass distributed resources

are managed in an efficient way across heterogeneous environments. The existing

8

literature is still immature in modeling the HPC resources in a comprehensive manner

which leave some questions open ended that need to be answered. The ultimate

questions that the proposed resource allocation research addresses are:

1. How HPC paradigm can help more efficiently in scheduling and

processing real-time applications within deadlines as compared to other

platforms?

2. What issues can arise during real-time application scheduling and

mapping, specially, when both computing and storage resources are

heterogeneous in nature and involved in resource allocation strategy?

3. How can it be verified in advance whether the real-time application

constraints will be met during execution or not?

4. How the resource allocation strategy allocates resources and executes real-

time data-intensive tasks in minimum possible execution time and limited

budget constraints while respecting tasks deadlines?

5. What effects the transfer time put on the tasks total execution time and cost

when data files are replicated on remotely located storage resources?

1.5 SIGNIFICANCE/EXPECTED OUTCOMES OF THE RESEARCH

The HPC is resources rich paradigm which is considered the most promising platform

for deploying real-time applications. The increasing complexity of the real-time

applications make HPC model a handy candidate to place such systems. The accuracy

of generated results deliberately depends on the resource allocation mechanism. An

efficient resource allocation mechanism can contribute to the best performance of the

resources in handling time critical applications in an eminent fashion, especially, when

resources are heterogeneous in nature.

9

This research delivers broadly to the scheduling theory that opens new

dimensions for extending the existing mechanisms in broad ways which contributes to

the society. Schedulers and resource allocation mechanisms are considered to be the

core components of operating systems, parallel systems, and real-time embedded

systems. It helps researchers how to take advantage of powerful resources in

executing time-conscious applications in an efficient way such that the deadlines are

respected. Moreover, the proposed model is flexible in order to adapt to the future

paradigms and multiple domains by future researchers and scientists to immensely

improve the throughput and reliability of the systems.

This research work advances the current state-of-the-art of real-time scheduling

theory using HPC platforms as follows.

1. Identification of the positive and negative scheduling points

The proposed work identifies the impact of negative points on deadlines

miss during scheduling real-time application. Such points can be disjointed

from the positive points in a set which need not to be checked during

feasibility testing of the real-time application on HPC resources. This

mechanism can help in reducing application completion time which in turn

ensures fulfilling the deadlines.

2. Specification of criteria for the selection of computing and storage

resources for data-intensive real-time application

This research accumulates real-time application which needs data-files for

complete execution. The data-files are replicated on distributed data

storage resources connected to the computing resources by network links.

The proposed technique designs a criterion for the selection of storage and

10

computing resources in a way such that the resources are engaged for a

short duration of time while respecting application deadlines.

3. Designing a model for efficient utilization of resources

HPC resource is an important entity that needs efficient utilization for

enjoying its maximum capacity. The proposed study helps in developing

effective mechanism for utilizing full capabilities of computing resources

in minimum price.

4. Developing a mechanism for selecting least cost HPC resources for

executing real-time data-intensive application

The advent of big data handling is a challenging task, specifically when

application has real-time deadlines. The anticipated model helps in

developing a mechanism for selecting least cost computing and storage

resources for executing application with real-time and data constraints. The

model considers both local and remote storage resources and helps in

reducing data transfer time which ultimately reduces application

processing time.

1.6 RESEARCH DESIGN/METHODOLOGY

This research work adopts quantitative approach which constructs mathematical

models, theorems, simulations and quantitative evaluations. Quantitative research

approach is a strong technique in validating proposed research claims. The research

process is conducted by gradually following the undermentioned phases.

11

1.6.1 Literature Survey

In this phase, the existing literature consisting of latest articles from well-known

research journals, conferences, books, and pedagogical is studied in order to know the

HPC resource allocation domain and its different dimensions. During this activity, the

originality of the found research problems and the proposed solution method is

ensured.

1.6.2 Problem Formulation

The identified problems in literature survey phase are mathematically formulated in a

proper format and the answers to the research questions are prepared by the proposed

research work.

1.6.3 Answers to the Research Questions

In this phase, the collected data is scrutinized to find answers and solutions to the

research questions formulated in the previous phases.

1.6.4 Analysis and Validation

In the analysis and validation phase, synthetic data sets are generated to evaluate and

validate the proposed solution. The synthetic data sets are generated using model

presented by Bini, & Buttazzo, (2005). This is the most authentic and followed model

in the existing literature. The computing and storage resources are modeled, and

simulations are carried out using Matlab (2019 version). Matlab is a strong tool for

complex mathematical modeling. The obtained results are compared, and cross

checked against the existing counterparts to validate and evaluate the performance of

the proposed mechanism.

12

CHAPTER TWO

LITERATURE REVIEW

2.1 INTRODUCTION

The High-Performance Computing (HPC) paradigm paves the way to the large

number of resources with high computing power and storage capabilities distributed

across a network. The HPC platform is focused by the research community, mainly for

three basic reasons: (a) the parallel nature of applications, (b) the need of data

distribution and communication with other nodes through communication channels,

and (c) the need for continuous availability and reliability of the resources. These

facilities motivate the users to use distributed HPC systems for scalability, reliability,

availability, exchanging and sharing of information, and achieving performance

efficiency with low cost and high quality (Hussain et al., 2013; Qureshi et al., 2014;

Y. Amir et al., 2000). Organizations and individuals increasingly generate and store

huge amounts of data daily using IoT devices by executing different nature

applications. Such applications need powerful resources for computation and storage.

Due to the limited number of available resources, proper resource allocation

schemes are used to cater with all types of applications. Resource allocation (RA)

scheme in the HPC environment plays a vital role in managing limited resources

among multiple competing applications in a fair way that guarantees providing agreed

QoS. (P. Kokkinos et al., 2009). In HPC platform a resource is any computing,

storage, or communication entity that takes part in user application execution. The RA

schemes consider different performance parameters based on the nature of

applications. Some of the parameters are makespan minimization, computation cost

13

minimization, energy efficiency, bandwidth optimization, etc. These are some of the

common parameters that are considered by most applications. However, some

applications prefer to complete execution within specific time duration. Such

applications are attached a time parameter, commonly known an execution deadline.

This type applications are called as real-time (RT) applications. Real-time applications

or services are bounded by time constraints. Such applications not merely depend on

producing the correct output but the time at which the results are generated (R. L.

Panigrahi et al., 2000). We use an application, service, task, and system

interchangeably in this thesis. Some common examples of RT applications can be

found in chemical plants, robotics, antimissile systems, pacemakers, multimedia

systems, and embedded systems (J. W. S. Liu, 2000).

2.2 REAL-TIME APPLICATION MODEL

Consider a real-time application T as a set of multiple tasks. Assume there are n

number of tasks in T and each task is characterized by the following typical

parameters as shown in Figure 2.1.

Figure 2.1 Real-time application taxonomy

14

1. Deadline – the time instant at or before which the task must complete its

execution. In RT applications, mainly two types of deadlines are used:

absolute and relative deadlines. The absolute deadline is a time instant

which must be followed by RT task for producing timely correct results.

On the contrary, relative deadline is the time duration between the

absolute deadline and the release time of a task. Mathematically,

Relative deadline = Absolute deadline – Release time

2. Release Time – The arrival time of a task in the ready queue.

3. Execution Time – This is the worst-case computation time of a task for

which a computational resource is required without any interrupt.

4. Criticality – The consequences of missing the deadline. It can be hard,

soft, or firm.

5. Response Time – The difference between the time when a request for the

resource is made and the finishing time on the resource when it is

allocated.

Apart from the aforementioned parameters, the real-time tasks can be

distinguished based on activation times. If the instances (jobs) of a task are activated

at a constant rate, then it is called as periodic task. On the other hand, if the jobs

activations of a task are not regularly interleaved, then the task is called as aperiodic

task.

The focus of RA schemes for RT services is to complete execution within

specified time. Based on timing constraints, RT services are broadly categorized into

soft and hard RT services. In hard RT services, there is no room for missing deadline

while in soft RT services, deadline missing put drastic effects on overall system

performance (Bini. E & Buttazzo., 2005; Hussain et al., 2013; Qureshi et al., 2014).

15

2.3 BRIEF COMPARISON WITH THE EXISTING SURVEYS

The existing state-of-the-art literature shows surveys on RA for different nature

applications in HPC domains. But as per our exploration, no-one has consolidated RA

schemes in all the emerging HPC paradigms like grid, cloud, fog, edge, and multicore

systems in a single platform for special type applications i.e., real-time services. (Naha

et al., 2018) surveyed RA techniques for IoT devices generating real-time data. They

have considered latency parameters only and analyzed their applications in fog

computing environment. They have confined their study mainly to different fog

computing aspects and definitions. (W. Shu et al., 2016) provided an overview of RA

in edge computing by presenting case studies ranging from smart homes to smart

cities, real-time video analysis, augmented reality, healthcare monitoring, and virtual

reality games. The authors (B. A. Hridita et al., 2016) surveyed mobility aware RA

and scheduling algorithms. They have overviewed heuristic approaches to balance non

real-time applications makespan and cloud resources monetary costs. (Mao et al.,

2017) surveyed RA techniques in mobile edge computing. They have considered the

communication perspective of the intended applications. They have identified

limitations like high infrastructure deployment and maintenance cost, changeable

human activity interaction, etc. (Mangla et al., 2016) elaborated resource scheduling

and allocation schemes in a cloud computing environment. They have evaluated RA

schemes based on administrative domains, virtual machine allocation and migration

strategies, energy efficiency, service level agreements, and cost effectiveness. Real-

time periodic systems were analyzed for schedulability on multicore systems in (Min-

Allah. N et al., 2012; Nasri. M et al., 2017). The authors identified basic

schedulability parameters by utilizing static priority assignment algorithms. Energy-

aware RA schemes in a cloud computing environment were studied by (Beloglazov et

16

al., 2012). They have evaluated heuristics for efficient management of cloud data

centers. The RA mechanisms for different non real-time applications on grid

computing systems have been detailed by (Qureshi M. B et al., 2017). They have

explained each mechanism in detail, but their study is limited to grid computing

systems only. Another comprehensive survey on RA in distributed computing systems

is given by (Hussain. H et al., 2013). They have studied the RA problem for mixed

applications with different QoS parameters.

The following contributions highlight the novelty of this chapter.

1. The existing literature on RA shows techniques for mixed real-time and

non-real-time applications on one or another distributed computing

systems. There exists no comprehensive state-of-the-art comparative

analysis conducted only for real-time applications. This chapter gathers

and compares RA schemes only for real-time applications on HPC (grid,

cloud, fog, edge, and multi-core) systems.

2. The existing research gives a plethora of RA schemes by considering

certain parameters which may not give proper comparison with respect to

all aspects. Instead, in this chapter, the RA schemes are compared based

on the most common parameters that cover almost all of the features of all

RA schemes.

3. This chapter surveys and compares real-time applications on both

distributed (grid, cloud, edge, and fog computing) and non-distributed

(multicore) HPC platforms, while current surveys are conducted for only

one or another HPC environment.

4. This chapter evaluates and portrays each RA scheme graphically in a

convinced way that is easy to understand.

17

5. The survey in this chapter can assist the research and development

stakeholders in synthesizing and identifying their requirements for

different emerging HPC paradigms encompassing different architectures

and implementations. The target readers can be categorized into

architecture-interested readers, algorithm-interested readers, and general-

readers.

2.4 CHAPTER ORGANIZATION

The chapter structure is pictorially presented in Figure 2.2. Section 1 introduces basics

of the HPC systems, the real-time application model, brief comparison with the

existing surveys, and overall paper organization. This section also portrays real-time

application taxonomy. Section 2 evaluates resource allocation problem for real-time

services. The criteria are provided for evaluating the RA schemes. Section 2 also

shows a broad taxonomy of RA schemes for real-time services on HPC (grid, cloud,

fog, edge, and multicore) systems. Section 3 demonstrates RA schemes for RT

services in grid computing systems. Section 4 focuses on describing RA schemes in

cloud computing systems. These systems are explained for accommodating real-time

applications. We review the edge computing resources allocation schemes for real-

time services in Section 5. Section 6 details fog computing RA mechanisms for

executing real-time applications while Section 7 presents a multicore environment for

such type applications. Finally, Section 8 concludes the survey.

2.5 HPC RESOURCE ALLOCATION PROBLEM FOR RT SERVICES

Resource Allocation (RA) problem in HPC systems can be defined as an issue of

assigning limited HPC resources in order to satisfy the performance requirements of

18

the competing applications according to some predefined QoS criterion such as

makespan minimization, profit maximization, cost and energy efficiency, load

balancing, and deadline satisfaction.

1. Introduction

Real-Time Application Model
Brief Comparison with the

Existing Surveys Paper Organization

2. HPC Resource Allocation Problem for RT Services

Evaluation Criteria

3. Resource Allocation Schemes for Real-Time Services in Grid Computing

4. Resource Allocation Schemes for Real-Time Services in Cloud Computing

5. Resource Allocation Schemes for Real-Time Services in Edge Computing

6. Resource Allocation Schemes for Real-Time Services in Fog Computing

7. Resource Allocation Schemes for Real-Time Services in Multicore Systems

8. Conclusions

Figure 2.2 The structure of the chapter

19

The RT application T is composed of multiple tasks ti (1< i < n), where each

task is characterized by a completion deadline di. The T is mapped to a set of HPC

resources J = {j1, j2,…,jk} according to some predetermined criteria. Then the general

RA problem of assigning task i to HPC resource j can be defined as

{𝑡𝑖
𝑗
| 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑}.

The feasibility of the RA scheme for RT application T to HPC resources J can

be defined as a function.

𝑅𝐴(𝑇) = {
𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒, 𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑖𝑠 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The HPC resource can be defined as a machine with different capabilities. The

capabilities may be processing, storage, or communication, etc. The machines with

processing and communication capabilities are known as computing and network

resources respectively. Some of the HPC resources have both computing and storage

capabilities. These resources have associated cost of processing. The allocation cost is

calculated from the resource binding process that analyses the resource performance,

architecture, utilization, and processing power. Based on the architecture, HPC

resources can be classified into homogeneous or heterogeneous resources.

Homogeneous resources have the same, while heterogeneous resources have different

designing architectures. In case of heterogeneous resources, task allocation is

performed by analyzing the allocation cost. Figure 2.3 shows a broad taxonomy of

RA schemes for real-time systems on the HPC platforms.

2.6 EVALUATION CRITERIA

The existing RA schemes for scheduling RT applications on HPC resources shown in

Figure 2.3 can be compared and evaluated based on some common parameters. The

20

Figure 2.3 Distributed HPC RA schemes taxonomy for real-time systems

Multi-core

Systems

Fog Computing

Systems

Edge Computing

Systems

Cloud

Computing

Systems

DVS

RDTA

GA-SS, GA-ST, GA-EG

PPDS, K-mean

DSB

MAHP, BATS, BAR, LEPT, Divide-and-Conquer

Data-aware

AGA

SigLM-MMW

EFTD

PRS

ATS

Bandwidth-aware

BAT

DGP

DCLS, DCMMS

EDF-greedy

DVFS

HGCS

PTPS, WCPS, CRPS

USG, EDZL

EARH

EDF_DVFS_AC

MinMinMAC, MinMinEAC, MaxMinMAC,

MaxMinEAC, SufferageMAC, SufferageEAC

GCSM

FDHEFT

EDF_BF_IC

DA-EDF, EDA-EDF

Gang Scheduling

RS and RM

Hybrid EDF

Task Buffering and Offloading Policy

RM with Reduced Priority Levels

HCS

Online Accrued Scheduling

LFS

Task Shifting & Task Splitting

CATP, G-CATP

SCRUP

ENCAP

Lg-TDA

Grid Computing

Systems

Distributed HPC

RA Schemes for

RT systems

21

set of criteria we consider here for evaluating the work done so far include application

type, operational environment, optimization goal, architecture, system size, resource

type, optimality, simulation tool, comparison technique, and input data. We discuss

the aforementioned aspects briefly in the following subsections and examine in detail

in each RA scheme in Table 2.1.

Application Type

The HPC paradigm supports various types of applications and the RA schemes are

modeled based on the application type requirements. Some of the application types

include real-time applications, deadlines oriented dependent applications, data-

intensive real-time applications, workflow applications, etc. In this survey, we only

focus on analyzing RA schemes which are developed for real-time applications. Some

of the real-time applications may be data-intensive, which need data for complete

processing. The dependent applications can be broadly categorized into workflow

applications which consist of multiple divisible sub-applications with some sort of

execution or data dependency. In case of dependency, there is communication

between applications which use network bandwidth.

Operational Environment

The environment consisting of executing resources on which the RA scheme is

operated can be termed as operational environment. It can be categorized based on

nature of resources and their operational taxonomies. For example, distributed

systems, grid computing, cluster computing, cloud computing and multicore systems.

These systems can be accumulated under the umbrella of HPC environment. The HPC

environment can be broadly categorized into distributed HPC systems which include

22

grid, cloud, edge, and fog computing systems, and non-distributed systems which

consist of multicore systems.

Optimization Goal

Every RA scheme is designed to achieve specific metric based on which its

performance is measured. For example, energy consumption, net profit gain,

makespan, response time, system throughput, system utilization, applications

execution within user budget constraints, etc. Some of these metrics should be

maximized such as net profit gain, throughput, system utilization, application

processing within user budget, while some should be minimized such as total energy

consumption, makespan, and response time.

Architecture

System architecture defines the nature of resources or configuration of resources

within operational environment. The resources can be homogeneous or heterogeneous.

Homogeneous resources have the same configuration and application execution on a

single resource shows the same status of the application on all resources.

Heterogeneous resources have different configurations. The diversity may be due to

the resource power, short term storage capacity or instruction sets. In a heterogeneous

environment, different resources give different execution statistics of applications.

System Size

The system size shows the total number of resources in the operational environment.

In distributed HPC environment, this number is the count of total computing and

storage resource while in non-distributed HPC system, it is the total number of cores

23

in the system. The RA scheme considers the resource types required for the nature of

executing application. If the executing application needs computing and storage

resources, then the RA strategy is developed by considering the processing

specifications of the resources. For example, if a system is composed of limited

computing resources and a huge application needs more computing resources then the

RA scheme implements proper load balancing mechanism to uniformly distribute

application load on available limited resources.

Resource Type

The HPC environment is composed of different types of resources like computing,

storage and network resources. The computing resources only perform computation

tasks. They cannot give storage facilities. The storage resources provide data storage

capabilities. The network resources offer communication facilities and work for

transferring data from one resource to another resource. The RA mechanism is

developed by considering resource type configuration. For example, the data-intensive

application engages both computing and storage resources. If these resources are

located far away from one another, then the RA scheme considers computing, storage,

as well as network resources for execution and data exchange among nodes.

Optimality

The RA scheme that gives better results against performance metrics is called as

optimal scheme. Every RA scheme strives to achieve the defined performance metric.

Some of the RA schemes are near optimal or non-optimal. The near optimal RA

schemes have acceptable results like optimal and very little margins exist for

improving its performance, but in case of non-optimal, the RA scheme needs

24

revisiting. This parameter takes values like optimal, near optimal, non-optimal, or not

applicable (NA) in case if it is not mentioned in the proposed scheme.

Simulation Tool

The RA scheme is tested by using some virtualized environment that gives the

reflection of the actual physical environment. The simulation tool consists of the same

operational architecture as a real environment. Different simulation tools are used for

implementing RA schemes depending upon the nature of executing applications. The

results obtained by simulating application on virtualized environment have much

closer accuracy of the results obtained on the actual physical environment.

Comparison Techniques

This parameter reveals the validity of the proposed techniques in comparison with the

other existing state-of-the-art counterparts. The results are compared, and a conclusion

is drawn in the form of numerical values or graphical charts.

Input Data

The Input Data attribute indicates the dataset which is considered for experimentation

or simulation of a specific task scheduling and allocation scheme.

In all the above-mentioned parameters, the RT application execution within

specified deadline is a common criterion for all HPC RA schemes.

Table 2.1 Comparison of the state-of-the-art HPC resource allocation schemes for real-time applications

RA Technique [Ref]
Publishin

g Year
Application Type

Operational

Environment
Optimization Goal Architecture

System

Size

Resource

Type

Optimalit

y

Simulation

Tool

Comparison

Techniques
Input Data

HGCS

Min-Allah et al., (2019)
2019

Real-time data-

intensive tasks

Cloud

computing

Makespan

minimization and cost

efficiency

Heterogeneous 10, 20

Computing,

Storage,

Bandwidth

NA MATLAB GA, CS Synthetic dataset

Task Buffering and

Offloading Policy

Lei et al., (2019)

2019 Real-time tasks Fog computing

Maximizing

throughput and tasks

completion ratio, RA

balancing

Heterogeneous Variant
Computing,

Memory
NA CloudSim

RR, MRU,

AQW, FCFS,

LTS, MOMIS,

NMOMIS

Not mentioned

USG, EDZL

Alhussian et al., (2019)
2019

Soft real-time

tasks

Cloud

computing Sys

Feasibility analysis,

response time analysis
Heterogeneous

4 – 64

nodes
Computing NA

Not

mentioned
EDF

10000 synthetic

tasksets

EDF_DVFS_AC

Georgios et al., (2019)
2019

Real-time

workflow

applications

Cloud

computing

system

Cost and energy

efficiency, Tasks

feasibility analysis,

SLA violation ratio

Heterogeneous

Not

mentio

ned

Computing,

Communicatio

n

NA C++
EDF,

EDF_DVFS

Random synthetic

workload

FDHEFT

Xiumin et al., (2019)
2019

Deadline-

constrained

workflow

applications

IaaS Cloud
Cost and Makespan

minimization
Heterogeneous

Not

mentio

ned

Computing NA jMetal

MOHEFT,

NSPSO,

SPEA2, -

Fuzzy PSO

Real-world and

synthetic workflows

RS and RM

Hengliang et al., (2019)
2019

Latency-critical

computation-

intensive

applications

Cloud and

Edge

computing

Network delay, User

QoS
Heterogeneous

1 Edge

Orchest

rator

and 10

ESs

Computing,

Communicatio

n, Storage

Yes

Hadoop 2.7.1

consisting of

YARN and

MapReduce,

RSH, GCP for

RS and RMH,

D-LAWS for

RM

Dataset of SNAP

ENCAP

Pavan et al., (2019)
2019 Real-time tasks

Multi-core

systems

Tasks schedulability

analysis
Heterogeneous

2-32

cores

Computing,

Communicatio

n

NA

Feather-

Trace,

LITMUS

OPENMP,

EDF-EN

Calandrino, Bastoni,

Anderson dataset

Lg-TDA

Nasro Min-Allah, (2019)
2019 Real-time systems

Multi-core

system

Task schedulability

analysis
Not mentioned

Not

mentio

ned

Computing NA MATLAB TDA Synthetic dataset

PPDPS, K-mean

Singh et al., (2018)
2018

Deadline-

constrained

dependent data-

intensive tasks

workflow

Cloud

computing

system

Deadline-constrained

cost efficiency
Heterogeneous 2, 3, 4 Computing NA ANOVA DPDS, IC-PCP

Cybershake, Montage,

Epigenomics, Inspiral,

SIPHT

DSB

(Anwar & Deng, (2018)
2018

Scientific

workflows

Cloud

computing

system

Cost efficiency,

Deadline meeting
Heterogeneous 16 Computing NA

WorkflowSi

m

WRPS, SCS,

HEFT

Cybershake,

Epigenomics, LIGO

Inspiral Analysis,

Montage, SIPHT

MAHP, BATS, BAR,

LEPT, Divide-and-

conquer

Gawali & Shinde, (2018)

2018
Scientific

workflows

Cloud

computing

system

Turnaround time,

response time
Heterogeneous 20

Computing,

Memory,

Bandwidth

NA
Real cloud

environment
BATS, IDEA

Cybershake,

Epigenomics

2
5

Data-aware

Nadjaran et al., (2018)
2018

Deadline-

constrained bag-

of-tasks

applications with

data requirements

Hybrid cloud

computing

system

User specific

deadlines meeting,

Execution time

Heterogeneous 19

Computing,

Storage,

Bandwidth

NA Aneka

Default and

Enhanced

algorithms

Walkability index

application

SCRUP

Chaparro et al., (2018)
2018

Hard real-time

systems

Multi-core

system

Feasibility analysis

and minimizing power

dissipation

Homogeneous 4, 16
Computing,

Memory
NA

Not

mentioned
HTTP, TATP

3000 and 12000

synthetic datasets

Hybrid-EDF

Georgios et al., (2018)
2018

Real-time IoT

workflows

Fog and Cloud

computing

systems

Deadline miss-ratio,

percent tasks executed

on cloud, total

momentary cost

Heterogeneous

3 fog

hosts

and 30

cloud

hosts

Computing,

Communicatio

n

NA C++ Fog-EDF Synthetic workload

DEFT

Hui et al., (2019)
2018

Real-time

applications

Cloud

computing

systems

Fault-tolerance,

Resource utilization

efficiency

Heterogeneous

Not

mentio

ned

Computing NA CloudSim

NDRFT,

DRFT,

NWDEFT

Google tracelogs

RDTA

Qureshi et al., (2017)
2017

Data-intensive

real-time tasks

Grid

computing

system

Makespan

minimization, Number

of completed tasks

maximization

Heterogeneous 11, 34

Computing,

Storage,

Bandwidth

NA MATLAB PTA Synthetic dataset

AGA

Mahmood & Bahlool,

(2017)

2017
Hard real-time

tasks

Cloud

computing

system

Execution time and

Cost efficiency
Heterogeneous 30 Computing NA

Wilcoxon-

ranked-sum

test

Greedy, GA
DAG’s of varying

sizes

MinMinMAC,

MinMinEAC,

MaxMinMAC,

MaxMinEAC,

SufferageMAC,

SufferageEAC

Stavrinides & Karatza,

(2017)

2017
Real-time bag of

tasks

SaaS cloud

computing

system

SLA violation ratio,

Average result

precision, Average

cost per job

Heterogeneous 128 Computing NA C++

MinMin,

MaxMin,

Sufferage,

Random synthetic

workload

DA-EDF, EDA-EDF

Georgios et al., (2017)
2017

Real-time data-

intensive BoT

applications

SaaS Cloud

Impact of data locality

in terms of SLA

violation percentage

Heterogeneous
256

VMs

Computing,

Storage
NA C++ NDA-EDF Synthetic workload

SigLM-MMW [18]

Sangwan & Gupta,

(2016)

2016 Multi-workflows

Cloud

computing

system

Load balancing,

Average waiting time
Heterogeneous

Arbitra

ry
Computing NA CloudSim Not mentioned

Real load traces

collected on PlanetLab

GCSM

Tarandeep & Inderveer,

(2016)

2016
Deadline-

constrained tasks

Cloud

computing

system

Energy efficiency,

Maximizing

performance ratio

Heterogeneous 25-50 Computing NA
Not

mentioned

FCFS, SLA-

based resource

constraint VM

scheduling,

Priority-based

scheduling

scheme

Real-time workload

traces available at

Parallel Workload

Archive

Gang Scheduling

Approach

Georgios et al., (2016)

2016
Real-time parallel

applications
SaaS Cloud

Deadlines meeting,

High quality results,

total momentary cost,

Tackling with

software failures

Homogeneous 64

Computing,

Communicatio

n

NA C++

EDF,

EDF_RAC,

EDF_FAC,

EDF_ADC,

EDF_ADC_R

AC,

EDF_ADC_FA

Synthetic workload

2
6

C

RM With Reduced

Priority Levels

Qureshi et al., (2015)

2015 Real-time tasks
Multi-core

system

Priority levels

reduction, Cumulative

utilization

Heterogeneous

12

cores

CPU

Computing NA MATLAB

Traditional

Approach with

scheduling

points

Synthetic dataset

EFTD

Liu et al., (2015)
2015 DAG tasks

Cloud

computing

system

Normalized

scheduling length

(NSL) reduction,

Computational cost

and time minimization

Heterogeneous
10 –

130
Computing NA CloudSim

HEFT-AEST

HEFT-TL
DAG tasks

ATS

Panda et al., (2015)
2015 User requests

Multi-cloud

systems

Makespan

minimization, Average

cloud utilization

Heterogeneous 32 Computing NA MATLAB RR, CLS

Two benchmark dataset

consists of 512 tasks

and a Synthetic dataset

Bandwidth-aware

Sindhu, (2015)
2015 Workflow

Cloud

computing

system

Bandwidth efficiency,

Execution time
Heterogeneous

Not

mentio

ned

Computing NA Eclipse Not mentioned Synthetic dataset

BAT

Raghavan et al., (2015)
2015

Workflow

applications

Cloud

computing

system

Execution cost

minimization
Heterogeneous 3 Computing NA

Not

mentioned
BRS

Workflow consisting

of 4 tasks

CATP, G-CATP

Qiushi et al., (2015)
2015

Hard real-time

tasks

Multi-core

system

Improving system

schedulability under

failures

Heterogeneous
4, 8

cores
Computing NA

Multi-core

system
HAPS, BFD

Task sets generated

using UniFast

algorithm

EDF_BF_IC

Georgios et al., (2015)
2015

Real-time

workflow

PaaS and IaaS

clouds

Deadlines, Cost

efficiency, Execution

time minimization

Heterogeneous 64 Computing NA C++ EDF
Real-world workflow

application

PRS

Chen et al., (2015)

2015

Real-time tasks

Cloud

computing

system

Energy efficiency,

improving resource

utilization, minimizing

execution time

Heterogeneous 5 Computing NA

Apache

CloudStack

4.2.0,

CloudSim

NMPRS, EDF,

MCT, CRS
ᴨ-app, CloudSim-app

DVS

Kołodziej et al., (2014)
2014

Independent batch

scheduling

Grid

computing

system

Makespan, flow time

and Energy efficiency
Heterogeneous 64, 256 Computing NA

Sim-G-Batch

Grid

Simulator

GA, HGS –

Sched, IGA

Kiviat Graphs, 1024

and 4096 tasks

randomly generated

by Gaussian

distributions

DGP

Deniziak et al., (2014)
2014

Soft real-time

tasks

Cloud

computing

system

Cost optimization Heterogeneous 6, 4

Computing,

Communicatio

n

NA
Not

mentioned
Not mentioned

Adaptive navigation

system converted into

TGs

2
7

PTPS, WCPS, CRPS

Xi et al., (2014)
2014

Real-time

applications

Cloud

computing

system

Calculating deadlines

miss ratio and number

of context switches

Heterogeneous 6 cores
Computing,

Memory
NA

RT-Xen 2.0.,

Fedora 13

with para-

virtualized

kernel

2.6.32.25

pEDF, gEDF,

pDM, gDM
Synthetic workloads

PRS

Huangke et al., (2014)
2014 Real-time tasks

Cloud

computing

system

Energy efficiency Heterogeneous Infinite Computing NA

Apache

CloudStack

4.2.0,

CloudSim

NMPRS, EDF,

MCT, CRS
ᴨ-app, CloudSim-app

EARH

Xiaomin et al., (2014)
2014

Real-time

application

Cloud

computing

system

Energy efficiency and

tasks feasibility

analysis

Heterogeneous Infinite Computing NA CloudSim

NRHEARH,

NMEARH,

NRHMRARH,

ProfRS,

Greedy-R,

Greedy-P,

FCFS

Random synthetic

tasks, Google cloud

tracelogs

HCS

Li & Yin, (2013)
2013

Flow shop

scheduling

problem

Distributed

non-HPC

systems

Makespan

minimization
Heterogeneous

Not

mentio

ned

Computing NA MATLAB

CS, ATPPSO,

L-CDPSO,

HDE, OSA,

PSOMA,

PSOVNS,

HGA, BEST

(LR), M-

MMAS, QDEA

160 problems from

OR library. (8 = car1 –

car8 instances, 21 =

rec01 – rec41

instances, 120

instances, 11= DMU

instances)

Task Shifting & Task

Splitting

Hameed Hussain et al.,

(2013)

2013 Real-time tasks
Multi-core

system
Load balancing Heterogeneous

4 and 5

cores
Computing NA MATLAB Not mentioned Synthetic dataset

DCLS, DCMMS

Li et al., (2012)
2012 DAG

IaaS federated

cloud

computing

system

Resource contention,

Energy efficiency
Heterogeneous

Cluster

s with

1024,

1152,

2048

nodes

Computing,

Bandwidth,

Memory

NA
Not

mentioned

FCFS, FCFS

(EL), DCLS

(EL), DCMMS

(EL)

Parallel Workload

Archive (LLNL-

Thunder, LLNL-Atlas,

LLNL-uBGL)

GA-SS, GA-ST, GA-EG

Kolodziej et al., (2012)
2012

Independent batch

scheduling

Grid

computing

system

Makespan and energy

optimization,

Dynamic load

balancing

Heterogeneous

64,

128,

256

DVS enabled

computing
NA HyperSim-G

Min-Min, RC,

TS,

Synthetic dataset

using Gaussian

distributions

LFS

Nasro Min-Allah et al.,

(2012)

2012 Real-time tasks
Multi-core

system

Power efficiency, load

balancing
Heterogeneous

8 and

12

cores

Computing NA MATLAB FFS Synthetic dataset

Online Accrued

Scheduling

Liu et al., (2011)

2011 Real-time tasks
Multi-core

system

Maximizing total

utility
Heterogeneous

Not

mentio

ned

Computing NA
Not

mentioned

EDF, GUS, PP,

Risk/Reward,

PPOC, PPS

Randomly generated

1000 task sets

EDF-greedy

Kumar et al., (2011)
2011

Real-time

application

IaaS cloud

computing

system

Cost efficiency Heterogeneous

Not

mentio

ned

Computing NA
Not

mentioned

EDF.

Temporal-

overlap,

Exhaustive

search

Synthetic dataset

2
8

DVFS

Kim et al., (2011)
2011

Real-time

application

Cloud

computing

system

Power efficiency Heterogeneous 4 Computing NA CloudSim Not mentioned Synthetic dataset

2
9

30

2.7 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES IN

GRID COMPUTING

Grid computing is the integration of different hardware and the shared used of

computing resources, i.e., shared infrastructure over a network for solving complex

problems. In grid computing, the data is moved among different computing resources.

So, managing and running distributed workflows automatically is a core feature of the

grid computing.

The core essentials of grid technology are shared heterogeneous infrastructure,

support of collaboration, distributed workflow management, and secure access to

shared data. The general architecture of grid computing consists of a user, grid

information service, resource broker, and grid resources. The user sends tasks to the

grid for processing to speed up the execution of the application. The grid information

service is a system that collects information of the available grid resources and send

this information to the resource broker. The resource broker distributes jobs to the

available grid resources based on the user’s requirements for execution. The grid

resources are the computing entities that execute the user jobs. The general

architecture and taxonomy of grid computing environment is shown in Figure 2.4 and

Figure 2.5.

Figure 2.4 Grid computing environment

31

Figure 2.5 Taxonomy of grid systems

The grid computing RA schemes for real-time services are described as

follows.

2.7.1 Dynamic Voltage Scaling

(Joanna Kołodziej et al., 2014) addressed exertion of energy spent on scheduling in

grid environment, considering various grid scenarios. Grid system consists of multi-

layer architecture with hierarchical management system, namely, grid fabric layer,

grid core middleware, grid user layer, and grid application layer. For resource

management and scheduling, two user and middleware layers are important. The three

features of scheduling to define the task are static environment, batch task processing

and task interrelations. The authors addressed batch scheduling in a static environment

where tasks are grouped into batches and executed independently in hierarchical

order. For power supply analysis, two main energy aware scheduling scenarios max-

min and power supply mode are considered. The genetic algorithm is applied to solve

scheduling issues by considering its six features, namely, single population in risky

Grid Systems

Computational Grid

Distributed
Supercomputin

g

High
Throughput

Data Grid Service Grid

On
Demand

Colloborative
Multimedi

a

32

mode GA(R), single population in secure mode GA(S), Multi-population in risky

mode HDS-Sched(R), Multi-population in the secure mode HGS-Sched(S), multi-

population island in risky mode IGA(R), and multi-population island in secure mode

IGA(S). Lastly, single and multi-population are compared using empirical analysis in

grid environment. The high-level scenario is shown in Figure 2.6.

Grid fabric Grid core middleware

Grid User Grid applications

Static grid
Batch task
processing

Task inter-
relation

Min-max Power supply

GA(R) HDS-Shed(R) IGA(R)

GA(S) HDS-Shed(S) IGA(S)

Figure 2.6 High level scenario of dynamic voltage scaling scheme in grid computing

33

2.7.2 Real-Time Data-Intensive Tasks Allocation Technique

In RDTA technique (Qureshi. M. B et al., 2017) have tested the feasibility of real-time

tasks on grid computing resources. The tasks need data files for execution, which are

transferred prior to or during the task processing. Initially, the basic execution demand

of a task is checked on computing resources and a list of basic feasible resources is

formed. Then the data file transfer time of the required files is calculated from data

storage resources to the grid computing resources. After this calculation, the total

execution time is calculated and if a task can be executed within its deadline by

considering all the time constraints, then the task is termed as schedulable, otherwise,

un-schedulable. The tasks set is schedulable only, if all the tasks in a set are

schedulable. The task schedulability analysis process is portrayed in Figure 2.7.

Tasks Set
Calculate EET on
scheduling points

EET<=
dealine

No

Yes
Calculate file transfer

time

Calculate total
execution time (TET)

TET<=
dealine

NoTask is unschedulable

Task is schedulable Yes

Figure 2.7 RDTA approach

2.7.3 Energy Efficient Genetic-based Scheduling

To achieve efficient energy in computational grids (CGs) is a core concern now a

days. (Joanna. Kołodziej et al., 2012) proposed tasks in batch mode with zero

dependencies between them. The authors considered two effective scheduling

34

functions in hierarchy mode. There are three levels of hierarchical mode which

communicate over the Internet. Only one task is executed at one computational grid.

No tasks are allowed to preempt the entire process. The two optimization goals used in

scheduling are makespan minimization and average energy consumption. In idle

mode, each machine takes minimal energy, and maximal power supply to reload the

process. Three genetic methods are used to solve difficult scheduling issues. Initially,

the population is generated. After selecting a parent node, crossover and mutation are

applied to the individual root node and replace the parent node with the new

population. Finally, an optimal individual population is generated. The proposed

model outperforms than the other existing grid scheduling techniques such as relative

cost, min-min, and tabu search.

2.8 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES IN

CLOUD COMPUTING

Cloud computing is the deployment of servers located remotely on the internet to

store, manage and process the data. Such servers have large processing powers rather

than a local server. Cloud computing is on-demand services delivery on a pay-as-you-

go basis over the internet. There are two basic types of cloud models: service models,

and deployment models. Service model refers to the kind of services the cloud offer,

while deployment model refers how to deploy the application on the cloud. The

service model is further sub-divided into three categories: software-as-a-service

(SaaS), platform-as-a-service (PaaS), and infrastructure-as-a-service (IaaS). SaaS are

the cloud hosted applications and virtual desktops, PaaS are operating systems,

database management and deployment tools, and IaaS are physical data centers,

servers, network, virtual machines, storage and load balancers. The three types

35

services are provided after establishing service level agreement (SLA) between

consumer and provider. The basic SLA determines the time at which the service will

be provided and the corresponding usage cost (Kalaiselvi et al., 2020).

The cloud deployment models are further divided into three main categories:

public, private, and hybrid clouds. Cloud computing is an automatic, pool of

resources, on-demand service (pay-per-use), secure, economical, and easy

maintenance system. The main benefits of cloud include its flexibility, security,

accessibility, recovery from disaster, increased collaboration, document control, and

automatic software adaptable system. The RA problems in cloud computing are

mainly driven by monitoring, analyzing, and thoroughly checking performance of the

deployed resources which ensure the agreed QoS to the intended user applications

(Jyoti et al., 2020).

The general architecture of the cloud environment is presented in Figure 2.8

and a taxonomy is provided in Figure 2.9.

Figure 2.8 General architecture of cloud computing environment

36

Figure 2.9 Cloud computing taxonomy

The cloud computing RA schemes for real-time services are detailed as

follows.

2.8.1 Partition Problem-based Dynamic Provisioning and Scheduling Scheme

An innovative, cost-efficient technique known as Partition Problem based Dynamic

Provisioning and Scheduling (PPDPS) for scheduling deadlines constrained workflow

application was proposed by (Vishakha. Singh et al., 2018). The PPDPS algorithm

works mainly in two phases, namely, Subset-Sum problem, and k-means clustering.

The degree of heterogeneity of different machines is first decided and then the speed

information of VMs in Millions of Instructions per Second (MIPS) is provided by the

Cloud Computing Taxonomy

Technology

Parallel processing

Utility computing

Automatic
computing

Virtualization

Deployment Model

Public

Private

Hybrid

Philosophy

Centralized
computation

Service oriented

Pay-as-you-go

outsourcing

Open API

Model

SaaS

PaaS

IaaS

Standard

Open virtualization
format

Web services

Cloud audit

Open cloud
computing
interface

37

Caching Service Provider (CSP). The k-mean algorithm is used to regulate the speed

of VMs. The Subset-Sum problem approach is used to schedule the workflow to meet

its deadlines at a low execution cost. It’s an NP-Complete problem (Singh et al.,

2018), which determines whether a set can further be divided into subsets, such that

the sums of the elements in the subsets are equal. The greedy approach is used which

solves the problem in polynomial time. If any of the VMs get fail during task

execution, then additional storage-based model transfers the data to another VM. This

model helps in easy data recovery. The PPDPS technique is compared against IaaS

Cloud-Partial Critical Path (IC-PCP) (S. Abrishami et al., 2013) and Dynamic

Provisioning Dynamic Scheduling (DPDS) (M. Malawski et al., 2015) techniques.

The working of the proposed PPDPS model is portrayed in Figure 2.10.

Deadlines constrained
workflow

Determine VM speed
using CSP

Regulate speed of VM by
k-mean clustering

Dynamic provisioning
using greedy approach

VM mapping

Tasks grouping using
pipeline approach

Ready queue

Figure 2.10 Workflow of PPDPS scheme

38

2.8.2 Dynamic Scheduling Bag of Tasks

(Nazia. Anwar et al., 2018) proposed a Dynamic Scheduling Bag of Tasks (DSB)

method for scheduling scientific workflows dynamically and elastic provisioning of

VMs. The main objective of this study is to maximize the total utilization of

computing resources with minimum execution cost satisfying the task deadline

constraints. The proposed technique works in five steps. Initially, all tasks are

assigned priorities in order to guarantee task dependencies using Heterogeneous

Earliest-Finish-Time (HFT) approach. The tasks are then grouped horizontally in the

same level to provide parallelism. The execution time of a task is pre-calculated that

determines whether the task will fulfil the deadlines during processing. If the tasks

execution exceeds deadline, the next cost-efficient VM is used to process the task.

After mapping the tasks on VMs, all tasks are put into a ready queue. The task is

considered ready for execution if all the precedence tasks can be completed

successfully. Further, the elastic resource provisioning method is used to dynamically

adjust the number of VMs instances to ensure the completion of workflow within its

deadlines. It is claimed that the DSB outperforms WRPS, SCS, and HEFT techniques.

Figure 2.11 shows the working flow of the DSB algorithm.

2.8.3 Heuristic-based Resource Allocation Schemes

(Gawali et al., 2018) proposed heuristic methods to accomplish resource allocation

and task scheduling efficiently in a cloud computing environment. Numerous size and

type of data is offloaded to the cloud for execution. The Analytical Hierarchy Process

(AHP) assigns a rank to each task based on priorities. Then each task is assigned to the

VM using Bandwidth Aware Divisible Scheduling (BATS) and BAR optimization

techniques. The load on the VM is continuously checked by using Longest Expected

39

Processing Time (LEPT) algorithm. If resources are unavailable, the task must wait

for its turn in the waiting queue. If a resource is overloaded, the tasks are distributed

on other resources using Divide and Conquer algorithm. The proposed heuristic

methods improved the performance in terms of resource allocation.

Assign rank using HFT
approach

Horizontal tasks grouping

Assign another VM
Execution time

exceeded

Accessible VM

Yes

No

Ready queue

Elastic resource
provisioning

Scientific
workflow

Figure 2.11 Flowchart of DSB technique

The task allocation process of the heuristic is depicted in Figure 2.12.

40

2.8.4 Data-aware Resource Allocation Scheme

To reduce the cost of execution while meeting the deadline constraints is one of the

important considerable factors in hybrid clouds. A data-aware scheduling

methodology is proposed by (Nadjaran. Toosi et al., 2018) to support deadline

requirements of data intensive applications. Data intensive is one of the applications

which are used to analyze many datasets.

Assign rank using AHF
approach

Map VMs

VM overloaded Yes

No

Scientific
workflow

Assign tasks to VMs using
BATS and BAR approaches

Distribute tasks using
divide & conquer method

VM accessible

Waiting queue

No

Ready queue

Yes

Figure 2.12 Task allocation process of heuristic-based allocation scheme

41

The proposed method considers the data locality, transfer time, and network

bandwidth and then checks if current private cloud resources are enough to complete

the task within a specific time interval. It calculates the extra resources required to

execute tasks within deadlines. The remaining time in meeting the deadlines is first

calculated and then the remaining number of needed resources is computed. The

remaining tasks are scheduled on dynamic resources. The proposed algorithm

executes data-intensive independent tasks within strict deadlines while minimizing

total execution cost and the total number of required resources. Figure 2.13 shows the

working of the proposed data-aware scheduling methodology.

Public and Private Cloud
{Number of tasks}

Data-aware Provisioning

Resource Provisioning

Performance evaluation

Figure 2.13 Overview of the data-aware resource allocation scheme

2.8.5 Earliest Finish Time Duplication Approach

Fully utilization of the selected resources is an important factor in cloud task

scheduling. Delay in communication between resources degrades overall system

performance. To overcome these limitations, (Liu. Z et al., 2015) proposed Earliest

Finish Time Duplication (EFTD) approach to pre-process the cloud resources

effectively. Directed Acyclic Graph (DAG) method is used to improve the utilization

42

of resources. In this method, tasks with the highest priority are assigned to the selected

resource for further processing. Three steps are performed to assign resources to

specific tasks: calculating Earliest Start Time (EST), Earliest Finish Time (EFT), and

task allocation. In this approach, initially EST is calculated to regulate processing unit

and an EST value is assigned to processing resource. Then the EFT is calculated to

choose processing unit and assign it smallest EFT value. Finally, the results of both

times (EST and EFT) from ready tasks are compared. The high priority task is

assigned to that resource whose both times are same. The next task with lower priority

which has both times different is chosen from the ready queue.

To reduce the processor scheduling time, parent nodes of two key tasks are

duplicated. In this way, the communication process is improved as compared to the

other counterparts (HEFT, AEST, HEFT-TL). The whole scenario is depicted in

Figure 2.14.

Task allocationNumber of tasks
Ί = {t1 , .., tn}

Priority allocation

Earliest start time
(EST)

Earliest finish time
(EFT)

Task duplication

Duplication
requirements

fulfilment

StopCompute EST value

No

Yes

Figure 2.14 Workflow of EFTD RA scheme

43

2.8.6 Task Scheduling and Load Balancing Technique

Load balancing is an important factor while dealing with numeral requests sent to the

server through a network. (Sangwan. A et al., 2016) proposed task scheduling

algorithm in cloud computing based on load balancing to meet user demands and

make full use of resources. The whole process considers the above mentioned two

aspects in four phases. Initially, when new workflow arrives, it is submitted to the pre-

processor component for computing different attributes of all ready tasks. Then the

ready task is placed in a ready queue for further processing. When services become

available, the scheduler executes all tasks available in the ready queue and when the

task completes its execution, the executor notifies the pre-processor of the completed

task. This technique tries to balance the load on all available resources so that tasks

can be completed in prespecified deadlines. The whole process is briefly summarized

in Figure 2.15.

44

Pre-Processing

Workflow

Ready task
Task completion

notification

Task

Service
available

Stop

Waiting queue

No

Yes

Task completionTask

Figure 2.15 Task scheduling and load balancing technique

2.8.7 Proactive and Reactive Scheme

To meet real time cloud computing environment, there was a need to reduce system’s

energy consumption. To resolve this issue, the authors (Chen. H et al., 2015) proposed

PRS (Proactive and Reactive Scheduling) procedure to make efficient utilization of

system resources with reduced energy consumption. When a new task is arrived in the

system, the PRS algorithm checks whether the task has urgency. If it has urgency

parameter, then it is referred to the urgent task queue. Otherwise, task is further sent to

waiting queue in ascending order by their laxity. Additionally, PRS checks the

requirements of waiting task not to exceed the available system resources. Later, tasks

are scheduled to virtual machines for execution. The whole scenario is illustrated in

Figure 2.16.

45

Task arrival

System
overload

Assign VM Waiting queue

No Yes

Task
Urgent task

Yes

No

Figure 2.16 Working of PRS RA scheme

2.8.8 Allocation-aware Task Scheduling

Allocation aware Task Scheduling (ATS) algorithm is proposed by Sanjaya K. Panda

for multi-cloud environment (Panda. S. K et al., 2015). Each cloud consists of

different datasets to deploy virtual machines (VMs). The proposed model comprises

of three steps, i.e., matching, allocating, and scheduling. In matching phase, cloud

manager preserves a universal queue to insert an incoming request from users. The

requests are served as First in First Out (FIFO). The manager matches the task with

other virtual machines to find optimized VM among all. Then, the request is removed

and the completion time of task on a specific virtual machine is computed. Thus, one

task is selected from the global queue at a time. Additionally, the virtual machine is

found by manager to grasp minimum completion time for task supervised by cloud.

Task scheduling is decided in allocation phase. In allocation phase, resources are

assigned to tasks. The scheduler executes all tasks to carry out the computation. Each

cloud resource executes more than one task concurrently. The experimental results

46

demonstrate better performance than Round Robin (RR) and Cloud List (CLS)

scheduling algorithms. The entire process is portrayed in Figure 2.17.

Task

User requests
{1,2, ..,n}

Cloud manager
[Global]

Task allocation

Task completion
Task scheduling

Figure 2.17 High level view of ATS algorithm

2.8.9 Bandwidth-aware Resource Allocation

Quality of Service (QoS) attainment is incredible essential of all the users. In cloud

computing, processing a task in a flow is vital. A non-linear programming model for

task scheduling is proposed by Sindhu, (2015). In this model, several tasks are ready

to be scheduled. Various resources are assigned to each task. Among all, some

resources are used, and the remaining are being idle. To avoid resource power

wastage, limited network bandwidth is considered. Based on accessible bandwidth,

each task is forwarded to every VM. The proposed model produced better accuracy

than other existing models by taking full utilization of resources and reducing the

waiting time. The working flow of this technique is shown in Figure 2.18.

47

Number of tasks
{1,2, ..,n}

Limited bandwidth

Task scheduling
(Non-linear

programming model)

Assigning VM

Task execution

Figure 2.18 Bandwidth-aware RA scheme workflow

2.8.10 Bat Approach for Resource Allocation

(S. Raghavan et al., 2015) proposed Bat approach for the optimum solution of

workflow scheduling. The workflow scheduling contains two chunks, namely, task

scheduling and mapping tasks and resources. In this approach, task and resources are

mapped together to reduce the entire cost of execution. The model contains three

resources and four tasks, each resource has different execution costs. Furthermore, the

cost of each task is computed on each resource. With the help of mapping function, a

list is maintained when every task is mapped with resource based on minimal value.

Each resource doesn’t contain more than one task. Finally, the result is computed and

compared to the Best Resource Selection (BRS) algorithm. The model showed overall

nominal cost. The working of BAT algorithm is shown in Figure 2.19.

48

Initializing Bat
population

Evaluating objective
function for each

Ranking Bat and
optimal solution

Computing minimal
cost

Mapping function

Computing cost for
tasks on single

resources

Figure 2.19 Working of BAT algorithm

2.8.11 Developmental Genetic Programming

In real-time computing, practicing cloud infrastructure is a new concept. Resources

are assigned to the tasks through cloud infrastructure. It is very important to design an

efficient and effective procedure for resource allocation through cloud. (Slawomir.

Bak et al., 2014) analyzed the problem of cloud resource allocation to minimize

execution cost in real-time applications. The existing methodologies i.e., Iterative

Improvement (Panda. S. K et al., 2015) and Constrained Logic Programming (Sindhu,

2015), briefly explained and resolved the application cost problem, but still there is a

chance of improvement to minimize the execution cost. An efficient genetic procedure

is proposed to minimize the cost of applications with high QoS in a cloud computing

environment. Initially, the system comprises of distributed methods considering the

worst-case scenario where all tasks are started at equal time. All tasks are scheduled in

49

a fixed order with a definite time frame. In addition, the methods are converted into

several task graphs due to static scheduling. Also, primary population of genotypes is

created and solved through genetic procedure. Here, the developmental scheduling

algorithm is used for assigning and scheduling all tasks which outperform the ideal

solution. The whole process in shown in Figure 2.20.

Genetic Algorithm

Mapping function

Formal
Specification

Task graph

Population Reproduction

Mutation Crossover

Genotypes to
Phenotypes

Results

Figure 2.20 Flowchart of Developmental Genetic algorithm

2.8.12 Federation-based Resource Allocation Scheme

(Jiayin. Li et al., 2012) proposed a new approach in a cloud computing environment

online for task scheduling on Infrastructure-as-a-Service (IAAS) cloud. In this

50

research, various data centers meet with the help of federated method. Each data

center contains manager server which holds information about VMs and communicate

with each other respectively. The tasks are stored in a database in the cloud, then

cloud collects tasks and distribute it in the entire cloud system considering resource

accessibility in the other clouds. The resource scheduling is being checked by

monitory infrastructure. The infrastructure, producer, and consumer are communicated

with each other in two modes, namely, push and pull mode. While making decisions,

consumer pulls information about resources from other existing clouds. After

finishing task execution, producer pushes the data to the consumer. Two distinct

methods, namely, Advance Reservation (AR) and Best Effort (BE) are used for hiring

capacities from cloud computing infrastructure. Both push and pull modes are used in

the basic resource allocation model. Finally, Directed Acyclic Graph (DAG) is used in

the application model. Energy aware local mapping significantly reduces energy

consumption in the federated cloud computing environment. This procedure is

illustrated in Figure 2.21.

51

Monitory Infrastructure

Data center
(Federated method)

Manager server

Pull mode Push mode

Scheduling

Computing capacities
AR & BE

Directed Acyclic Graph

Figure 2.21 Federation-based RA scheme

2.8.13 Adaptive Genetic Approach

Allocation and scheduling of tasks on a VM is a difficult job in a hard-real-time

environment. To resolve this problem, (Amjad. Mahmood et al., 2017) proposed

Adaptive Genetic Algorithm (AGA) in a cloud computing environment. The model

consists of numerous tasks having the work pressure to complete its tasks while

meeting the deadline. Tasks have a precedence relationship when communicate with

each other on VM denoted by a Directed Acyclic Graph (DAG). The scheduling of

tasks is done using chromosomes to generate the population. Multiple crossover is

performed on randomly selected chromosomes without troubling the scheduler.

Furthermore, mutation is accomplished by selecting a gene from chromosome. Each

gene is capable of changing bits with some probability. The proposed AGA model is

compared with the other techniques such as DAG technique, greedy search approach

52

and non-adaptive GA. Better outcomes are achieved by the proposed algorithm. This

process is shown in Figure 2.22.

2.8.14 Dynamic Fault-tolerant Elastic Scheduling (DFES)

It is vital to improve the resource utilization in cloud computing environment. (Hui.

Yana et al., 2019) proposed a fault tolerant algorithm to accomplish resource

utilization. The data center comprises of multiple hosts, each having its own VM. A

user maintains task flow in a task queue. The system schedules the task which keeps

record of both task scheduler and performance monitor. The monitor is responsible to

retain the status of the system performance. On the other hand, task scheduler

schedules task when getting feedback from monitor. The task scheduler, data center,

and monitor communicate with each other by using star topology. The performance of

the model is verified by using CloudSim simulator through Google tracelogs. Figure

2.23 shows the whole process of DFES algorithm.

53

Multiple Tasks

Precedence
relationship

Directed Acyclic Graph

Scheduling

Genetic Algorithm

Result

Figure 2.22 Simplified flowchart of AGA scheme

2.8.15 Earliest Deadline First Greedy Approach

(Karthik. Kumar et al., 2011) proposed a VM allocation procedure for real-time tasks.

The main objective of the proposed technique is to decrease the cost of tasks

allocation while meeting deadlines. The authors proposed a greedy approach based on

Earliest Deadline First (EDF) algorithm. Initially, tasks are allocated separately to

access VMs. When VMs became inadequate to accomplish the task on time, then

based on lookup table, other low-priced VMs are selected by greedy approach to

complete the tasks before expiry of the time constraint. When tasks overlap each

other and produce high cost, then identifying overlapping tasks and allocating

resources together create outcomes in polynomial time. The proposed model shows

the allocation of tasks. This process is shown in Figure 2.24.

54

Task scheduler
Performance

monitor

Resource allocation

Results comparison

Set of hosts

Virtual machine

Data center

Task flow

Task queue

Figure 2.23 Workflow of DFES algorithm

2.8.16 Deadline-oriented VM Allocation Approach

(Kyong. Kim et al., 2011) proposed an algorithm not only to reduce the task allocation

cost but, also increase the system consistency for both hard and soft real-time services.

In hard real-time service, if a task does not meet the timing constraint, then penalty is

charged. In soft real-time service, if a task does not meet time constraints, then there is

55

Real-time tasks

VMs accessibility

Identification of
inadequate VMs

Lookup Table

Greedy approach
(EDF)

Task Overlap

Results Generated
(Polynomial time)

Figure 2.24 EDF Greedy task allocation procedure

no penalty and results are accepted, but the Quality of Service (QoS) is decreased.

Depending on the deadline type, the user requests hard or soft VM for further

processing. Initially, the user requests a VM by providing all the information to the

vendor about real-time applications. Then the provided information is first analyzed

for creating one real-time VM (RT-VM) request and the vendor offers a VM from the

cloud computing environment. The VM meets the task’s requirement constraint and

its information is submitted to the user later. Finally, the user executes the real-time

applications. The whole scenario is depicted in Figure 2.25.

56

Virtual machine

Number of tasks
{1,2, ..,n}

Deadline type

User requests for RT
VMs

Generating RT-VM

Requirements
accomplishment

RT application
execution

Hard Soft

Figure 2.25 Deadline-oriented VM allocation approach

2.8.17 Approximate Computation-based Resource Allocation Scheme

In a cloud computing environment, QoS provision is preferable requirement for the

consumer. (Georgios L. Stavrinides et al., 2019) proposed approximate computation-

based scheduling technique for real-time system. To schedule tasks in a ready queue,

heuristic is applied to select task and VM. In the beginning, tasks are prioritized based

on EDF policy. In case of tie, task with the highest cost is selected. Once the task is

selected by the scheduler, it is assigned to a virtual machine based on the Earliest

Estimated Finish Time (EEFT) approach. The proposed model is made energy

efficient through the utilization of DVFS technique during the VM selection process.

Also, the model is cost effective when it reduces the idle time of the VM. The

57

proposed model provides better results than other existing techniques considering total

energy consumption, SLA violation ratio, average result precision, and total monetary

cost as performance parameters. The working of the proposed model is represented in

Figure 2.26.

Number of tasks
{1,2, ..,n}

Task prioritization
using EDF

EEFT scheduler

Energy efficiency using
DVFS

Results

Figure 2.26 Flow of approximate computation-based RA scheme

2.8.18 Periodic Server Scheduling Scheme

Numerous systems share single computing platform to enrich flexibility and reduce

the execution cost through virtualization equipment instead of using separate hosts. To

overcome this issue, (Xi. Sisu, 2014) proposed novel scheduling structure in real-time

environment. All the incoming tasks are prioritized considering pre-emptive fixed

scheduling. Then, these tasks are scheduled according on the virtual processing units.

Every operating system is liable on tasks scheduling. The processing is executed in

two conditions: runnable and non-runnable. Xen scheduler schedules dependent

functions on distinct VM and spread its other parts. The jobs continued to execute on a

58

single core hierarchy considering soft real-time tasks. Also, tasks are implemented on

sporadic server where do-schedule method is called when virtual processing differs

from running tasks. The proposed model performance is computed on different quanta

whose range lies in 1ms – 10ms. The proposed model achieved better results at fine-

grained quantum considering tasks overhead.

2.8.19 Heuristic-based Earliest Deadline First Scheme

In software services, the data locality problem exists nowadays. There is a need to

reduce the problem of workload during execution of multiple tasks. (Georgios. L et

al., 2017) presented a solution to overcome heavy workload problem. In this scenario,

tasks are dynamically scheduled in cloud computing under different circumstances.

Three heuristics are applied on a real-time task set such as Non-Data-aware Earliest

Deadline First (ND-EDF), Data-aware Earliest Deadline First (DA-EDF), and Earliest

Data-aware Earliest Deadline First (EDA-EDF). In ND-EDF, tasks are entered in

global queue for central scheduling. Then tasks are sorted in descending order of mean

computational costs. Tasks having largest cost are selected first for scheduling. After

scheduling, tasks are assigned to the VM with the earliest start time. The VM executes

tasks according to the earliest deadline. In DA-EDF, tasks are scheduled like NDA-

EDF via the largest mean computational costs. The tasks are assigned to the VM

having earliest start time. But the tasks are executed with their job’s deadline. In

EDA-EDF, the procedure of tasks selection is same as other two procedures. Here,

tasks are executed according to the earliest start time employing EDF policy. NDA is

matched with the other two heuristics DA and EDA-EDF to aware the system

performance on data locality. In the proposed model, data locality is considered during

scheduling.

59

2.8.20 Application-directed Check Pointing and Approximate Computation

Scheme

 (Georgios. L et al., 2017) focused on reducing cost and fault tolerance in SaaS cloud

computing environment to achieve good quality within time constraints. The six

scheduling techniques Earliest Deadline First (EDF), Earliest Dead-line First with

Restricted Approximate Computations (EDF-RAC), Earliest Deadline First with Full

Approximate Computations (EDF-FAC), Earliest Deadline First with Application-

directed Checkpoints (EDF-ADC), Earliest Deadline First with Application-directed

Checkpoints and Restricted Approximate Computations (EDF-ADC-RAC), and

Earliest Deadline First with Application-directed Checkpoints and Full Approximate

Computations (EDF-ADC-FAC) are compared to compute the performance of overall

system. In EDF, tasks are in queue according to earliest Estimated Start Time (EST).

The tasks are engaged in selected queue considering EDF. In EDF-RAC, tasks in

queue are allocated through EDF. In EDF-FAC, tasks selection is same as EDF and

EDF-RAC procedures. The tasks are scheduled only to execute the mandatory portion.

In EDF-ADC, tasks are employed according to directed check pointing technique. In

EDF-ADC-RAC, tasks are employed considering both applications directed check

pointing and approximate computations. In EDF-ADC-FAC, tasks are scheduled to

execute mandatory portions. The comparison among scheduling algorithm proved

that EDF-FAC produced better results and EDF-ADC gave the best results in worst

scenarios.

2.8.21 Earliest Deadline First and Unfair Semi-Greedy Approach

(H. Alhussian et al., 2019) proposed cloud computing architecture that consists of two

parts: Master Node (MN) and Virtual Machine (VM). In this scenario, it is assumed

60

that MN has VMs pool. When real-time job comes to the MN, the master scheduler

picks a VM resource from the pool and assign tasks to it until VM is fully loaded.

When the minimum required number of VM is determined, the MN scheduler assigns

real-time services to them. Each VM node has deadline look-a-head module that gives

information regarding deadline-miss event. In case of such event, the event is removed

from scheduling queue and put into urgent queue. The MN scheduler at that point

looks for a VM node with an unoccupied processor and assigns the urgent tasks to any

such node that is found unoccupied. Sometimes, the MN scheduler also makes another

VM node and appoints the urgent tasks to it. When VM deadline is suspected, it

removes those tasks from waiting queue and sends the suspected tasks to the MN. By

following this procedure, tasks are expected to meet the deadlines.

2.8.22 Dynamic Proactive Reactive Scheduling

(H. Chena et al., 2014) proposed Proactive and Reactive Scheduling (PRS) algorithm

that dynamically exploits PRS methods for scheduling real-time tasks. The tasks are

assumed aperiodic and independent. The authors examined how to reduce the

system’s energy consumption while guaranteeing the real-time constraints for green

cloud computing where uncertainty of task execution exists. The proposed PRS

algorithm achieved improved performance as compared to four typical baseline

scheduling algorithms: non-Migration-PRS (NMPRS), Earliest Deadline First (EDF),

Minimum Completion Time (MCT), and Complete Rescheduling (CRS).

2.8.23 Energy-aware Resource Allocation

Energy conservation is a big issue in cloud computing systems. If it is handled

properly, then reducing operating costs, system reliability, and environmental

61

protection factors can be achieved effectively. Existing power-aware scheduling

approaches provide promising way to achieve this goal, but the issue is that they are

not real-time tasks oriented and thus lacking the ability of guaranteeing system

schedulability in such situations. To solve the aforementioned problem, (X. Zhu et al.,

2014) proposed rolling-horizon scheduling architecture for real-time tasks scheduling

in virtualized clouds and energy-aware scheduling algorithm for real-time tasks. The

tasks are aperiodic and independent. Two other strategies “scaling up” and “scaling

down” are proposed for making trade-offs between task’s schedulability and energy

conservation.

2.8.24 Bag of Tasks Scheduling with Approximate Computation

The authors (G. Stavrinides et al., 2017) devised six different techniques, that are

MinMinMAC, MinMinEAC, MaxMinMAC, MaxMinEAC, SufferageMAC, and

SufferageEAC for scheduling batch of real-time tasks (BoT) on SaaS cloud computing

systems. All tasks are independent and non-preemptive which avoid performance

degradation. Each task is assigned some weight which shows its total number of

required computations. If a task fails to finish on time, it takes non-completed status

and gets out of the scheduling queue because its deadline is non extendable. A task

gets completed status when all its mandatory parts (jobs/subtasks) are executed on

time. The completion of optional subtasks may refine the results. In the proposed

model, a task can get a finished, partially finished, or skipped status. If a task is

partially finished, it is called as approximate and the output may get affected. In any

case other than approximate, a job is lost.

62

In the proposed model, when a task arrives at the central scheduler, it enters the

queue and scheduler is invoked. The load on VM is calculated and the following steps

are performed.

1. Estimate the completion time of a task.

2. Calculate idle time of a processor.

3. Arrange queue according to the EDF algorithm.

4. Calculate minimum completion time (MCT) of a task.

The detailed working of the proposed framework is depicted in Figure 2.27.

2.8.25 Green Cloud Scheduling Approach

(T. Kaur et al., 2016) proposed a technique to efficiently utilize the nodes in a cloud

computing system to save energy consumed during the process. With the help of

virtualization, heterogeneous types of tasks are efficiently assigned to the nodes within

their deadline limits that are energy efficient using Green Cloud Scheduling Model

(GCSM). Running tasks, resources utilization, and energy statistics information are

stored in a database. Cloud user submits the task(s) and provides the deadline

information for the task(s). The tasks handler and analyzer section check whether the

current task along with the constraints provided by the user exists in the database. If it

is there, the task is assigned the required resource. If the task is not found in the

current database, then a special unit called Green Cloud Scheduler (GCS) efficiently

perform scheduling of tasks on appropriate nodes within the deadline limits of the

tasks. The GCS also tries to eliminate idle node(s) within the system, and thus

minimizes the energy consumed by unnecessary nodes. The proposed system saves

energy up to 71%, while 82% of the tasks are completed within their deadline

constraints.

63

2.8.26 Fuzzy Dominance Sort-based Resource Allocation Technique

(X. Zhou et al., 2019) minimized cost and makespan simultaneously for workflows

deployed and hosted on IaaS clouds. This scheme proposes a Fuzzy Dominance sort-

based Heterogeneous Earliest Finish Time (FDHEFT) algorithm which closely

integrates the fuzzy dominance sort mechanism by using Heterogeneous Earliest

Finish Time (HEFT) list scheduling heuristic. The proposed scheme achieved

significantly better cost-makespan tradeoff fronts with remarkably higher hyper

volume and can run up to hundreds of times faster than the state-of-the-art algorithms.

Two sets of simulation experiments are implemented on real-world workflows and

synthetic applications to validate the effectiveness of the proposed FDHEFT. The

experiments are based on the actual pricing and resource parameters of Amazon EC2.

The produced results show supremacy of the FDHEFT approach with respect to cost-

makespan trade-offs and a lower CPU runtime when compared to the other peer

approaches like ɛ-Fuzzy PSO, NSPSO, SPEA2, and MOHEFT.

2.8.27 Best Fit with Imprecise Computations

(G. Stavrinides et al., 2015) proposed variant of EDF scheduling scheme called EDF-

BF-IC for the real-time workflow applications scheduling in heterogeneous Platform-

as-a-Service (PaaS) cloud that combines inaccurate bin techniques and computations.

This scheduling technique consists of two main objectives. First, to ensure that all

applications are not exceeding the deadlines and that results in high quality output.

Second, to decrease the time spent by execution of every workflow that causes cost to

the user. The EDF-F-IC scheduling heuristic consists of two phases: tasks selection,

and VM selection. In the first phase, priority is assigned to each task according to

EDF policy. The task having the highest EDF priority is the task which has earliest

64

BoT Job
J = {t1,t2, ,tn}

Task ti on a VM

Comp(ti, vmj) = wi j

Global Queue
Central Scheduler

having dedicated VM

Local Queue

 = {vm1, vm2 .}

Total execution time
 M = FT – ST

(FT= Finish Time, ST=Start Time)

Mandatory and Optional parts
of task

wi = mpi + opi

Choose between MAC and EAC

MCT of each task ti

MCT(ti) = min vmj V { CT(ti, vmj) }

End-to-end deadline
D = AT + RD

AT= Arrival Time
RD= Relative deadline

If mandatory
parts are

completed?

No

Yes

All tasks are
scheduled?

No

Yes

Performance Evaluation using
SaasS Cloud

Figure 2.27 Workflow of BoT with approximate computation scheduling approach

65

end to end deadline. All the tasks are organized in ascending order of priorities. If

there are two tasks and both have same deadlines, then both tasks are organized in

descending order. In the second phase, when task selection is completed, then task is

assigned to that VM which delivers it with the earliest estimated start time. The

authors first find the initial position on which the ready task is located in the VM

queue, agreeing to their priority so that least priority task does not precede the least

one. Then they evaluate if the time saved by avoiding some part of the ready task is

equal or greater than the total average time forced on the ready task sub-tasks. The

proposed EDF-BF-IC technique is compared to EDF by considering communication

workflow, intensive, and moderate application parameters.

2.8.28 Hybrid Genetic and Cuckoo Search (HGCS) Algorithm

The authors (Min-Allah. N et al., 2019) proposed a hybrid approach for scheduling

real-time applications on cloud computing resources. The main performance

parameters are total cost and makespan minimization. The schedulability of

application is checked on cloud VMs. If application is feasible for execution, then the

cost of execution is checked. The proposed HGCS algorithm selects low cost cloud

computing resources where real-time applications are executed with total minimum

execution time. The performance of the HGCS is compared with the other two well-

known algorithms, the genetic, and cuckoo search.

2.9 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES IN

EDGE COMPUTING

When various things (devices etc.) and information are connected to the internet, it

refers to the internet of things (IoT). Now a day’s billions of IoT devices are

66

connected to the internet and huge amount of data produced by these devices need to

be processed in a very short span of time. One solution to the huge data storage and

processing is the cloud environment. As the distance between the IoT device and

cloud increases, the transmission latency also increases, which also increase the

response time. Furthermore, smart handheld devices have limited storage and

computation capabilities which cannot accommodate applications demanding high

storage and real-time processing (Zhang et al., 2020). The solution to this problem is

the edge computing platform. The mobile edge computing technology helps in

overcoming the limited memory and storage constraints problems by providing cloud

computing facility adjacent to the smart IoT devices. The edge computing platform

allows some application processing to be performed by small edge servers located

between the IoT devices and the cloud in location curiously physically closer to the

IoT device.

In edge computing, server is located in the edge network. The distance between

the IoT devices and the computation resource is a single hop, due to which the latency

is low, and the jitter is also very low. Edge computing is geo-distributed with location

awareness and mobility support. Edge computing provides limited service scope with

limited hardware capabilities to the mobile users. The storage capacity and

computational power are also limited in edge computing. Figure 2.28 shows the

general architecture of edge computing while Figure 2.29 portrays the taxonomy of

edge computing presented by (E. Ahmed et al., 2017).

67

Figure 2.28 General architecture of edge computing

Figure 2.29 Taxonomy of edge computing

Edge Computing Taxonomy

Application

Smart
Environment (IoT)

Computational
Hierarchy

Cloud

Edge Server

End Node

Objectives

Faster Response
Time

Bandwidth Saving

Latency
Minimization

Utility
Maximization

Technologies

Mobile
Technologies

Network
Technologies

Software
Technologies

Computing
Paradigms

Fog
Computing

Cloudlets

Mobile Edge
Computing

68

2.9.1 Resource Matching-based Allocation Scheme

Due to the low latency in resource allocation, edge computing is becoming essential

nowadays. There is a need to provide optimal solution in a cloud computing

environment. (Hengliang. Tang et al., 2019) proposed an algorithm for dynamic

resource allocation in edge computing environment. The resource allocation

comprises of resource matching and scheduling processes on edge servers. To reduce

network traffic and improve the user experience is a main part of every application.

All information related to data is stored in memory for further use. In resource

scheduling algorithm, the resources are scheduled with the help of edge orchestrator

(EO). The traffic data is scheduled into the disk of edge servers (ESs). All the jobs are

submitted to the corresponding edge server by the access point (AP) where every job

contains multiple tasks. Now, the corresponding container for the tasks is configured

by the edge server. Every edge server can present multiple containers containing RAM

and CPU. Furthermore, each container executes single task at a time. Lastly, every

edge server matches its tasks and containers by a Resource Matching (RM) algorithm.

The proposed model presented better results than the existing techniques.

2.10 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES

IN FOG COMPUTING

With the increasing volume of IoT devices, the main problem faced by cloud

computing is the latency. IoT devices need huge bandwidth for transferring huge

amounts of data for communication as these devices send all the data to the cloud for

processing and storage which consume bandwidth and energy. The processing of real-

time data is not possible for the cloud due to its high latency.

69

The cloud model has insufficient ability to handle the IoT requirements in case

of bandwidth, latency, and huge data volume produced by the IoT devices. Hence,

there is a need to bring the cloud facility closer to the IoT devices to minimize the use

of bandwidth and energy consumption and to reduce the latency.

CISCO introduced Fog computing to overcome the deficiencies of the cloud

computing. Conceptually, Fog is the intermediate layer between the IoT devices and

the cloud. The general architecture of the fog layer is represented in Figure 2.30.

Figure 2.30 General architecture of fog computing

Fog is not the replacement of cloud due to the limited number of resources but

its extension which is dominant in terms of lower service delay, processing cost, and

response time. Similarly, augmented reality, virtual reality, and time sensitive

applications which have rigid service delivery deadlines are also not efficiently

execute on remote cloud resources (Sun et al., 2020). Using Fog computing, the

70

produced data is pre-analyzed on the asset, minimize the volume of data, and efficient

management of run time behavior is carried out. Conversely, due to the wireless

connectivity, power failure and devolved management, the failure ratio is high in the

Fog computing (R. Mahmud et al., 2018). Naha et al., (2018) presented taxonomy of

fog computing based on the requirements of application, infrastructure and platform

which is presented in Figure 2.31.

Figure 2.31 Taxonomy of fog computing

2.10.1 Hybrid Earliest Deadline First Approach

(Georgios et al., 2017) proposed hybrid technique to scheduled real-time workflows in

a cloud computing environment. In fog computing, IoT workflows for dynamic

scheduling in three-tiered architecture. The IoT comprises of devices and sensors

Fog Computing
Taxonomy

Application

Application
Requirements

Scalability

Heterogenity

Mobility

User
Requirements

Deadline

Budget

Accuracy

Response Time

Infrastructure

Infrastructure
Requirements

Processing
Power

Storage
Capacity

Memory

Fog Devices

IoT Devices

Processing
Devices

Gateway
Devices

Network
Requirements

Platform

Resource
Allocation and

Scheduling

Service
Requirements

Security and
Privacy

Management

71

which transmit data via Wi-Fi network to the fog layer. The data arrive dynamically at

central scheduler towards Poisson stream. Each job is non preemptible and denoted by

a directed acyclic graph (DAG). The tasks are initially prioritized using EDF policy.

Then, the tasks are scheduled and assigned to the VM according to earliest finish time

(EFT) technique. The proposed model produced improved results as compared to fog-

EDF. This general process is shown in Figure 2.32.

Real time tasks
{1,2, ..,n}

Task prioritization
using EDF

Non pre-emptible

Directed acyclic graph

Task scheduling using
EFT

Results

Figure 2.32 General process of hybrid EDF approach

2.10.2 Tasks Buffering and Offloading Policy

A task shows poor performance on the execution nodes due to limited capacity. Cloud

computing resolves this issue by utilizing powerful resources which produce better

quality results in reduced time. But it increases chances of data loss because several

tasks transfer information over the network. To overcome this issue, (Lei. Li et al.,

72

2019) proposed an algorithm for processing heterogeneous real-time tasks. It

comprises of three tiers to increase the QoS. Initially, the end tier is accessible by the

data source of fog system. Secondly, the fog tier shows a minor latency during

transmission between the fog and end devices. Thirdly, the cloud tier contains

unlimited resource capacity to attain extra-ordinary performance. A single parallel

virtual queue at the fog node is made to reduce time complexity. The proposed model

performance is compared with the two resource allocation techniques, i.e., the round

robin and maximum resource utilization. The results showed that greater value is

achieved by a task when task buffering, and offloading policy is adopted. This

scenario is depicted in Figure 2.33.

Tires architecture

Tasks

Virtual queue

Resource allocation

Performance
evaluation

End Fog Cloud

Figure 2.33 Task buffering and offloading scenario

73

2.11 RESOURCE ALLOCATION SCHEMES FOR REAL-TIME SERVICES

IN MULTICORE SYSTEMS

The RA schemes for real-time services in multicore environment are mainly

categorized into online, offline, and mixed approaches (Zarrin et al., 2017). The online

RA approaches map real-time applications dynamically at run-time without any prior

knowledge of the system (B. Yang et al., 2013; Anagnostopoulos et al., 2013; F. Dong

et al., 2006; G. Sabin et al., 2007). In offline RA approaches, the applications have

advanced knowledge of the whole system and the resources status (Y. Jiang et al.,

2008; D.W. Kim et al., 2002; J. E. Boillat et al., 1990; C. Marcon et al., 2007). These

approaches have drawback of lack of knowledge how to solve variant application

workload problem at runtime dynamically. In mixed approaches (H. Hoffmann et al.,

2011; H. Shojaei et al., 2009; L. Schor et al., 2012), application mapping and selection

is pre-calculated at design time.

2.11.1 Rate Monotonic Scheduling with Reduced Priority Levels Approach

In reduced priority levels technique (Qureshi M. B et al., 2015), the hard-real-time

tasks are grouped into multiple classes. Priority is assigned to a class instead of

individual task which means that if there are total n tasks in a set, then the number of

priority levels will be less than n which shows that one of the class has more than one

task. The tasks within a class are prioritized based on the Rate Monotonic scheduling

approach. This procedure reduces the assignment of priority levels.

2.11.2 Hybrid Cuckoo Search-based Algorithm

(Xiangtao. Li et al., 2013) proposed hybrid cuckoo search (HCS) based algorithm to

resolve permutation flow shop scheduling problem (PFSSP). The core purpose of the

PFSSP scheduling is to minimize the makespan. Based on a random key, largest rank

74

value (LRV) rule is proposed to create a appropriate cuckoo search. Additionally, with

the combination of Nawaz Enscore Ham (NEH) heuristic algorithm, a population with

an assured value and range is generated. A Fast-Local Search (FLS) is injected to

increase the local utilization for consideration. Finally, comparison is carried out for

better performance of the HCS model with the PSOMA, OSA, PSOVNS, and HDE

algorithms.

2.11.3 Online Accrued Scheduling Scheme

(Shuo. Liu et al., 2011) proposed scheduling algorithm for real-time system on the

task model online with the utility functions. Two different utility functions that are

profit and penalty are associated with the task. If the task completes its execution

within a specific time period, it is considered as profit. On the other hand, if the task

misses its deadline, then it must pay a penalty. To schedule several real-time services

requests, two non-pre-emptive heuristic scheduling are used. The purpose of using

heuristics is to accept, schedule, or abort real-time services to maximize the sing time

utility function. Initially, all the incoming real-time tasks are accepted to assess the

requirement for the system. Then, all the incoming tasks in a ready queue are

scheduled for execution. Lastly, reject awaiting requests and terminate the task when

accomplished. The proposed model shows better results than EDF, GUS, risk-reward,

and PP-aware scheduling algorithms. The high level working of the proposed scenario

is depicted in Figure 2.34.

2.11.4 Least Feasible Speed (LFS) Technique

(Nasro Min-Allah et al., 2012) introduced LFS technique for checking the

schedulability of the real-time systems with minimum energy consumption procedure

75

on multicore systems. The authors suggested that the first point in a scheduling points

set cannot guarantee the schedulability of the tasks with minimum power

consumption. So, each task feasibility is checked by multiple scheduling points in a

set. The proposed LFS technique outperforms the existing First Feasible Speed (FFS)

counterpart. Furthermore, the authors have also suggested a strategy for load

balancing on cores.

2.11.5 Load Balancing by Tasks Splitting and Tasks Shifting Strategy

Load balancing plays a vital role in improving multicore systems efficiency. In ref

(Hussain. H et al., 2013), the authors distribute the real-time tasks on multicore

systems in a way that the computational demand of tasks is fulfilled in specified

deadlines and the total utilization of the core remains in bound. They perform

utilization-based tests. When a core utilization becomes greater than 100%, then tasks

are shifted to the other underutilized core.

76

Incoming Task Arrival

Single time utility
function (TUF)

Non pre-emptive heuristic
scheduling

Ready queue

Terminate

Profit Penalty

Result

Waiting queue

Reject

Figure 2.34 High level flow of online accrued scheduling scheme

2.11.6 Compatibility-aware Task Partitioning Scheme

It is essential to improve task execution within deadline constraints on multicore

platforms. (Qiushi. Han et al., 2015) provide efficient tasks scheduled using rate

monotonic scheduling (RMS) on multiple core platforms under fault tolerant

requirements. In the proposed scheme, multicore scheduling is divided into two

groups, namely, global and partitioning scheduling. In global scheduling, every task is

executed on any core, while in partitioning scheduling, every task is assigned to a core

77

and all tasks are executed on that specific core. The authors considered partitioning

scheduling because of low overhead. Only one task can be allocated at a time. Also, a

task is assigned to a respective core which computes the compatibility. The task is re-

executed when fault is identified. A check pointing scheme is merged with the

compatible task to increase system utilization. Figure 2.35 shows this phenomenon.

Number of tasks

Number of cores

Partitioned Scheduling

Computing
Compatibility

Fault identified

Check Point Scheme

System Performance

Figure 2.35 Compatibility-aware tasks partitioning scheme

2.11.7 Simple Combined Resource Usage Partitioning

The usage of reserve memory on the CPU is increased by some task running on the

system due to which latency is also increased during the execution of tasks. To

overcome this problem, (Gustavo et al., 2018) focused on the memory resource

division for real-time systems. Initially, fixed priority is assigned to several tasks and

78

then the tasks are scheduled on multiple core platforms which share a single memory

known as cache. The scheduling of hard real-time tasks is improved by co-scheduling

memory and CPU. Then, memory bandwidth and memory latency are progressing

using three dimensional systems with on-chip dynamic random access memory

(DRAM). This is how tasks are scheduled to meet the deadline for the memories. The

proposed model scheduled 19.5% more tasks than the other existing classic scheduling

methodologies such as SCRUP and TATP.

2.11.8 Enhancing Shared Cache Performance-based Approach

(P. Kumar et al., 2019) proposed task reprocessing scheme to enhance the

performance of a common cache memory on a real-time multicore system (with

quantum-placed universal recurring co-scheduling model) and to reduce the overhead

in real-time scheduling by encouraging eligible task sets to reprocess based on

heuristics called ENCAP (Enhancing shared Cache Performance). By utilization,

processing rates are determined by splitting tasks into sub-tasks having pseudo cutoffs

(intermediate cutoffs). These sub-tasks are processed using EDF scheme. Among sub-

tasks, there exist cutoff miss or tie with the same cutoffs. The tie is broken by

ENCAP.

The ENCAP is used to reschedule loads which are ignored due to the low

priority load. Loads are assigned statically and processed based on a cache aware real-

time EDF. Every load in a task is discharged regularly which is called an activity of

the load. A periodic load can be derived by a slot which is partitioned between its

consecutive load discharges and reprocessing cost. It implies the largest reprocessing

time. Every activity of a load has a cutoff corresponds to the discharge time.

79

2.11.9 Large Time Demand Analysis Technique

In scheduling points test, the basic feasibility of a task is determined by testing

scheduling points for the lowest priority task first. But main drawback of such tests is

that it is not possible to address the total execution demand of such tasks at a small

number of points. Instead, the feasibility is determined at very large scheduling points

set. Nasro Min-Allah (2019) performs the feasibility analysis of periodic real-time

tasks by testing large number of scheduling points. At each scheduling point, the

cumulative demand of a task is tested. The task is declared un-schedulable if at any

point, the task execution demand is greater than the total processor capacity.

2.12 CHAPTER SUMMARY

The resource allocation scheme in HPC systems plays a vital role in allocating

resources to the user applications, especially when such applications have associated

time parameters and need resources within specified time and user budget constraints.

In this chapter, we have surveyed resource allocation schemes for real-time services in

HPC paradigms, including grid, cloud, fog, edge computing, and multicore systems.

Working of these schemes has been evaluated theoretically and presented pictorially

so that a new researcher can be facilitated on a single platform. The detailed

comparison based on common parameters provide an opportunity to easily find

architectural and implementation related similarities and differences among different

RA schemes. We have provided comprehensive analysis, which distinguishes this

survey from the existing surveys in the RA domain. This survey specifically

consolidated RA schemes only for real-time services which involve execution

deadlines. In this chapter, RA schemes are classified based on real-time workloads

and an overview of the most commonly used schemes was presented in large-scale

80

HPC systems. Each scheme was uncovered based on some common performance

parameters.

81

CHAPTER THREE

PREDICTION-BASED RESOURCE ALLOCATION MODEL FOR

REAL-TIME TASKS

3.1 INTRODUCTION

In this chapter, we consider real-time tasks scheduling as an HPC resource

management technique. The proposed resource allocation model considers real-time

tasks which need data files for processing. Task requirements are specified and passed

to the prediction analyzer module. The prediction analyzer predicts whether task

execution will be completed within deadlines by considering all the task requirements.

If the task is schedulable, then the scheduler schedule it on the feasible resources

specified during prediction phase. In this way the resources are allocated to the

feasible tasks.

In recent years, real-time systems scheduling on HPC platforms contributed

huge volume to the plethora of scheduling theory. It has become the passable platform

for executing computational-intensive applications on powerful resources (Abdullahi

& Ngadi, 2016). The effectiveness of the real-time scheduling algorithm can be

measured from the deadline miss ratio (Xie & Qin, 2005; Qureshi M. B et al., 2014)

which can be calculated as follows.

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝑁𝑜. 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠

Real-time scheduling algorithms are classified in to static and dynamic

algorithms. In static scheduling algorithms, the tasks are characterized by static

priorities which are assigned to the tasks before starting execution on computing

82

resources and remain unchanged throughout the execution of the tasks (Qureshi M. B

et al., 2015). In dynamic scheduling, tasks priorities may change during execution.

3.2 PROPOSED RESOURCE ALLOCATION MODEL

It can be observed that most of the existing solutions to the real-time data-intensive

tasks allocation problem in HPC domain leave gaps for deadline miss. The data and

communicational aspects between computing and storage resources and specification

of the feasible resources and task execution time on these resources is unaccounted in

the existing resource optimization settings. The advanced feasibility testing of the

real-time tasks under fixed priority scheduling technique has always been challenging

when data constraints are considered. From data files processing perspective, it has

also been of interest to include data files transfer time in feasibility analysis on

computational resources when some of the files are locally available to the tasks and

some to be transferred from the remotely located storage resources.

In this chapter, a novel and fine-tuned resource allocation model for real-time

application on HPC resources is developed to cope with the aforementioned problems.

The proposed model is referenced in Figure 3.1.

In the proposed model, batch of real-time tasks is submitted to the Tasks

Demand Specifier module which specifies the basic tasks parameters. The parameters

include required execution time, period, deadline and number of required data files.

After specifying the parameters, the batch is forwarded to the Offline Prediction

Analyzer which analyzes tasks in advance for feasible allocation. In this module,

computational resources ranking strategy is applied which guarantees tasks execution

within deadline with minimum possible time. The ranking technique helps in selecting

the most appropriate resources for application scheduling. The tasks grouping

83

approach based on some common parameters is adapted to achieve schedulability

without compromising tasks deadlines constraints. By positive negative points

technique, the points on which task schedulability is feasible are identified and rest are

discarded. The points are then passed to the Prediction Analyzer where task’s

feasibility is checked on each positive point. When tasks are declared suitable, then

they are assigned execution priorities by using priority assignment technique. When

tasks are prioritized then the batch is forwarded to the scheduler which then select

resources from a pool of resources and allocate to the tasks. If tasks are declared not

schedulable on resources by Offline Prediction Analyzer, then the batch of tasks is

discarded, and further evaluation is not performed. The advantage of the prediction

analysis stage is to save time by refraining further analysis on non-schedulable tasks.

3.3 MATHEMATICAL MODELING AND PROBLEM FORMULATION

3.3.1 Proposed Task and Resource Model

The proposed model is characterized by the following modules. We consider a real-

time application which is composed of multiple tasks. The application considered here

is termed as metatask Г. Each task i has pre-defined parameters; execution time ci ,

needed by a task i to execute on a computational resource, period pi , which is the time

interval between the activation of two consecutive jobs of a task i, and deadline di

which is the time by which the task i should complete its execution. The task model

can be expressed mathematically as,

84

3.3.2 Basic Task Model

𝜏𝑖(𝑐𝑖, 𝑝𝑖, 𝑑𝑖) (3.1)

where

pi: period of task i

ci: computation time of task i

di: deadline of task i

Figure 3.1 Proposed prediction-based resource allocation model

85

In our proposed model, we are considering tasks with data requirements. We

assume that the data files are replicated on multiple data storage resources. By

considering the data requirements, the modified task model is represented by

Equation. 3.2.

3.3.3 Modified Task Model

𝜏𝑖(𝑐𝑖, 𝑝𝑖, 𝑑𝑖, 𝐹𝑖) (3.2)

 where

Fi: Set of files required by task i

Fi ⊂ F {f1, f2, …, fk} where F is set of total k files located on distributed data storage

resources.

The metatask is a set of total n tasks represented by Equation 3.3.

3.3.4 Metatask Г

Г = {τ1, τ2 , τ3, …, τn} (3.3)

The feasibility of the metatask is determined by individual tasks. If all the tasks (1, 2,

…, n) in a metatask are feasible, then a metatask is schedulable.

3.3.5 Offline Prediction Analyzer

This function analysis the feasibility of a task and determine in advance whether the

task will fulfill deadline if allocated to a particular resource by considering task and

user constraints. The Offline Prediction Analyzer component take into consideration

the following sub-components for predicting task’s feasibility on resources.

86

3.3.5.1 Positive Negative Points Set for Task i

𝑃𝑁𝑃𝑖 = {𝑥. 𝑝𝑗|𝑗 = 1, … , 𝑖; 𝑥 = 1, … , ⌊
𝑝𝑖

𝑝𝑗
⌋} (3.4)

where pj is the period of the higher priority task than task i.

From the PNP set, the positive points (time instants) are identified by checking task’s

feasibility, and the rest of the points are declared as negative points on which the task

is infeasible. This technique will help in minimizing the makespan because the

negative points will be further excluded from the task feasibility analysis.

3.3.5.2 Resource Demand Calculator

𝑅𝐷𝑖(𝑇) = 𝑐𝑖 + 𝑅𝐷𝑧(𝑇) ; 𝑇 ∈ 𝑃𝑁𝑃𝑖 (3.5)

𝑅𝐷𝑧(𝑇) = ∑ ⌊
𝑇

𝑝
𝑗
⌋𝑖−1

𝑗=1 𝑐𝑗 (3.6)

 where

RDi (T): Resource demand of task i at time T

RDz(T): Resource demand of all higher priority tasks than task i at time T.

The resources are HPC heterogeneous resources each one is equipped with pre-

defined processing power. The resources are distinguished based on their architecture.

3.3.5.3 Execution Time of Task i on Computing Resource r

 𝐸𝑇𝑖𝑟 =
𝑅𝐷𝑖(𝑇)

𝑝𝑜𝑤𝑟
 ; 𝑟 ∈ 𝑅 (3.7)

where

R: set of computing resources

𝑝𝑜𝑤𝑟 : power of resource r in MIPS

87

3.3.5.4 Resource Ranking Function

𝑅𝑎𝑛𝑘 = 𝑝𝑜𝑤𝑟 + 𝐵𝑟𝑑 (3.8)

where

Brd: bandwidth of computing resource r to data storage resource d

The rank of the computing resource is calculated for each task. If a single file is

replicated on more than one storage resources, then the rank of a single computing

resource r where the task is initially feasible will be calculated to all the storage

resources on the required file is stored. The file will be retrieved from the storage

resource for which the rank value is high. Figure 3.2 illustrates this scenario.

For example, file f1 is stored on both data resources d1 and d2 which is required

by the task executed on computing resource r. The file will be fetched from the data

resource for which the corresponding rank is high. Also, if a task is feasible on more

than one computing resources, then the computing resource for which the rank is high

will be selected for task execution while ties are broken arbitrary.

Figure 3.2 Resource rank calculation

88

3.3.5.5 Tasks Grouping

𝐺𝑘 = {𝜏𝑖, 𝜏𝑖+1, … , 𝜏𝑛} (3.9)

where

Gk: Group k of n tasks

Tasks are grouped based on common demands or based on priorities. For

example, if tasks are grouped based on common files demands and there are 10 tasks

in a set and total 5 files are available on storage resources. If 𝜏1, 𝜏4, 𝜏5 need files f1

and f5, 𝜏2, 𝜏3, 𝜏6, 𝜏7 need files f2, f3, f4, 𝜏8, 𝜏9, 𝜏10 need files f1 and f3, then tasks can be

grouped into 3 groups.

G1 = {𝜏1, 𝜏4, 𝜏5}

G2 = {𝜏2, 𝜏3, 𝜏6, 𝜏7}

G3 = {𝜏8, 𝜏9, 𝜏10 }

3.3.5.6 Priority Assigner

This function assigns priorities to the tasks using some traditional algorithm like Rate

Monotonic (RM).

RM priority assignment:

priority (𝜏) α 1/period (𝜏) (3.10)

3.3.5.7 Objective Function

The Quality of Service (QoS) parameters that may be considered, are

a) makespan minimization

b) cost efficiency

c) maximum resource utilization etc.

89

Task constraints are completing task and metatask within deadlines. If all tasks

within a metatask are completed within deadlines by considering all the task and user

constraints, then the metatask is completed within deadline.

3.3.5.8 Resource Model

In our proposed model, we consider computing, storage and network resources. By

network resource we mean the bandwidth allocated for transferring data files from

storage locations to the computing resources. The resources are heterogeneous in

nature which means that they have different architectures and different processing

powers.

By considering all the task’s demands and concerned requirements for the

resources, the prediction analyzer predicts whether the given task is schedulable on

some computing resources. If the task is schedulable, then it is forwarded to the

scheduler for further allocation.

3.4 CHAPTER SUMMARY

In this chapter, we have proposed prediction-based model for allocating HPC

resources to real-time tasks. We assumed that the tasks need data files for completing

their processing on computing resources. The resources are computing, storage and

network resources. The files are transferred from the far away located data resources

to the computing resources which consume network bandwidth. The prediction

analyzer considers different parameters and predicts whether, the arrived task will

meet the deadline or not. The advantage of this model is to reduce the overall

processing time of the real-time tasks. The model was mathematically formulated.

90

CHAPTER FOUR

EFFICIENT RESOURCE ALLOCATION TECHNIQUE FOR

REAL-TIME DATA-INTENSIVE TASKS IN CLOUD

COMPUTING SYSTEMS

4.1 INTRODUCTION

Cloud computing is the de facto platform for deploying resource-intensive tasks due to

the collaboration of large-scale resources operating in cross-administrative domains.

The cloud computing resource scheduling and allocation is a crucial issue in achieving

efficient utilization of available resources especially when resource-intensive tasks

have real-time deadlines and data requirements. Traditional approaches are sufficient

only when data resources are located locally, since data is available at the computing

resources for tasks execution. However, the computational cost and execution time of

the resources has not been thoroughly deliberated when data storage resources are

remotely located. In such approaches there is a chance that some tasks may miss their

deadlines during execution due to the urgency of the tasks and limited budget

constraints. The timing requirements exacerbates efficient task scheduling and

resource allocation problem. To cover the aforementioned challenges, we propose a

time and cost-efficient resource allocation strategy for real-time data-intensive tasks in

the cloud computing environment which minimizes the data files transfer overhead to

computing resources where the tasks are executed by selecting appropriate computing

and storage resources. The proposed algorithm considers heterogeneity of resources

and data files transfer time and cost in task’s feasibility analysis when files are

replicated on remotely located storage resources. The celebrated results show the

effectiveness of the proposed technique in terms of resource selection and tasks

91

processing within time and budget constraints when compared with the RDTA

(Martel, 2020) and Greedy algorithms.

With fast growing advancements in IT industry, the real-time applications are

handy candidates for utilizing computing power in cloud computing environment in

order to maintain deadline constraints. In addition, the cloud storage resources provide

facilities such as accommodating data replication to satisfy data requirements of the

data-intensive real-time applications that need to access, process and transfer data files

stored in distributed data repositories (Venugopa & Buyya, 2008). Examples of such

applications are self-driving vehicles which depend on the data and computations

under a complex network of interconnected devices such as GPS, surveillance

cameras, radar, laser light, odometry, etc. to perceive the surroundings (Martel, 2020;

Statista, 2020). The cloud providers such as Amazon EC2 (Amazon, 2020) provide

computing facilities (virtual machines) on pay-as-you-go basis at the rate of 10 cents

per hour. The lease prices vary depending on the virtual machines (VMs)

specifications. The normal VM offers an approximate processing power of 1.2 GHz

Opteron processor with storage capacity of 160 GB disk space and 1.7 GB of memory

(Amazon, 2020; Li et al., 2012; Armbrust et al., 2009). Such facilities pave the way

for executing time critical and IoT applications which demand high processing and

storage capabilities (Amadeo et al., 2017). The IoT devices offload many tasks to the

cloud environment from the smart systems because these devices have very limited

processing and storage capabilities. Leveraging the capabilities of virtualization

technology, VMs can be scaled up and down depending on the current system

workloads (Chen et al., 2015). However, there is a lack of efficient resource

scheduling and allocation strategies for deploying real-time applications with stringent

QoS and data requirements in cloud computing environments.

92

The Global Institute report on analyzing economic impact of IoT devices show

that it will increase upto $11 trillion by the year 2025 (Mckinsey, 2015). This increase

is because the IoT devices and smart homes appliances ranging from small sensors to

large scale biometrics offload data and computation to the cloud computing

environment on regular basis. For this purpose, the IT companies provide solutions

such as Apple’s HomeKit (Davidson, 2017), Samsung’s SmartThings (Ambient,

2020), Amazon’s Alexa (Amazon, 2020), and Google’s Home (Google, 2018), etc.

The driving force of the cloud computing is virtual machine manager (VMM)

that creates the virtual resources of the physical machines. The basic functionality of

the VMM is to separate virtual computing environment from the underlying physical

infrastructure. In this research work, we implement the rate monotonic (RM)

scheduling policy to allocate cloud computing resources to the real-time periodic

tasks. The scheduling problem is divided into three parts: the processing environment

(cloud virtual machines), the nature of real-time task (fixed priority system), and the

optimization criteria (time and cost-efficient allocation). The real-time task set is a

collection of multiple tasks, each of which requires data files for processing. The

required data files are requested from the remotely located storage resources. The

intelligent selection and assignment of cloud computing resources is investigated

while data files are replicated on decoupled storage resources and accessed by

utilizing networks of varying capabilities. These files are fetched to the computing

resources where tasks are executed which add transfer time to the tasks total execution

time.

The major research contributions of this chapter are as follows.

93

1. Creating a model for selecting appropriate cloud computing and storage

resources to execute tasks with timing and data constraints when data files

are replicated on multiple resources,

2. Partitioning the task sets into groups based on common data-files demands

such that timing constraints of the original tasks set do not disturb,

3. Allocating cloud computing resources to periodic tasks such that the

overall timing constraints remain intact.

4.2 TASK, RESOURCE AND COST MODELS

In this research, we consider scheduling feasibility of real-time periodic tasks in an

HPC environment. Our concerned HPC environment is composed of both

computational and storage resources located remotely and connected by network links

of different bandwidths. The resources are heterogeneous and characterized by power

and cost constraints. In this chapter, we concentrate on two basic constraints; (a) the

real-time tasks deadlines, and (b) user specified budget. The presented model extends

the RDTA model (Martel, 2020) by introducing cost parameters, data files replication

scenario, and tasks grouping criteria.

4.2.1 Task and Resource Model

We consider batch processing of real-time periodic tasks each of which can generate

infinite number of jobs. In periodic tasks set T = {task1, task2, … , taskn}, each taskk

is defined by the quadruple:

taskk = (rk, ek, dk, periodk) (4.1)

where rk shows the release time of the first job, ek the required computation

time, dk the relative deadline of taskk which is the time difference between the

94

absolute deadline and release time of a job, and periodk the period which is the time

different between the two successive jobs of a task k.

In the above discussed model, a job i released at time instant rk +

(i − 1). periodk needs to execute for ek units before the time rk + (i − 1). periodk +

dk. In our task model, we concentrate on constrained deadline model which assumes

that dk ≤ periodk, Ɐ k ∊ T . Tasks preemption is not allowed and context switching

overhead is subsumed into ek . We also assume that rk = 0, Ɐ k ∊ T which means that

feasibility of tasks is checked when the system is most loaded.

We consider computing resource set CR such that CR = {CR1, CR2, … , CRr}

each one is characterized by a computing power CPy (1 ≤ y ≤ r) such that CPy ∈ CP

where CP = {CP1, CP2, … , CPr} and measured in Millions of Instructions per Second

(MIPS). The execution time of a taskk on resource CRy can be computed by

 EETky =
ek+ ehigher

CPy
 (4.2)

where ehigher is the execution time of the higher priority tasks than taskk.

Mathematically,

ehigher = ∑ ⌈
t

periodj
⌉ ej

k−1
j=1 , t ∈ PNPj (4.3)

where PNP set accumulates points or time instants on which task feasibility is

analyzed. The PNP set is defined as follows.

Definition 1. PNPk is a set of positive and negative points for taskk constituted by the

relation x. periodj such that 1 ≤ j ≤ k and 1 ≤ x ≤ ⌊periodk/periodj⌋ , where

periodj represents periods of higher priority tasks than taskk. The point tP ∊ PNPk is

said to be positive if task k is declared feasible (i.e., completes its execution before

95

deadline) at some point t by considering all associated time and data constraints. The

point tN ∊ PNPk declares the taskk infeasible when it misses the deadline. Each point

in PNPk is called rate-monotonic scheduling point.

From Definition (1), it is concluded that the set PNP is the union of positive

points set PP and negative points set NP where PP = PNP − NP and P = PNP − PP .

In other words, PNP = PP ⋃ NP.

4.2.2 Data Files Model

In our task model, a tasks set T = {task1, task2, … , taskn} consists of data-intensive

real-time tasks where each task taskk needs set of data files DFk for its execution. The

set DFk = {fk1, fk2, … , fkm} ⊆ DF. The file fkx ∈ DFk is stored on data storage

resource drw where drw ∈ DRk and DRk ⊂ DR. The DR is the set of total storage

resources in the HPC environment. In other words, files in DFk are stored on DRk

storage resources. We assume that the data files are replicated on more than one data

storage resources.

The total execution time TT of a task taskk is the sum of actual computation

time EET of taskk on computing resource CRy and the transfer time taken by the

required m data files in the set DFk by transferring from storage resources DRk to the

computing resource CRk where task k is executed. Mathematically,

TTk = EETky + ∑ FTfkz

m
z=1 (4.4)

where FTfkz
= ℝw + Sizefkz

BWwy⁄ is the transfer time of the file fkz.

The ℝw represents the response time of the data storage resource drw ∈ DRk

where the data file fkz is stored. The response time is the time when the request to

96

fetch the file is made to the time when the request is entertained. Algebraically,

response time of data resource drw is calculated as:

ℝw = STfkz
+ WTfkz

 (4.5)

where STfkz
 is the service time and Wfkz

is the waiting time of the request

respectively for accessing the file fkz. Also, the Sizefkz
 denotes the size of the file fkz ,

and BWwy shows the link bandwidth between data storage resource drw and

computing resource CRy. The proposed model selects that storage resource for file

access for which FT is minimum i.e., min(FT).

4.2.3 Tasks Grouping

The data-intensive real-time tasks in T are grouped into x groups based on common

data files demands. The tasks in a group represent subset of T or we can say each

group is a set of tasks for easy understanding. The task grouping taxonomy is

pictorially represented in Figure 4.1.

Figure 4.1 Tasks grouping taxonomy

97

Based on real-time tasks grouping criteria, the group of tasks, its cardinality,

and priority assignment is defined in the following sections.

Definition 2. A group of real-time tasks Υx is a subset of tasks i.e., Υx ⊆ T(x ≤ n)

having common data files demands. Each group Υx contains minimum one task which

concludes that Υx ≠ {} .

Definition 3. The cardinality of a task group defines total number of tasks in a group.

Let there are total x number of groups then cardinality of the original tasks set T =

 {task1, task2, … , taskn} can be defined as:

card(T) = ∑ card(Υl)
x
l=1 (4.6)

The advantage of the tasks grouping mechanism is to reduce the total number

of priority levels (Qureshi et al., 2015). Additionally, tN ∊ NP for a higher priority

task taskj ∊ Υx remains the member of NP for all lower priority tasks than taskj in Υx

since tasks in the same group are also sorted on the basis of RM priorities. In this way

a smaller number of points is tested in the PNP set which decreases the execution

time.

From the above definitions, the following can be observed,

Observation 1. Let each tasks group Υl constituted from task set T =

 {task1, task2, … , taskn} contains a single task in worst case scenario and x represents

total number of groups in the system, then x = n

where n represents card(T) .

Each real-time task in our task model has deadline d which demonstrates the

maximum allowed time for a task to complete its execution on a single computing

98

resource. Let the maximum and minimum deadlines of the tasks in a group Υx are

denoted by dmax and dmin respectively. Here an interesting observation can be made.

Observation 2. dmax of the tasks {task1, … , taskl} ϵ Υx(l ≤ n) sorted by RM priority

assignment technique and following the implicit deadline model (where period =

deadline) is the period of the last task while dmin is the period of the first task in Υx . It

follows the relation:

dmax = periodl

 dmin = period1 (4.7)

where periodl and period1 represent periods of the last and the first task in Υx

respectively.

Proof: The RM technique sorts the tasks based on priorities assignment criterion: the

lesser is the period of the task, the higher is the priority. It means that the last task

taskl ϵ Υx has the lowest priority and first task task1 ϵ Υx has the highest priority

among all tasks in Υx . The task1 is executed in the first and taskl is executed in the

last slots. In other words, priority(task1) ≥ priority(task2), … , ≥ priority (taskl)

which follows thatperiod(task1) ≤ period(task2), … , ≤ period (taskl). It also

follows that dmax = periodl and dmin = period1 which completes the proof.

Liu et al., (1973) discussed that rate-monotonic (RM) assigns static priorities to

tasks and considered as optimal scheduling algorithm among static priorities

assignment scheduling algorithms. By optimal they mean that RM should must

schedule a task if any other static priority assignment algorithm can schedule that task.

Following are the general characteristics of RM scheduling technique which play role

in proving its optimality.

99

1. the system should consist of fixed number of tasks;

2. the tasks should have execution times known in advance;

3. each task has completion deadline equal to its period;

4. tasks should be periodic which means that instances or jobs of a task

should arrive after a fixed time interval;

5. tasks should be independent;

6. all tasks should arrive at time 0. This time instant is also known as critical

instant and the system is considered as the most overloaded at this instant.

Definition 4. The period of a tasks group is defined as the temporary period attached

to the group of tasks which is the period of the last task in a group. In other words,

periodl is the group period because the tasks in a group are sorted using RM

technique. For example, if a group Υx accommodates tasks {task1, task2 … , taskl} ,

then

period(Υx) = periodl (4.8)

Since the groups are sorted on the basis of RM priorities, so period(Υ1) ≤

period(Υ2), … , ≤ period(Υl) which states that priority(Υ1) ≥ priority(Υ2), … , ≥

priority(Υl). Equation (4.8) states that all tasks in Υx must complete execution at or

before periodl . It is further evaluated that since the tasks in the same group Υx are

also sorted by RM priorities, so tN ∊ NP for a higher priority task taski ∊ Υx remains

the member of NP for all the lower priority tasks than taski in Υx .

Definition 5. The group capacity can be defined as the total number of tasks in a

group. Tasks in a group are added based on common data files demand. The group

capacity can be analyzed based on resource utilization by a group of tasks called

100

group utilization (GU) which is defined as the sum of the resource utilization of each

task in the group. The computing resource utilization of each task is termed as the task

utilization (TU). Let n denotes the total number of tasks in a group Υx , then GU and

TU can be found as follows.

GUΥx
= TU1 + TU2 + ⋯ + TUn

 = ∑ TUi
n
i=1 (4.9)

where

 TUi = ei
periodi

 (4.10)

Theorem 1. Let Υx is a group of n periodic tasks, where each task is characterized by

TU. The Υx is RM feasible if the following condition holds.

GUΥx
≤ n(21 n⁄ − 1) (4.11)

The inequality (11) is called as Liu & Layland (LL) test reported by (Liu et al.,

1973). The expression n(21 n⁄ − 1) is the threshold value of a group which means that

a group Υx can accommodate tasks as for as the GU remains lower than or equal to the

threshold value. Equation (4.11) is checked repeatedly when a new task is added to the

group. If adding a task changes the inequality GU > n(21 n⁄ − 1)), then the incoming

tasks are added to another group. The authors in [2] refer the LL test as the sufficient

condition test. They claim that it is not necessary that the tasks in a group are not

feasible for scheduling if Equation (4.11) does not hold. It means that utilization-based

tests are enough only but not necessary. Let us explain by the following example task

set taken from (Min Allah Nasro & Khan Samee, 2011; Liu, 2000).

101

Example 1. Consider a tasks group Υ = {task1, task2, task3, task4} where tasks

follow RM ordering and having following characteristics,

Tasks 𝒄𝒊 𝒑𝒆𝒓𝒊𝒐𝒅𝒊

𝑡𝑎𝑠𝑘1

𝑡𝑎𝑠𝑘2

𝑡𝑎𝑠𝑘3

𝑡𝑎𝑠𝑘4

2

1.5

0.5

1

3

6

12

24

The TU and GU values for Υ are;

TU1 = 0.666

TU2 = 0.250

TU3 = 0.041

TU4 = 0.041

GUγ =̃ 1

threshold = 0.756

It shows that the example 1 tasks group is not schedulable by using LL test

because it does not satisfy Equation (4.11). But the Gantt Chart in Figure 4.2 shows

the schedulability of these tasks within deadlines under RM technique.

From the above discussion it is clear, that LL test is sufficient only, so we use

LL test for checking group capacity only. For analyzing task or group feasibility, we

use positive-negative points (PNP) test which is necessary and sufficient conditions

test.

102

Figure 4.2 RM scheduling of γ in Example 1

Theorem 2. A group of real-time tasks Υx = {task1, task2, … , taskl} is schedulable

if all tasks in Υx are schedulable.

Theorem 3. The batch of real-time tasks called periodic tasks set represented by 𝑇 =

{𝑡𝑎𝑠𝑘1, 𝑡𝑎𝑠𝑘2, … , 𝑡𝑎𝑠𝑘𝑛} is deemed feasible if all tasks groups Υ1, Υ2, … , Υx are

schedulable.

4.2.4 Cost Model

Scheduling decisions by integrating cost parameters change the way computational

resources are selected to fulfill the user QoS criteria. The data-intensive real-time tasks

are submitted to the broker which searches resources to process tasks within deadlines

and user specified budget constraints. The feasibility of tasks groups on computational

103

resources is checked by considering data transfer time, transfer costs, computational

cost, tasks deadlines, and computational power of the resources. The basic parameters

considering for feasibility decisions in this research are:

1. user specified budget,

2. tasks deadlines

The resources which can execute tasks within deadlines in a minimum cost by

considering all data and processing constraints are selected. By introducing cost

model, Theorem 3 can be extended in Theorem 4 for checking schedulability of

modified task set.

Theorem 4. The batch of real-time tasks called periodic tasks set represented by 𝑇 =

{𝑡𝑎𝑠𝑘1, 𝑡𝑎𝑠𝑘2, … , 𝑡𝑎𝑠𝑘𝑛} is deemed feasible with minimum cost if all tasks groups

Υ1, Υ2, … , Υx are schedulable by following all constraints and holding inequality

(4.12).

 costT ≤ Budget (4.12)

where costT is the total cost incurred by the batch of tasks, and Budget is the

total user specified budget. The cost of a resource can be expressed as execution cost

per Million of Instructions (MI), processing cost per unit time, processing cost per

task, or simulation cost per unit time etc. The cost for a single task is the sum of task

execution cost and the data files transfer cost.

4.3 TIME AND COST-EFFICIENT SCHEDULING ALGORITHM

The Algorithm 1 determines the schedulability of real-time independent tasks set

consisting of tasks with different data files and timing constraints. The execution

procedure of the tasks involves checking tasks groups feasibility which cumulatively

104

constitutes tasks set. The m number of tasks in a group are checked on r number of

distributed computing resources where r >> m. Depending on the user budget and

tasks scheduling preferences, the main objective of the algorithm is to execute

distributed data-oriented applications by selecting computing resources such that the

tasks are processed with minimum total execution time and cost while tasks deadlines

are respected. The proposed algorithm works in three parts: (a) task initial feasibility

checking which predicts task’s basic feasibility within deadline by searching initial

feasible computing resources, (b) task final feasibility and cost analysis which

determines task’s schedulability after considering all the associated constraints, and

finally (c) task’s dispatching to the best suitable resources after fulfilling all the pre-

requisites. The first two parts are the matching and mapping parts which create set of

time- and cost-efficient computing-storage resources pairs. The third part is the

dispatching part which ensures that the selected resources can process tasks within

time and budget constraints. By cost we mean the sum of task’s execution cost and

data-files transfer cost. Similarly, the total execution time to minimize is the sum of

tasks actual execution time and transfer time incurred by transferring data-files from

the storage resources to the computing resources where the task is executed. The data-

files are replicated on multiple storage resources and the resource which has minimum

transfer cost is selected for data-file transfer. The computing resource capability for

executing task is checked by analyzing task feasibility on PNP points. As a result, the

compute resource that can execute task by maintaining the deadline is initially

selected from the list of available computing resources. The selected resource is called

as initially feasible resource. The service requests are provisioned according to the

described scheduling strategy. The service request is provisioned such that the total

execution time of the task set, and incurred cost is minimized. To ensure the fulfilment

105

of the aforementioned two objectives, the set of storage resources are demonstrated

which accommodate data-files needed for the task taski after identifying the initially

feasible resources. A single file is assumed to be replicated on more than one storage

resources, so the resource which has less transfer time and cost is selected. All such

computing-storage resources pairs are further checked for calculating total execution

time. The total execution time is the sum of all-time factors. If the total time is within

the task taski deadline and the total cost is within the user specified budget, the

compute-storage resources pair is declared feasible for assigningtaski. After selecting

all such pairs for all tasks in a group, the tasks are then dispatched to the qualified

resources by the dispatcher and all required files are transferred. The tasks are

scheduled, and computations are carried out. In this way, if all tasks in a group Υx are

scheduled, then the group Υx is said schedulable by the Algorithm 1. Furthermore, if

all groups are scheduled then the original task set T is declared schedulable with

minimum time and cost. The resource allocation procedure completes when all the

tasks are dispatched to the resources and the unmapped queue becomes empty. The

pseudocode of the tasks mapping and dispatching procedures is given in Algorithm 1.

The purpose of Procedure 1 is to find the suitable compute-storage resource

pairs for each data-file required by a task. For each task, set of required data-files and

initially feasible computing resources are passed as input arguments to the file transfer

time calculating function. For each data file, the storage resources are identified and

the best data storage resource which qualifies the minimization criteria (transfer time

and cost) are selected for retrieving data file. For each data file, all possible

combinations of initially feasible compute-storage resource pairs are tried and finally,

the right combination is returned with decreased transfer time and execution cost.

106

Algorithm 1 Time and cost-efficient assignment of real-time data-intensive group of tasks

to the HPC resources

Input: Computing resources sorted in descending order of processing capacities, and a group 𝛶𝑥 of

unmapped real-time tasks ordered by RM priorities and having budget constraints.

Output: Time and cost-efficient real-time data-intensive tasks schedule on HPC resources.

Procedure

for all 𝑡𝑎𝑠𝑘𝑖 ∈ 𝛶𝑥 do

compute 𝑃𝑁𝑃𝑖 = {𝑥. 𝑝𝑒𝑟𝑖𝑜𝑑𝑙| 𝑙 = 1, … , 𝑖; 𝑥 = 1, … , ⌊𝑝𝑒𝑟𝑖𝑜𝑑𝑖\𝑝𝑒𝑟𝑖𝑜𝑑𝑙⌋};

// Determining task initial feasibility

for all available computing resources 𝐶𝑅𝑟 ∈ 𝐶𝑅 do

for all 𝑡 ∈ 𝑃𝑁𝑃𝑖 do

calculate 𝐸𝐸𝑇𝑖𝑟; ► gives minimum EET because resources are already

 sorted

if 𝐸𝐸𝑇𝑖𝑟 ≤ 𝑡 then

𝐶𝑅𝑖 ← 𝐶𝑅𝑟 ; ► 𝐶𝑅𝑖 is set of comp resources on which 𝑡𝑎𝑠𝑘𝑖 is

 initially feasible

break; ► break if 𝑡𝑝 is found

end if

end for

end for

if 𝐷𝐹𝑖 do not locally exist then

 𝐶𝐷𝑖 ← 𝐹𝑇(𝐶𝑅𝑖 , 𝐷𝐹𝑖) ; ►CDi is comp-storage resource pairs set for which 𝐷𝐹𝑖 has min

 transfer time and cost

end if

calculate 𝑇𝑇𝑖𝑟; ► TT on 𝐶𝐷𝑖

// Determining the task final schedulability and cost analysis

if 𝑇𝑇𝑖𝑟 ≤ 𝑡 𝐴𝑁𝐷 𝑐𝑜𝑠𝑡𝑖 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 then ►if cost of 𝑡𝑎𝑠𝑘𝑖 is within the user budget

mark 𝐶𝐷𝑖 feasible for 𝑡𝑎𝑠𝑘𝑖;

end if

end for

// Dispatching tasks to the feasible computing resources

for all schedulable tasks 𝑡𝑎𝑠𝑘𝑖 do

submit 𝑡𝑎𝑠𝑘𝑖 to 𝐶𝑅𝑟;

transfer all required files to 𝐶𝑅𝑟;

update resource information directory;

remove 𝑡𝑎𝑠𝑘𝑖 from unmapped tasks list;

end for

initialize computing resources to maximum processing powers and update resource information

directory;

end procedure

Procedure 1 𝐹𝑇(𝐶𝑅𝑖 , 𝐷𝐹𝑖)

Specify 𝐷𝑅𝑖; ►storage resources on which files 𝐷𝐹𝑖 are stored

107

4.4 PERFORMANCE EVALUATION

This section discusses the experimental set-up, the input data, and performance

metrics used to evaluate the proposed resource allocation technique.

4.4.1 Experimental Setup

The proposed RA technique and the existing counterparts were simulated using

synthetic task sets. These experiments were carried out in MATLAB 2019 on Intel

Core i5 processor, 2.50 GHz CPU and 8 GB RAM running on Microsoft Windows 10

platform. The reason for using MATLAB is that it provides multiprocessing

environment for solving complex mathematical problems demanding powerful

computations. The HPC systems are difficult to implement practically due to the lack

of real-life experimentation environment and multiple domain administration

problems which make it difficult to acquire stable configuration for evaluation. In

addition, acquiring practical HPC environment is almost impossible due to the

dynamic variations in the number of users and resources at a particular moment, their

characteristics, limited access, and inconsistent network conditions over the public

network (Venugopal & Buyya, 2008). In addition, effective evaluation needs the study

of RA technique using different user inputs and varying resource conditions.

Therefore, we have created the same HPC simulated environment by managing

for all 𝑓𝑥 ∈ 𝐷𝐹𝑖 do

 for all 𝐶𝑅𝑧 ∈ 𝐶𝑅𝑖 do ►Compute resource z on which 𝑡𝑎𝑠𝑘𝑖 is initially feasible

 for all 𝑑𝑟𝑗 ∈ 𝐷𝑅𝑖 do ►Storage resource j where fx is stored

 𝐶𝑧𝑗 ← (𝐹𝑇𝑧𝑗 , 𝑐𝑜𝑠𝑡𝑥) ►transfer time and cost pair for file fx in matrix C

 end for

 end for

 𝐴𝑥 ← (𝑧𝑑𝑟, min (𝐶)) ►pair of comp-storage resources for which transfer time and cost for fx is min

end for

return (𝐴); ►return comp-storage resources vector on which transfer time and cost for fx is min

108

predefined resource and network configurations such as number of computing and

storage resources connected by network links of various bandwidths randomly

assigned within the range {1024, 2048} MB.

The heterogeneity in the modeled simulation environment was carried out by

randomly generated resource characteristics, network bandwidths connecting

computing and storage resources, files sizes, tasks workloads, and number of files

required for each task. The data files requirements for each task were also randomly

assigned in the range {x, y} showing minimum and maximum values respectively

where x is assumed 1. It means that a task can demand at least 1 and at most y number

of files. The files sizes are fixed at 100 MB each. To model the data files distribution,

each of the data file was replicated on more than one storage resources. In our

experimentation, we assume that there exist maximum 5 copies of any data file on the

storage resources. The storage resources were decoupled from the nodes where

computing resources are deployed. The computing resources were initially equipped

with the full processing capabilities randomly chosen within the range {10000,

40000} Millions of Instructions per Second (MIPS). The data files were replicated on

multiple storage resources. The files required by a task are either pre-fetched or

transferred during execution. When the data files fetched for some higher priority task

on the same computing resource is used by the lower priority task or when the

required file is locally available, the file transfer time is taken as zero. This technique

exploits both temporal and spatial locality of data access. This file transfer incurs

communication cost and time.

The periodic tasks parameters i.e., required execution time and periods are

generated by using normal distribution function. The execution time ei for each taski

was generated in the range {a, b} representing the best- and worst-case execution

109

times respectively. We have considered worst case execution time equal to the

𝑝𝑒𝑟𝑖𝑜𝑑𝑖 for taski in order to ensure the tasks schedulability in any changing

environment. Similarly, each task generates a job after interval of {α, β} seconds

where α = 100 and β = 10000. In our task model, the period of the taski is equal to its

deadline i.e., 𝑝𝑒𝑟𝑖𝑜𝑑𝑖 = 𝑑𝑖. Initially, tasks were assigned RM priorities such that the

task with high rate has higher priority, where rate =
1

period
. The tasks from the

superset are grouped into subsets based on data files demands.

The tasks groups as well as tasks inside each group are sorted based on RM

priority assignment technique. Each task in the group has respective computation

requirements and is entitled to get computational resource no later than the deadline.

The tasks in a group are scheduled on the HPC system and computing resources are

allocated based on RM priorities. Each task generates multiple jobs. Each job is

generated after interval of {α, β} seconds. The experimentation was carried out by

considering different number of computing and storage resources. The above

discussed setting is subsumed in Table 4.1.

The computation time and cost of each job is summed into the computational

requirements of each task. It is assumed that the communication cost of each job is

minimal and is merged with the computation demand ei of the task in our

experimental setup. The data file is supplied to the task when it is requested from the

storage resource and hence response time is zero. The transfer cost per unit size of the

data file between data storage and computational resource was randomly generated

between 1 and 5. In addition, the unit processing cost of the computing resources was

generated between 5 and 50 depending upon the resource computing power. It is

assumed that the file transfer within the same node incurs 0 transfer cost.

110

Table 4.1 Simulation parameters settings

Parameters Values

Bandwidth 1024 ~ 2048 MB

Task data files demand
{x, y}

File size
100 MB

Computing resource capacity
10000 ~ 40000 MIPS

ei
{a, b}

periodi
100 ~ 10000

Data files transfer cost
{1, 5}

Computing resource unit processing cost
{5, 50}

4.4.2 Performance Metrics

The proposed RA approach evaluates the HPC resource set for each task, and the

overall objective is to minimize the total execution time and cost. The total execution

time is the cumulative time consumed by the task set after assigning all tasks groups

to the available computing resources. This time is also known as makespan and

mathematically defined as follows.

Makespan = max (TT1, TT2, … , TTl) (4.13)

where TTj represents the total execution time of tasks group j.

Similarly, cost of a task set T is the overall cost incurred by all tasks groups.

Mathematically,

CostT = max (Cost1, Cost2, … , Costl) (4.14)

and Costj = ∑ costi
x
i=1

The costi is a combined cost incurred by a task processing on a computing

resource and data files transfer taken by a taski in a group j. The time and cost for

tasks context switching is negligible in our experiments and hence not included in the

objective function.

111

4.5 RESULTS AND DISCUSSION

In this section, we evaluate the performance of our proposed algorithm by comparing

it with the two methodologies, RDTA (Martel, 2020) and Greedy.

The makespan and cost minimization behavior of the proposed and the

aforementioned two techniques was checked for the randomly generated task sets

consisting of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 tasks. The plots

reported in this paper are the average values of 300 runs of all the task sets. According

to the tasks grouping criteria discussed in section 3(iii), the task sets are grouped into

5, 7, 7, 4, 8, 5, 7, 9, 9, and 10 groups respectively. Each group accommodates different

number of tasks based on applied grouping criteria. The tasks grouping details is given

in Table 4.3. The experiments were performed by checking system behavior on

different number of computing resources. The number of computing resources was

randomly generated within the range {10, 100}. We assume that the data storage

resource gives response immediately when a request is made by a task for data file

access and hence the response time is ignored. The time delay in preparing the

computing resource is also taken as zero because in our system, the computational

resource is supposed to be ready for task execution as soon as the task arrives at that

resource.

It was observed that for small task sets, a smaller number of computing

resources was involved as compared to the larger task sets. It is also understandable

that choosing proper number of computing resources can contribute in maintaining

tasks deadlines. If a smaller number of computing resources is selected as compared to

the large number of task sets, then it is likely that some tasks may not be RM feasible

due to long waiting queues which is very crucial in real-time systems.

112

The main objective of this evaluation is to reduce the makespan and execution

cost of the application while tasks deadlines are intact. Figure 4.3 (a) and (b) depicts

the normalized values of the makespan. The variation in magnitude depends upon the

total number of tasks per task set, number of data files demands, and the computation

and deadline requirements of each task. The lower the makespan value, the better the

performance of the RA scheme. The other performance measurement criterion is the

execution cost minimization. From Figure 4.4 (a) and (b) it is evident that decrease in

makespan results in reduced processing cost.

It is known from Figure 4.3 (a) and (b), that the proposed technique continues

to make scheduling decision by analyzing tasks feasibility on searching PNP sets and

checking each scheduling point until some positive point 𝑡𝑃 is found. Although the

size of PNP set for tasks group Υx becomes large if the ratio between the periods of the

first and the last task (
periodn

period1
) in Υx is large which consumes time because large

number of inequalities are tested but this procedure enhances the chance of task

feasibility because more positive-negative points becomes available for testing tasks

schedulability. Furthermore, all the initial feasible computing resources are

encountered and the resource having minimum cost for the task execution is selected

for task processing. The RDTA approach merely deals with executing tasks within

deadlines and hence does not consider the cost parameters which is considerably high

in that case. In the case of Greedy technique, the graph is steeply higher because a

feasible resource is selected at random without considering the low time and cost

constraints. So, the resources with high computing power are selected when termed

feasible.

113

To further investigate the effectiveness of the proposed technique, we have

conducted more experiments with different system settings. It is also noticeable from

Figure 4.3 (a) and (b) that the time taken by all tasks test also increases uniformly as

the number of tasks increase because more tasks are tested. It is obvious that the

makespan of some task sets is high although the computing resources were operated at

full speed because they need data files from remote storage resources which increase

the total completion time. The resources when operate on full capacities consume high

energy, but currently, energy efficiency is out of the scope of this research. The

situations where makespan is low demonstrates that the data files are locally exist or

perfected for some higher priority tasks and do not need re-fetching for the lower

priority tasks which adds zero file transfer time to the overall execution time. The

plots show that as the task set size increases, the makespan of the Greedy and RDTA

grow as compared to the proposed approach. This growth in case of Greedy approach

is because of making a greedy selection for the data storage and computing resources

among multiple choices for data files accessing and task execution. This selection

does not intelligently consider the minimization criteria. The RDTA mechanism also

encounters high execution time and hence cost as shown in Figure 4.4 (a) and (b)

because the data files replication is not taken into account when making a choice for

data files fetch among storage resources. In the case of the proposed approach, the

ratio
periodn

period1
 results in a larger value which constitutes a larger PNP set that provides

more points for schedulability checking. This phenomenon provides more

opportunities for task scheduling and hence results in large number of tasks meeting

the deadlines constraints. Table 4.2 shows the formation of task groups in our

114

experimental evaluation based on randomly generated data files demand. The tasks

groups are created as for as the inequality GUΥx
≤ n(21 n⁄ − 1) in Theorem 1 holds.

Table 4.2 Tasks groups

Task set size Group (No. of tasks)

100 TG1(25), TG2(10), TG3(30), TG4(8), TG5(27)

200
TG1(31), TG2(5), TG3(53), TG4(12), TG5(48), TG6(32), TG7(19)

300
TG1(4), TG2(64), TG3(20), TG4(25), TG5(40), TG6(126), TG7(21)

400
TG1(101), TG2(32), TG3(130), TG4(137)

500
TG1(10), TG2(23), TG3(116), TG4(67), TG5(50), TG6(39), TG7(120),

TG8(75)

600
TG1(146), TG2(3), TG3(43), TG4(201), TG5(207)

700
TG1(2), TG2(133), TG3(108), TG4(7), TG5(211), TG6(120), TG7(119)

800
TG1(234), TG2(21), TG3(233), TG4(41), TG5(19), TG6(115), TG7(123),

TG8(5), TG9(9)

900
TG1(112), TG2(21), TG3(34), TG4(321), TG5(232), TG6(18), TG7(116),

TG8(29), TG9(17)

1000
TG1(12), TG2(109), TG3(120), TG4(32), TG5(19), TG6(129), TG7(127),

TG8(245), TG9(21), TG10(186)

115

(a)

(b)

Figure 4.3 Average makespan

116

(a)

(b)

Figure 4.4 Average cost

117

4.5.1 Effect of Data Files Transfer on Performance

One of the basic components of calculating execution time is the data files transfer

time incurred by transferring data files from the remotely located storage resources to

the decoupled computing resources if the required files are not locally available. In

addition to the makespan and cost values, the two more performance measures

considered in the evaluation results are the percent share of the data transfer time and

local data access.

In our experiments, the percent share of the data files transfer time in the

makespan calculation is evaluated. The Figure 4.5 (a) and (b) plot the impact of the

average data transfer time on the task sets. The lower value can put significant impact

on reducing the overall makespan of the task set.

As it is known from the task workload that the lower priority tasks scheduled

on the same computing resource can utilize the same data files retrieved for the higher

priority tasks if the data requirements of the tasks are same. In that case, the data

transfer time is zero. Additionally, the transfer time is also zero if the required file

resides on the same node locally where the task is executing. In this case, the more

locally accessed files decrease the impact of remote data files transfer on the

performance. It is less likely that the task is scheduled on the same computing

resource for which all the required data files are locally exist.

The above two factors can be correlated with the makespan calculation to

indicate the impact of resource selection made by the RA scheme on achieving the

decided objective. It is evident from Figure 4.5 that the Greedy and RDTA schemes

do not intelligently adapt for the data files locality of access procedure and hence

contribute to high data transfer percentage. The percentage of locality of access rises

with the increase in the task set size. In comparison to the RDTA and Greedy

118

counterparts, there is a high chance for the lower priority tasks to reuse the pre-

transferred data files by using the proposed RA scheme. In addition, it is more likely

that the assigned tasks find the required data files locally. The Greedy approach

exhibits degraded performance because there is a very less probability of finding

appropriate computing resource for tasks assignment.

(a)

(b)

Figure 4.5 Data transfer time

119

4.5.2 Impact on Resource Utilization

The utilization of the proposed RA scheme is measured on the basis of computing

resources utilization in the HPC system. The resource utilization is directly related

with the computation workload; when the task workload increases, the resource

utilization also increases. The cumulative resource utilization can be calculated by the

following equation.

Utilcum = ∑
tasks workload processing time by a resource

resource active time

r
j=1 (4.15)

where 𝑈𝑡𝑖𝑙𝑐𝑢𝑚 represents the cumulative utilization of all computational

resources spent on processing tasks workload, and r represents the total number of

computing resources engaged in processing tasks sets.

It is observed from Figure 4.6, that the proposed RA scheme improves the

resource utilization by keeping resources as busy as possible. The resource utilization

is lower for the tasks sets having a smaller number of tasks, but as soon as the number

of tasks increases the resource utilization also increases. It means that the resource

will be 100% utilized for the large task sets. This is an understandable phenomenon,

because when the workload increases, more computational power is needed to

complete tasks by their respective deadlines. If the computational power of the

resources is relaxed for energy efficient allocation, then it is very likely that some of

the tasks groups may not be feasible. Moreover, this also will pertain to an unfair

comparison. When the number of tasks increases, the proposed procedure pushes the

system power to grow rapidly in order to accommodate more tasks to maintain the

deadline constraints. This behavior results in high energy consumption but in this

research, we do not deal with the energy efficient perspective.

120

Figure 4.3 reveals that implementing the proposed approach, the minimum

system utilization is between 70% and 72% for small task sets but touches 100% when

the task computational demands increase. The maximum system utilization

approaches 85% by the other counterparts.

Figure 4.6 Effect on resource utilization

4.6 CHAPTER SUMMARY

This chapter presented the problem of mapping a real-time application that requires

data files that are replicated on multiple storage resources, to cloud computing

resources. A task grouping technique was introduced that reduces the priority levels

and execution time. The scheduling and resource allocation decision is driven by the

need to improve the traditional performance parameters such as resource utilization

and decrease the total application execution time and cost. In cloud computing

121

environment, the providers are incentivized by profit motives; while consumer would

have a limited budget and would therefore, aim to execute the application at resources

that provide service within the budget. In such environment, both provider and

consumer aim to improve their utility. This research is user-centric which select

computing and data storage resources in such way that makespan and cost is

minimized while keeping the real-time deadlines. The results were obtained through

mathematical formulations by modifying the original task model to incorporate the

data files requirements. The proposed resource allocation scheme was compared with

RDTA and Greedy approach and celebrated results were achieved.

As a future work, it will be interesting to rank the cloud resources based on

different criteria such as resource computational powers, storage capacities, imbalance

workloads, and cost and allocate them using machine learning algorithms.

122

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

In this thesis, we have discussed the real-time application scheduling and resource

allocation problem in HPC environment. The resource allocation strategies in HPC

paradigms (grid, cloud, fog, edge, and multicore) are studied in detail and working of

each strategy is portrayed pictorially for easy understanding. The HPC strategies were

particularly explored for applications with stringent timing constraints. The detailed

analysis is provided on the basis of common parameters that are application type,

operational environment, optimization goal, architecture, system size, resource type,

optimality, simulation tool, comparison techniques, and input data. The taxonomies

for different HPC systems show the structure of the systems and multi-objective

criteria for scheduling real-time applications. From the literature study, the emergence

of data-intensive real-time applications and their deployment on HPC systems

motivated us to develop a resource scheduling and allocation strategy that predicts in

advance the feasibility of such application on HPC resources. The results correctness

of such applications not merely depend on the processing time on computational

resources but the data files transfer which are needed for successful completion of the

application. The proposed prediction-based model considers tasks multiple criteria

such as resource ranking, tasks grouping, and user QoS parameters etc. for making

scheduling decisions. In such RA scenario, some of the data files are transferred

before the application starts execution on the computing resources while some are

transferred during the execution. The tasks are prioritized for execution using a well-

123

known rate-monotonic scheduling algorithm. The prominent feature of this algorithm

is its simple implementation and optimality. The proposed model is mathematically

formulated.

We have also addressed problem of resource allocation for periodic real-time

data-intensive tasks in cloud computing environment. In the proposed RA scheme,

the tasks characteristics are modified by including the set of files needed by the task

and the overall execution time and cost is minimized by grouping the tasks on the

basis of common data-files demands. Additionally, the proposed technique considered

the remotely located data storage resources on which the files are replicated. The best

computing and storage resource pairs were selected for executing tasks based on user

QoS criteria. The resource utilization perspective was also evaluated along with the

other performance parameters. The achieved results by mathematical formulations

verify the supremacy of the proposed RA scheme over the existing counter parts,

RDTA and Greedy approaches.

5.2 THEORETICAL, PRACTICAL AND METHODOLOGICAL

CONTRIBUTIONS

The prime rationale of this research work was to explore and find limitations in the

existing RA methodologies for deploying real-time applications having different

optimization constraints. The other challenge was to propose a model to overcome the

identified limitations. The main contributions are summarized as follows.

1. discussed and advanced the plethora of resource allocation algorithms for

real-time applications by categorizing under two broad classes; distributed

and non-distributed HPC systems. The distributed HPC systems include

grid computing, cloud computing, fog computing, and edge computing

124

while non-distributed systems consist of multicore systems. The working

of each mechanism is discussed in detail theoretically by identifying the

successes and failures of each mechanism and presented pictorially which

helps the common reader to understand the basic theme of each strategy.

The evaluation and comparison on the basis of different performance

parameters adds to the basic understanding which algorithm to adapt for

different QoS criteria.

2. presented resource allocation prediction model on the basis of different

task and resource constraints in the HPC environment that analyzes the

feasibility of the real-time application before actually deploying on the

computational resources. This model considers not only the timing

constraints but also the data requirements of the data-intensive real-time

application. The prediction analyzer takes into account different

parameters like resource ranking, tasks grouping, positive negative points,

and priority assignment.

3. identified the impact of investigating scheduling (positive) and non-

scheduling (negative) points on task feasibility. This mechanism helps in

reducing application completion time which in turn ensures fulfilling the

deadlines.

4. specified a criterion for selecting computing and storage resources for

real-time applications which need data-files for processing. The data-files

are replicated on distributed data storage resources connected to the

computing resources by network links. The proposed technique designs a

criterion for the selection of storage and computing resources in a way

125

such that the resources are engaged for a short duration of time while

respecting application deadlines.

5. developed a strategy for selecting cloud least cost computing and storage

resources which can execute real-time application within deadlines and

user budget constraints. The model considers both local and remote

storage resources and helps in reducing data transfer time which ultimately

reduces makespan. The mathematical modeling proves the validity of the

proposed methodology.

5.3 FUTURE WORK

The primary objective in executing real-time systems is to satisfy the deadlines which

can be achieved by operating the HPC computational resources with full capacities.

But this comes at the cost of high energy consumption. To cover this aspect, it is of

interest to develop energy efficient mechanisms to execute real-time applications

while respecting the deadlines. Another perspective of real-time system is the

generation of infinite jobs while an HPC resource cannot be engaged forever. So, there

is a need to extend the developed RA strategies to control number of jobs which can

be completed within specified time on HPC resource.

Most of the existing literature on real-time system revolves around the

dependent tasks with precedence constraints. In such systems the tasks execution is

depending on the results of another tasks. But the real-time tasks cannot wait for a

long time. So, the devised mechanisms can be modified to consider dependent tasks.

In another direction, the proposed scheme can consider tasks assignment to

HPC resources using heuristic approaches to solve the unconstrained optimization

126

problems. The advantage of using heuristics is to accommodate applications with

dynamic demands during execution.

127

REFERENCES

A. Beloglazov, J. Abawajy, R. Buyya. (2012). Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing, Future

Generation Computer Systems, vol. 28, no. 5, pp.755–768.

Abdullahi, M., & Ngadi, M. A. (2016). Hybrid Symbiotic Organisms Search

Optimization Algorithm for Scheduling of Tasks on Cloud Computing

Environment. Plos One, 11(6), pp.6-26.

Amadeo M, Molinaro A, Paratore SY, et al. (2017). A Cloud of Things framework for

smart home services based on Information Centric Networking. 2017 IEEE

14th International Conference on Networking, Sensing and Control (ICNSC).

Calabria. pp.245-250.

Amazon Elastic Compute Cloud (Amazon EC2). (2020). http://aws.amazon.com/ec2/.

Retrieved on May 10, 2020.

Amazon Elastic Compute Cloud (Amazon EC2). (2020). http://aws.amazon.com/ec2/

Retrieved on April 25, 2020.

Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, Leandro Soares

Indrusiak. (2017). A survey and comparative study of hard and soft real-time

dynamic resource allocation strategies for multi-/many-core systems, ACM

Computing Surveys (CSUR), Vol. 50 No 2, June 2017.

Anwar, N., & Deng, H. (2018). Elastic scheduling of scientific workflows under

deadline constraints in cloud computing environments. Future internet, 10(1),

pp.2-23.

Awad, A., El-Hefnawy, N., & Abdel_kader, H. (2015). Enhanced Particle Swarm

Optimization for Task Scheduling in Cloud Computing Environments. Procedia

Computer Science, 65, pp.920-929.

B. A. Hridita, M. Irfan, M. S. Islam. (2016). Mobility aware task allocation for mobile

cloud computing, International Journal of Computer Applications, Vol. 137,

No. 9, 2016, pp.35-41.

B. Yang, L. Guang, T. Santti, J. Plosila. (2013). Mapping multiple applications with

unbounded and bounded number of cores on many-core networks-on-chip,

Microprocessors and Microsystems, Vol. 37, No. 4–5, pp.460 – 471.

Bini, E., & Buttazzo, G. C. (2005). Measuring the Performance of Schedulability

Tests. Real-Time Systems, 30(1-2), pp.129-154.

Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther, A. I.,

Freund, R. F. (2001). A Comparison of Eleven Static Heuristics for Mapping a

128

Class of Independent Tasks onto Heterogeneous Distributed Computing

Systems. Journal of Parallel and Distributed Computing, 61(6), pp.810-837.

C. L. Liu and J.W. Layland. (1973). Scheduling algorithms for multiprogramming in a

Maintaining the Feasibility of Hard Real–Time Systems with a Reduced

number of Priority Levels hard real-time environment. Journal of the

ACM.20(1), pp.40–61.

C. Marcon, E. Moreno, N. Calazans, F. Moraes. (2007). Evaluation of Algorithms for

Low Energy Mapping onto NoCs," 2007 IEEE International Symposium on

Circuits and Systems, New Orleans, LA, 2007, pp. 389-392.

Caron, E., Chouhan, P., & Desprez, F. (2004). Deadline Scheduling with Priority for

Client-Server Systems on the Grid. Fifth IEEE/ACM International Workshop

on Grid Computing, Pittsburgh, PA, 2004, pp. 410-414.

Casanova, H., Berman, F., Obertelli, G., & Wolski, R. (2000). The AppLeS Parameter

Sweep Template: User-Level Middleware for the Grid," SC '00: Proceedings of

the 2000 ACM/IEEE Conference on Supercomputing, Dallas, TX, USA, pp.

60-60.

Chaparro-Baquero, Gustavo A. (2018). Memory-aware scheduling for fixed priority

hard real-time computing systems, FIU Electronic Theses and Dissertations,

3712, 2018.

Chen, H., Zhu, X., Guo, H., Zhu, J., Qin, X., & Wu, J. (2015). Towards energy-

efficient scheduling for real-time tasks under uncertain cloud computing

environment. Journal of Systems and Software, 99, pp.20-35.

Cloud Computing Taxonomy. (2019). URL: http://agileanswer.blogspot.com /2010/12

/cloud-computing-taxonomy.html; accessed on February 25, 2020.

D.W. Kim, K.-H. Kim, W. Jang, F. F. Chen. (2002). Unrelated parallel machine

scheduling with setup times using simulated annealing, Robotics and

Computer-Integrated Manufacturing, 11th International Conference on Flexible

Automation and Intelligent Manufacturing, vol. 18, no 3–4, pp. 223 – 231.

Davidson, J. (2017). Apple Homekit: The Beginner’s Guide. Van Helostein, 1st Ed.

2017. CreateSpace Independent Publishing Platform, USA.

Deniziak, S., Ciopinski, L., Pawinski, G., Wieczorek, K., & Bak, S. (2014). Cost

Optimization of Real-Time Cloud Applications Using Developmental Genetic

Programming, 2014 IEEE/ACM 7th International Conference on Utility and

Cloud Computing, London, 2014, pp.774-779.

E. Ahmed et al. (2017). Bringing Computation Closer toward the User Network: Is

Edge Computing the Solution? IEEE Communications Magazine, vol. 55, no.

11, pp. 138-144.

F. Dong and S. G. Akl. (2006). Scheduling algorithms for grid computing: State of the

art and open problems, Tech. Rep. Technical Report No. 2006-504, pp.1-55.

129

Frederic, NZ., & Yang, Y,. (2017). Effective Task Scheduling and Dynamic Resource

Optimization based on Heuristic Algorithms in Cloud Computing

Environment," KSII Transactions on Internet and Information Systems, vol. 11,

no. 12, pp. 5780-5802.

G. Sabin, M. Lang, P. Sadayappan. (2007). Moldable parallel job scheduling using

job efficiency: An iterative approach, in Job Scheduling Strategies for Parallel

Processing (E. Frachtenberg and U. Schwiegelshohn, eds.), vol. 4376 of

Lecture Notes in Computer Science, pp. 94–114, Springer Berlin Heidelberg.

G.L. Stavrinides, H.D. Karatza. (2017). Scheduling real-time bag-of-tasks

applications with approximate computations in SaaS clouds, Concurr.

Comput.: Pract. Exper., 2017 e4208.

G.L. Stavrinides, H.D. Karatza. (2018). Scheduling data-intensive workloads in large

scale distributed systems: trends and challenges, in: Modelling and Simulation

in HPC and Cloud Systems, first ed., in: Studies in Big Data, vol. 36, Springer,

pp.19–43.

Gawali, M. B., & Shinde, S. K. (2018). Task scheduling and resource allocation in

cloud computing using a heuristic approach. Journal of Cloud Computing,

7(1), pp.2-16.

Georgios L. Stavrinides, and Helen D. Karatza. (2016). Stavrinides, G.L., & Karatza,

H.D. (2016). Scheduling real-time parallel applications in SaaS clouds in the

presence of transient software failures. 2016 International Symposium on

Performance Evaluation of Computer and Telecommunication Systems

(SPECTS), pp.1-8.

Georgios L. Stavrinides, Helen D. Karatza. (2015). A cost-effective and QoS-aware

approach to scheduling real-time workflow applications in PaaS and SaaS

clouds, In Proceedings IEEE 3rd International Conference on Future Internet of

Things and Cloud, 24-26 Aug. 2015, Rome, Italy, pp. 231-239.

Georgios L. Stavrinides, Helen D. Karatza. (2017). The impact of data locality on the

performance of a SaaS cloud with real-time data-intensive applications," 2017

IEEE/ACM 21st International Symposium on Distributed Simulation and Real

Time Applications (DS-RT), Rome, 2017, pp.1-8.

Georgios L. Stavrinides, Helen D. Karatza. (2018). A hybrid approach to scheduling

real-time IoT workflows in fog and cloud environments, Multimedia Tools and

Applications, pp.1–17.

Georgios L. Stavrinides, Helen D. Karatza. (2019). An energy-efficient, QoS-aware

and cost-effective scheduling approach for real-time workflow applications in

cloud computing systems utilizing DVFS and approximate computations,

Future Generation Computer Systems, Vol. 96, 2019, pp. 216–226.

Google Home Review. (2018). The smart speaker that answers almost any

question.The Guardian. https://www.theguardian.com/technology/2017/

130

may/10/google-homesmart-speaker-review-voice-control. Retrieved on April

28, 2020.

H. Alhussian, N. Zakaria, A. Patel, A. Jaradat, S. Jadid, A. Y. Ahmed, A. Alzahrani,

S. Fageeri, A. Elsheikh, J Watada. (2019). Investigating the Schedulability of

Periodic Real-Time Tasks in Virtualized Cloud Environment, IEEE Access,

vol. 7, pp.29533-29542.

H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, A. Agarwal. (2011). Seec: A

framework for self-aware management of multicore resources. Tech. Rep.

Massachusetts Institute of Technology, 2011.

H. Shojaei, A.-H. Ghamarian, T. Basten, M. Geilen, S. Stuijk, R. Hoes. (2009). A

parameterized compositional multi-dimensional multiple-choice knapsack

heuristic for cmp run-time management, in Proceedings of Design Automation

Conference, 2009. DAC ’09. 46th ACM/IEEE, pp.917–922.

Hameed Hussain, Muhammad Bilal Qureshi, Muhammad Shoaib and Sadiq Shah.

(2013). Load balancing through task shifting and task splitting strategies in

multi-core environment, IEEE Eighth International Conference on Digital

Information Management (ICDIM), 2013: pp. 385-390.

Hengliang Tang, Chunlin Li, Jingpan Bai, JiangHang Tang, Youlong Luo. (2019).

Dynamic resource allocation strategy for latency-critical and computation-

intensive applications in cloud-edge environment, Computer Communications,

Vol. 134, 2019, pp.70-82.

Huangke Chen, Xiaomin Zhu, et al. (2015). Towards energy-efficient scheduling for

real-time tasks under uncertain cloud computing environment. Journal of

Systems and Software. 99. pp.20-35.

Huangke Chen, Xiaomin Zhu, Hui Guo, Jianghan Zhu, Xiao Qin, Jianhong Wu.

(2014). Reduced priority for real-time tasks under uncertain cloud computing

environment, The Journal of Systems & Software, 2014.

Hui Yan, Xiaomin Zhu, Huangke Chen, Hui Guo, Wen Zhou, Weidong Bao. (2019).

DEFT: Dynamic Fault-Tolerant Elastic Scheduling for Tasks with Uncertain

Runtime in Cloud. Information Sciences, 477, pp.30-46.

Hussain, H., Malik, S. U., Hameed, A., Khan, S. U., Bickler, G., Min-Allah, N.,

Rayes, A. (2013). A survey on resource allocation in high performance

distributed computing systems. Parallel Computing, 39(11), pp.709-736.

I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, D. Soudris. (2013). Distributed run-

time resource management for malleable applications on many-core platforms,

in Proceedings of the 50th Annual Design Automation Conference, DAC ’13,

(New York, NY, USA), 168, pp.1–6, ACM, 2013.

J. E. Boillat and P. G. Kropf. (1990). A fast-distributed mapping algorithm, in

proceedings of the Joint International Conference on Vector and Parallel

131

Processing, CONPAR 90/VAPP IV, (London, UK, UK), Springer-Verlag, pp.

405–416.

J. W. S. Liu, Real Time Systems, Prentice Hall, 2000.

J. W. S. Liu. (2000). Real-Time Systems, Amazon Elastic Compute Cloud, 2000.

Javad Zarrin,Rui L. Aguiar, Joao Paulo Barrace. (2017). Decentralized Resource

Discovery and Management for Future Manycore Systems, arXiv e-prints,

arXiv:1710.03649, 2017.

Jiayin Li, Meikang Qiu, Zhong Ming, et al. (2012). Online optimization for

scheduling preemptable tasks on IaaS cloud systems. Journal of Parallel and

Distributed Computing. 72:666677.

Jyoti, A., Shrimali, M. (2020). Dynamic provisioning of resources based on load

balancing and service broker policy in cloud computing. Cluster Computing.

23, pp. 377–395.

Kalaiselvi, S., Kanimozhi Selvi, C.S. (2020). Hybrid Cloud Resource Provisioning

(HCRP) Algorithm for Optimal Resource Allocation Using MKFCM and Bat

Algorithm. Wireless Pers Commun. 111, pp.1171–1185.

Kim, K. H., Beloglazov, A., & Buyya, R. (2011). Power-aware provisioning of virtual

machines for real-time Cloud services. Concurrency and Computation: Practice

and Experience, 23(13), pp.1491-1505.

Kołodziej, J., Khan, S. U., Wang, L., & Zomaya, A. Y. (2012). Energy efficient

genetic-based schedulers in computational grids. Concurrency and

Computation: Practice and Experience, 27(4), pp.809-829.

Kołodziej, J., Khan, S. U., Wang, L., Kisiel-Dorohinicki, M., Madani, S. A.,

Niewiadomska-Szynkiewicz, E., Xu, C. (2014). Security, energy, and

performance-aware resource allocation mechanisms for computational grids.

Future Generation Computer Systems, 31, pp.77-92.

Kumar, K., Feng, J., Nimmagadda, Y., & Lu, Y. (2011). Resource Allocation for

Real-Time Tasks Using Cloud Computing, 2011 Proceedings of 20th

International Conference on Computer Communications and Networks

(ICCCN), Maui, HI, 2011, pp.1-7.

L. Schor, I. Bacivarov, D. Rai, H. Yang, S.H. Kang, L. Thiele. (2012). Scenario-based

design flow for mapping streaming applications onto on-chip many-core

systems, in Proceedings of the 2012 International Conference on Compilers,

Architectures and Synthesis for Embedded Systems, CASES ’12, (New York,

NY, USA), ACM, pp.71–80.

Laplante, P.A. (2004). Frontmatter. In Real‐Time Systems Design and Analysis. 3rd

ed. Wiley.

132

Lei Li, Quansheng Guan, Lianwen Jin, and Mian Guo. (2019). Resource allocation

and task offloading for heterogeneous real-time tasks with uncertain duration

time in a fog queuing system, IEEE ACCESS, Vol. 7, pp. 9912-9925.

Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., & Gu, Z. (2012). Online optimization for

scheduling preemptable tasks on IaaS cloud systems. Journal of Parallel and

Distributed Computing, 72(5), pp.666-677.

Li, X., & Yin, M. (2013). A hybrid cuckoo search via Lévy flights for the permutation

flow shop scheduling problem. International Journal of Production Research,

51(16), pp.4732-4754.

Ligang He, Jarvis, S., Spooner, D., Xinuo Chen, & Nudd, G. (2004). Dynamic

Scheduling of Parallel Jobs with QoS Demands in Multiclusters and Grids.

Fifth IEEE/ACM International Workshop on Grid Computing, Pittsburgh, PA,

2004, pp. 402-409

Liu, S., Quan, G., & Ren, S. (2011). On-line scheduling of real-time services with

profit and penalty. Proceedings of the 2011 ACM Symposium on Applied

Computing - SAC '11. pp.1476–1481.

Liu, Z., Qu, W., Liu, W., Li, Z., & Xu, Y. (2015). Resource pre-processing and

optimal task scheduling in cloud computing environments. Concurrency and

Computation: Practice and Experience, 27(13), pp.3461-3482.

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, et al. (2009). Above the clouds: A

Berkeley view of cloud computing. http://www.eecs.berkeley.edu/ Pubs/

TechRpts/2009/EECS-2009-28.pdf. Retrieved on May 05, 2020

M. Malawski, G. Juve, E. Deelman, J. Nabrzyski. (2015). Algorithms for cost and

deadline constrained provisioning for scientific workflow ensembles in iaas

clouds,” Future Generation Computer Systems, vol. 48, pp.1–18.

Mahmood, A., & Khan, S. A. (2017). Hard real-time task scheduling in cloud

computing using an adaptive genetic algorithm. Computers, 6(2), pp.1-20.

Martel, S. (2020). How cars have become rolling computers. https://www.Theglo

beandmail.com/globe-drive/how-cars-have-become-rollingcomputers/article

2900 8154/. Retrieved on May 02, 2020.

Mckinsey. (2015). By 2025 Internet of Things Applications Could Have 11 Trillion

Impact, http://www.mckinsey.com/mgi/overview/in-the-news/by-2025

internetof-thingsapplications-could-have-11-trillion-impact/. Retrieved on

April 28, 2020.

Mehrin Rouhifar, and Reza Ravanmehr. (2015). A survey on scheduling approaches

for hard real-time systems, International Journal of Computer Applications,

Vol. 131, No. 17, 2015: pp. 41-48.

Min Allah, Nasro & Khan, Samee. (2011). A hybrid test for faster feasibility analysis

of periodic tasks. International Journal of Innovative Computing. 10. pp.1-10.

133

Min-Allah N, Khan SU, Ghani N, Li J, Wang L, Bouvry P. (2012). A comparative

study of rate monotonic schedulability tests. J Super Comput, 59(3), pp.1419–

1430.

Min-Allah, N., Qureshi M. B., Alrashed S., and Rana Omer F. (2019). Cost efficient

resource allocation for real-time tasks in embedded systems, Sustainable Cities

and Society, Elsevier, 48(2019), 101523, pp. 1-9.

N.Mangla, M. Singh,and S. K. Rana. (2016). Resource scheduling in cloud

environment: A survey, Advances in Science and Technology Research

Journal, Vol. 10, No. 30, pp.38-50.

Nadjaran Toosi, A., Sinnott, R., & Buyya, R. (2018). Resource provisioning for data-

intensive applications with deadline constraints on hybrid clouds using Aneka.

Future Generation Computer Systems, 79, pp.765-775.

Naha et al. (2018). Fog Computing: Survey of Trends, Architectures, Requirements,

and Research Directions, arXiv:1807.00976v1, Vol. X, 2018.

Nasri M. (2017). On flexible and robust parameter assignment for periodic real-time

components. ACM SIGBED Rev, 14(3), pp.8–15.

Nasro Min-Allah, Hameed Hussain, Samee Ullah Khan, and Albert Y. Zomaya.

(2012). Power efficient rate monotonic scheduling for multi-core systems,

Journal of Parallel and Distributed Computing, Vol.72, No. 1, pp.48-57.

Nasro Min-Allah. (2019). Effect of ordered set on feasibility analysis of static-priority

system. The Journal of Supercomputing, 75(1): pp.475-487.

P. Kokkinos, E. Varvarigos. (2009). A framework for providing hard delay guarantees

and user fairness in grid computing, Future Generation Computer Systems, 25

(6), pp.674–686.

Panda, S. K., Gupta, I., & Jana, P. K. (2015). Allocation-aware Task Scheduling for

Heterogeneous Multi-cloud Systems. Procedia Computer Science, 50, pp.176-

184.

Pavan Kumar P., Satyanarayana C., Ananda Rao A., Radhika Raju P. (2019).

Empirical Evaluation of a Real-Time Task Priority Procedure on

Small/Medium-Scale Multi-core Systems. In: Krishna A., Srikantaiah K.,

Naveena C. (eds) Integrated Intelligent Computing, Communication and

Security. Studies in Computational Intelligence, Vol. 771. Springer, Singapore.

Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu and F. Tian. (2020). Dynamic task

offloading and resource allocation for mobile-edge computing in dense cloud

RAN. IEEE Internet of Things Journal. 7(4), pp.3282-3299.

Qiushi Han, Tianyi Wang, and Gang Quan. (2015). Enhanced fault-tolerant fixed-

priority scheduling of hard real-time tasks on multi-core platforms, IEEE 21st

International Conference on Embedded and Real-Time Computing Systems

and Applications, Hong Kong, China, August 19-21, 2015: pp. 21-30.

134

Qureshi, M. B., Alqahtani, M. A., & Min-Allah, N. (2017). Grid Resource Allocation

for Real-Time Data-Intensive Tasks. IEEE Access, 5, pp.22724-22734.

Qureshi, M. B., Alrashed, S., Min-Allah, N., Kołodziej, J., & Arabas, P. (2015).

Maintaining the Feasibility of Hard Real–Time Systems with a Reduced

Number of Priority Levels. International Journal of Applied Mathematics and

Computer Science, 25(4), pp.709-722.

Qureshi, M. B., Dehnavi, M. M., Min-Allah, N., Qureshi, M. S., Hussain, H., Rentifis,

I., Zomaya, A. Y. (2014). Survey on Grid Resource Allocation Mechanisms.

Journal of Grid Computing, 12(2), pp.399-441.

R. L. Panigrahi, M.K. Senapaty. (2014). Real Time System for Software Engineering:

An Overview, Global Journal for Research Analysis, Vol. 3, Issue 1, pp. 25-

27.

R. Mahmud, F. L. Koch, R. Buyya. (2018). Cloud-fog interoperability in iot-enabled

healthcare solutions, in Proceedings of the 19th International Conference on

Distributed Computing and Networking, ser. ICDCN ’18. New York, NY,

USA: ACM, 2018, pp.32:1–32:10.

Raghavan, S., Sarwesh, P., Marimuthu, C., & Chandrasekaran, K. (2015). Bat

algorithm for scheduling workflow applications in cloud," 2015 International

Conference on Electronic Design, Computer Networks & Automated

Verification (EDCAV), Shillong, 2015, pp.139-144.

S. Abrishami, M. Naghibzadeh, D. H. J. Epema. (2013). Deadline-constrained

workflow scheduling algorithms for infrastructure as a service clouds, Future

Generation Computer Systems, vol. 29, no. 1, pp.158–169.

S. Venugopal & R. Buyya. (2008). An SCP-based heuristic approach for scheduling

distributed data-intensive applications on global grids. J. Parallel Distrib.

Comput. 68(4), pp.471–487.

Sait, S. M., Bala, A., & El-Maleh, A. H. (2015). Cuckoo search-based resource

optimization of datacenters. Applied Intelligence, 44(3), pp.489-506.

Sangwan, A., Kumar, G., & Gupta, S. (2016). To Convalesce Task Scheduling in a

Decentralized Cloud Computing Environment. Review of Computer

Engineering Research, 3(1), pp.25-34.

Satish, K., & Reddy, A. R. (2018). Resource allocation in grid computing

environment using genetic auction-based algorithm. International Journal of

Grid and High-Performance Computing, 10(1), pp.1-15.

Sha, L., Abdelzaher, T., Årzén, K. E., Cervin, A., Baker, T., Burns, A., Buttazzo, G.,

Caccamo, M., Lehoczky, J., & Mok, A. K. (2004). Real time scheduling

theory: A historical perspective. Real-Time Systems, 28(2-3 SPEC. ISS.), 101-

155.

135

Sindhu, S. (2015). Task Scheduling in Cloud Computing. International Journal of

Advanced Research in Computer Engineering & Technology, 4, pp.3019-3023.

Singh, V., Gupta, I., & Jana, P. K. (2018). A novel cost-efficient approach for

deadline-constrained workflow scheduling by dynamic provisioning of

resources. Future generation computer systems, 79, pp.95-110.

Statista. (2020). Number of internet of things (IoT) connected devices worldwide in

2018, 2025 and 2030. https://www.statista.com/statistics/802690/worldwide

connected-devices-by-access-technology/. Retrieved on May 05, 2020.

Sun, H., Yu, H., Fan, G., Liqiong Chen. (2020). Energy and time efficient task

offloading and resource allocation on the generic IoT-fog-cloud architecture.

Peer-to-Peer Netw. Appl. 13, pp. 548–563.

Tarandeep Kaur, Inderveer Chana. (2016). Energy aware scheduling of deadline-

constrained tasks in cloud computing, Cluster Computing, Vol. 19, No. 2,

2016, pp.679–698.

The ambient. (2020). https://www.the-ambient.com/guides/samsung-smartthings-

guidesmart-home-163. Retrieved on May 01, 2020.

Tsai, C., Huang, W., Chiang, M., Chiang, M., & Yang, C. (2014). A Hyper-Heuristic

Scheduling Algorithm for Cloud. IEEE Transactions on Cloud Computing,

2(2), pp.236-250.

W. Shu, J. Cao, Q. Zhang, Y. Li, L. Xu. (2016). Edge computing: vision and

challenges, IEEE Internet of Things Journal, vol. 3, no. 5, pp.637-646.

Wang, J., Liu, A., Yan, T., & Zeng, Z. (2018). A resource allocation model based on

double-sided combinational auctions for transparent computing. Peer-to-Peer

Networking and Applications, 11(4), pp.679-696.

Wu, X., Deng, M., Zhang, R., Zeng, B., & Zhou, S. (2013). A Task Scheduling

Algorithm based on QoS-Driven in Cloud Computing. Procedia Computer

Science, 17, pp.1162-1169.

Xi, Sisu. (2014). Real-time virtualization and cloud computing, All Theses and

Dissertations (ETDs). 1366, 2014.

Xiaomin Zhu, Laurence T. Yang, Huangke Chen, Ji Wang, Shu Yin, and Xiaocheng

Liu. (2014). Real-Time Tasks Oriented Energy-Aware Scheduling in

Virtualized Clouds. IEEE Transactions on Cloud Computing, vol. 2, no. 2,

pp.168-180.

Xie, T., & Qin, X. (2005). Enhancing security of real-time applications on grids

through dynamic scheduling. In Proceedings of the 11th international

conference on Job Scheduling Strategies for Parallel Processing (JSSPP’05).

Springer-Verlag, Berlin, Heidelberg, 219–237.

136

Xiumin Zhou, Gongxuan Zhang, Jin Sun, Junlong Zhou, Tongquan Wei, Shiyan Hu.

(2019). Scheduling in cloud using fuzzy dominance sort-based HEFT, Future

Generation Computer Systems, Vol. 93, 2019, pp.278-289.

Xu, J., & Parnas, D. (1990). Scheduling processes with release times, deadlines,

precedence and exclusion relations. IEEE Transactions on Software

Engineering, 16(3), pp.360-369.

Y. Amir, B. Awerbuch, A. Barak, R. Borgstrom, A. Keren. (2000). An opportunity

cost approach for job assignment in a scalable computing cluster, IEEE

Transactions on Parallel and Distributed Systems, 11 (7), pp.760–768.

Y. Jiang, X. Shen, J. Chen, R. Tripathi. (2008). Analysis and approximation of

optimal co-scheduling on chip multiprocessors, in Proceedings of the 17th

International Conference on Parallel Architectures and Compilation

Techniques, PACT ’08, (New York, NY, USA), ACM, pp. 220–229.

Y. Mao, C. You, J. Zhang, K. Huang, K. B. Letaief. (2017). A survey on mobile edge

computing: The communication perspective, IEEE Communications Surveys &

Tutorials, vol. 19, no. 4, pp.2322–2358, 2017.

Zhang, Y., Tian, Y., Fidge, C., & Kelly, W. (2016). Data-aware task scheduling for

all-to-all comparison problems in heterogeneous distributed systems. Journal

of Parallel and Distributed Computing, 93-94, pp.87-101.

