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ABSTRACT

Robotic assisted training platforms have become a significant alternative to conven-
tional training platforms as clinical therapeutic assistance to accommodate the increas-
ing demand for neurological disorder physical treatments. Patients with neurological
disorders usually experience conditions where their muscles are stiff, tight and prone to
resist upon stretching, which in essence define muscle spasticity. The current method
of muscle spasticity assessment is based on subjective assessment by therapists who
heavily rely on their inner intuition, experience and skills. Based on the assessment,
proper rehabilitation training tasks are prescribed as part of the training regimen. This,
however, could be proven ineffective over the long run if the assessment is not done
accurately. More so, in the case of robotic-assisted training systems used in training
tasks, the deficiency in accurate information on muscle spasticity could largely affect
any control strategy adopted to govern the robotic system. In order to address this
problem, the research proposed to leverage on a synergetic combination of Modified
Ashworth Scale (MAS) spasticity assessment tool and adaptive-impedance controller
framed under a hybrid automata (HA) model applied on a patented upper limb reha-
bilitation platform, namely the Automated Muscle Spasticity Assessment System (A-
MSAS). This required a dedicated spasticity characteristics model with control strategy
during the assessment of muscle spasticity and an adaptive control based on impedance
dynamics for the execution of the training tasks by A-MSAS. Spasticity characteristics
model was developed using classification method and position-based impedance con-
troller was adopted in strategizing the control of the A-MSAS. The latter was achieved
through a dynamic mapping of the patient’s recovery parameters to the control pa-
rameters. The research involved clinical measurements of muscle spasticity from 39
subjects diagnosed with neurological disorders to classify the MAS scores quantita-
tively. From the research of assessment regimen it was found that by using spasticity
characteristics model, the rate in predicting the MAS score of the subjects was 92.86%
accurate. Meanwhile for training regimen, the adopted control strategy has resulted
in an average angular velocity reduction, by 28.75% for pre-catch phase while average
angular velocity increase which there were observable boosts by 46.46% for post-catch
phases. The controller objective has been proven by allowing a degree of compliance
even as A-MSAS platform dynamically deviated from the desired trajectory; propor-
tional to the feedback received. Based on the findings, it was conclusively justified that
an objective spasticity assessment prior to the training task would enhance the adapt-
ability of the control strategy. This leads to a minimized muscle strain instigated from
the feedback of spasticity characteristics pattern, hence warranting a more effective
rehabilitation training.
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 خلاصة البحث 
 

 
لاستيعاب الطلب   سريرية التقليدي كمساعدة علاجية  أهيلالت  عن بديلاً هامًا  بمساعدة الروبوت والتأهيل التدريب  أصبح 

حالات تكون فيها    منعادة  عصبية  ال ضطرابات  الاللاضطرابات العصبية. يعاني مرضى    بدنيةالمتزايد على العلاجات ال
الأسلوب الحالي   تشنج العضلات.   تدل على  هيد، و يالتمد  حركاتعرضة لمقاومة  متصلبة ومشدودة مما يجعلها  عضلاتهم  

الذين يعتمدون بشكل كبير على الحدس  النفسانيين و   على التقييم الذاتي من قبل المعالجينيعتمد  لتقييم تشنج العضلات  
وعلى المدى  . ومع ذلك، أهيلكجزء من نظام الت بناء على التقييم  التدريب المناسبة   واجباتوالخبرة والمهارات. يتم تحديد 

يثبت  قد  فاعلي   الطويل  التدريب عدم  واجبات  ي  ة  لم  التدريب  بدقة  التقييم  تمإذا  الروبوت  والتأهيل  . في حالة  بمساعدة 
  استراتيجية    نوعيةإلى حد كبير على قد يؤثر  المعلومات عن تشنج العضلات  دقة  التدريب، نقص   واجبات في ستخدمة  الم
آشورث    لمقياستآزر  المزيج  الم، اقترح البحث الاستفادة من  الإشكالية جل معالجة هذه  ولأ لنظام الروبوت.  المتبناة  تحكم  لا

عادة تأهيل  لإتم تطبيقه  والذي  جين اله  أوتومات ة المؤطرة في إطار نموذج م او قالم  تكييف تقييم التشنج ووحدة تحكم المعدل ل
وهذا يتطلب نموذجًا    وتوماتيكي. نظام تقييم تشنج العضلات الأب   المسماةالحاصل على براءة اختراع، و و   ، الطرف العلوي

التحكم أثناء تقييم تشنج العضلات والتحكم التكيفي المعتمد على ديناميكيات  خاصا بخصائص التشنج مع إستراتيجية  
المقاومة لتنفيذ واجبات التدريب بواسطة مقياس آشورث المعدل لتقييم التشنج. تم تطوير نموذج خصائص التشنج باستخدام  

لمقياس آشورث المعدل لتقييم  التحكم    ة القائم على الموضع في وضع استراتيجية ماو قد جهاز تحكم الماطريقة التصنيف واعتم
  هذا  التحكم. تضمن   امل استشفاء المريض إلى مع  امل. تم تحقيق هذا الأخير من خلال رسم خريطة ديناميكية لمعالتشنج

مقياس  شخصًا تم تشخيصهم باضطرابات عصبية لتصنيف درجات    39البحث قياسات سريرية للتشنج العضلي من  
البحث في نظام التقييم، وجد أنه باستخدام نموذج خصائص التشنج، كان المعدل في  ل  خلا من    كمًا.  آشورث المعدل
. وفي الوقت نفسه بالنسبة لنظام التدريب، أسفرت استراتيجية  %92.86للمواد     مقياس آشورث المعدلالتنبؤ بنتيجة  

زيادة  لمرحلة ما قبل الالتقاط بينما متوسط    %28.75التحكم المعتمدة عن انخفاض متوسط السرعة الزاوية ، بمقدار  
. تم إثبات هدف التحكم  الالتقاطلمراحل ما بعد    %46.46تعزيزات ملحوظة بنسبة  هنالك  كانت    يثح و السرعة الزاوية  

عن المسار المطلوب؛  مقياس آشورث المعدل  نصة  لم الديناميكي  نحراف الامن خلال السماح بدرجة من الامتثال حتى مع  
  واجباتن تقييم التشنج الموضوعي قبل  بأمع ردود الفعل الواردة. بناءً على النتائج، كان هناك ما يبرر بشكل قاطع    با متناس 

هذا يؤدي إلى تقليل شد العضلات المستحث من ردود  و   التدريب سيعزز القدرة على التكيف مع استراتيجية التحكم.  
 تأهيل أكثر فعالية. ال إعادة ن تدريبات  مزيدا م الفعل من نمط خصائص التشنج، مما يستدعي  
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Neurological disorders contribute to the burden of healthcare globally. Neurological

disorders are diseases associated with the brain and spine as well as the nerves that

connect them. Stroke, cerebral palsy and traumatic brain injury are among the sig-

nificant contributors of neurological disorders. Often, patients are unable to manage

themselves and consequently become dependent on others for assistance. Therefore,

they face difficulties in carrying out Activities of Daily Living (ADL) such as eating,

walking, and driving among others. The symptoms that may affect the quality of ADL

is fundamentally the increase in spasticity of unimpaired limbs of which intended mo-

tion for said limbs may become limited and experience jerks during movement.

Spasticity is a type of motor disorder characterized by a velocity-dependent in-

crease in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting

from hyperexcitability of the stretch reflex, as one component of the upper motor neu-

ron syndrome (Lance, 1981). Muscle tone is described as the resistance perceived by

examiners to affected limb movement about joints. Essentially, patients who suffer

from spasticity experience abnormal stiffness or tightness in the muscle that amplify

resistance during passive movement of the affected limb.

Patients must undergo training and exercise to reduce the stiffness of the mus-

cles and improve their motor controls. The recovery process necessitates an efficient

training strategy to reinstate their motor control to the closest normal state before the
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occurrence of the impairment. The spasticity severity of affected muscle must be as-

sessed by the therapist before undergoing training or exercise. This is performed to

allow the therapist to monitor the recovery process of the muscle as well as to plan the

best rehabilitation training regimen for the patient.

Hitherto, spasticity assessment is carried out on a subjective basis. Even though

there are standard tools to measure the levels of muscle spasticity as reported in earlier

studies such as Modified Ashworth Scale Ashworth (1964), Modified Tardieu Scale

Tardieu et al. (1957) and Fugl-Meyer Assessment Fugl-Meyer et al. (1975); J. Wu

et al. (2010), these assessments rely heavily on the therapists’ intuition, knowledge

and experience (Blackburn et al., 2002; Priebe et al., 1996). Thus, the appraisal is

susceptible to variations and possibly poses a challenge to screen the progress and plan

the most suitable training for the patient effectively, especially if the training sessions

are carried out by different therapists. In the long run, the problem could lead to

an increase in overall expenditures pertaining to cost, time, and effort to undergo the

training at rehabilitation centres.

Findings from the Global Burden of Disease Study Injuries and Risk Factors

Study (GBD) have shown that the number of patients with neurological disorders has

kept increasing despite neurological support and services provided by relevant agen-

cies (Feigin & Vos, 2019). According to a similar report, neurological disorder patient

population has reached an estimation of up to 1 billion out of 7.7 billion world pop-

ulation and one third suffers from permanent disability, commonly involving deficits

in motor function (Feigin & Vos, 2019). If left untreated, neurological disorders could

instigate severe depression or even death after several years. It is a common clinical

practice that one-to-one rehabilitation session with a therapist must be conducted to
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restore the flaccidity of the affected limb. Muscle flaccidity is a neurological condition

where the muscle tone is lacking in the affected muscles in which tendon reflexes are

either decreased or absent. As stated in The Conference Board, the labour shortage

index (demand-supply) estimation is 98.9 from the year 2014 to 2024 (Gad Levenon,

2019). Labour shortage index pertains to the difference between labour demand and

labour supply and is expressed as a percentile rank across all occupations. The index

value ranks from 0 to 100 for least amount of risk to most amount of risk. Thus, the

imbalance between physiotherapists and patients poses a challenge in maintaining the

rehabilitation process efficacy, mainly due to the physical limitations of the therapists

themselves such as effort and time consumption. Hence, the use of robotic assisted

technology might be the immediate response to accommodate the increasing demand

from the affected segment of society for better rehabilitation services.

Patients with neurological disorder often experience limb motion with spas-

ticity characteristics pattern resulting from partial or complete loss of proprioceptive

sense, reduced cognitive abilities and velocity-dependent resistance (spasticity) (Ali-

biglou et al., 2008; Yom et al., 2015). Spasticity characteristics pattern in impaired

limbs consists of three forms of patterns accountable for spasticity assessment, which

are pre-catch, catch point and release point. The spasticity characteristics pattern is

distinctively detectable during fast passive flexion and extension (Zakaria et al., 2015).

This irregular increase in spasticity characteristics pattern is associated with the in-

crease in resistance to passive movement, thus reflecting the severity of the spasticity

levels (Bohannon & Smith, 1987). Recently, Duret et al. (2019) reported that passive

training based on the affected limb movement behaviour results in having a signifi-

cant beneficial impact on the neurologically disordered population Duret et al. (2019).

3



Moreover, therapeutic assistance from robotic systems has gained recognition in clini-

cal applications. In the case of robotic systems, this may suggest the need to have more

effective control regimes to adapt and embrace the dynamic response from appropri-

ate autonomous training plan. In the context of the research, the model of an affected

limb is assumed by a second-order inertia-spring damper system. The downside to this

is that there will be an increase in biomechanical stiffness, which may be accounted

for spastic resistance. There are many published studies describing the significant

changes in impedance properties, mainly viscoelasticity/damping, stiffness and effec-

tive mass through muscle contraction. These changes also vary according to posture

and dynamics of the affected limb (Mizrahi, 2015; Tanaka & Tsuji, 2004; Tanaka et

al., 2014). Thus, neuromuscular properties like mass, damping and stiffness factors

could be quantified as the patients counteract the undesired effects of load and distur-

bances from the therapists’ hand as well as the force exerted during passive movement

(Perreault et al., 2014; Piovesan et al., 2013; Tanaka et al., 2014). Thus, the integration

of quantitative evaluation of spasticity with dynamic adaptive control framework is a

significant step towards the advancement of robotic assisted training platform with ad-

equate confidence level in providing the rehabilitation services. The proposed research

employed the Modified Ashworth Scale (MAS) assessment tool due to its high inter-

rater reliability and simple criterion categorisation (Akpinar et al., 2017; Bohannon &

Smith, 1987; Puzi et al., 2018).

The proposed work focuses on the development of an objective MAS asses-

sor system and position-based impedance controller framed using hybrid automata

(HA) modeling technique, representing a discrete system mode of operation (crite-

ria of HA); based on prior MAS assessment in determining the severity level of an
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unimpaired limb. A single degree of freedom (DOF), patented robotic platform; i.e.

Automatic Muscle Spasticity Assessment System (A-MSAS), was developed to inte-

grate the muscle spasticity level assessment based on MAS tool and training regimen

by employing adaptive control strategies into a single platform targeting the upper ex-

tremity. Figure 1.1 depicts the A-MSAS robotic device used for the research work.

The system features a single-turn potentiometer to measure the flexion angle at the el-

bow joint. A custom-designed torque sensor is used to measure the feedback moment

around the elbow joint. The remaining part of the system is composed of an arm plate,

a lever to orient the arm plate, and a laptop with Labview software connected to a data

acquisition card (NI DAQ card USB-6211).

Figure 1.1: A-MSAS robotic assessment-training platform.
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1.2 PROBLEM STATEMENT

The goal of the therapeutic training session is to provide adequate and effective re-

habilitation to the affected limbs of patients diagnosed with neurological disorders.

Continuous rehabilitation trainings are crucial in the recovery process. Several limita-

tions have been identified in the current practice that considerably limit therapists in

optimizing the efficacy of a rehabilitation training session.

The severity of muscle spasticity evaluated using MAS tool relies heavily on the

therapists’ experience, skills and intuition in scoring the spasticity level. Fair enough,

the subjective procedure would lead to inconsistency in the assessment, primarily due

to the factors mentioned above. Therefore, an objective assessment is proposed in

the research to overcome the limitation of the existing method in assessing spasticity

level. Previous research have offered an objective spasticity assessment by distinguish-

ing two categories namely healthy and spasticity affected control groups (Seth et al.,

2015). The problem with the current technique is the lack of description on spasticity

severity conditions affecting the limb. This innovation would prove to circumvent the

problem by characterizing the spasticity level based on the level prescribed in the MAS

tool by using a classification technique. The accurate assessment of muscle spasticity

is paramount to ensure the efficacy of the rehabilitation regimen deployed during a re-

habilitation session. This study however, in assessing the spasticity level of affected

limb quantitatively showed great margin for improvement.

Once a muscle assessment has been conducted, the current clinical practice

would normally prescribe a suitable training regimen for the patient to undergo. The

training process generally takes around an hour, which involves several repetitive rounds

of rehabilitation training with the therapist until the next assessment is conducted; usu-
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ally in the subsequent month. The subjective assessment may be administered by dif-

ferent therapists, whereupon it is likely in many cases to lead to different readings of

muscle spasticity level. Applying such rehabilitation training regimen to different lev-

els of muscle spasticity throughout the treatment would definitely be direful to patients

over time as long as the spasticity characteristics pattern is concerned. Hence, a more

flexible and adaptive system is necessary to provide better experience and efficiency in

robotic based training management. An intelligent model-free based control technique

is proposed to be employed for the rehabilitation training, which is based on the dy-

namic characteristics of muscle spasticity characteristics pattern and MAS evaluation

of the affected limb. Dynamic adaptability position-based impedance control scheme

gives beneficial impact to people with neurological disorder as this proposed treatment

shall utilize the right position, velocity, and time based on the muscle spasticity char-

acteristics pattern.

Ensuring patient safety and comfort while using a robotic assisted training sys-

tem is crucial in choosing a suitable control scheme. The lack of systematic adaptation

according to the extent of neurological disorder in the robotic assisted training model

has indeed gained attention. Applying such control regimes to different levels of sever-

ity can be awful to patient in the long run. Thus, a more robust and dynamic system

is required to offer better robotic training regimen in terms of experience and perfor-

mance. Thus, utilizing control strategy to dynamically adapt to a MAS criterion could

potentially improve the efficacy and efficiency of robotic assisted training regimen.
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