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ABSTRACT

Major source of enzymes is microbes and during cultivation step, more than 85% of
them resist cultivation and their genetic patrimony is loss. This work sought to
bioprospect cellulose-degrading enzymes from microbiota of the palm oil mill effluent
(POME). To get access to this great microbial diversity and to discover the
biocatalysts behind, this research has adopted metagenomic approach which
technically escapes the cultivation step and screens the microbial DNA for desired
enzymatic activity. Metagenomics consists of the creation and screening of
metagenomic DNA libraries. In vivo identification of cellulose-degrading enzymes
was carried out with high-throughput screening and in silico identification of genes
encoded the enzymes was performed with algorithm-based methods while the results
validation was executed by recombinant enzymes expression, purification and
characterisation. Culture-enrichment strategy based on natural selection principle was
used in the early stage to enhance the screening hit rate. Metagenomic DNA was
extracted from enriched and non-enriched sample to construct 109,824 fosmids (4.49
Gb) metagenomic DNA library. In this library, pCC1FOS fosmid and E. coli
EPI300T1R are the vector and surrogate host of the cloning system, respectively. A
high throughput functional metagenomic screen was developed and applied to search
for cellulose-degrading enzymes within the library clones using 4-methylumbelliferyl-
R-D-glucopyranoside (MUGIc) and 4-methylumbelliferyl-R3-D-cellobioside (MUC)
fluorogenic substrates. The screens were normalised using robust z-score and highest
rated clones (100) were then selected. Their fosmids were isolated and sequenced with
Hiseq (Illumina) of next-generation sequencing strategy. For quality control of the
reads, SolexaQA and FastQC tools were used. Poor quality bases were removed with
DynamicTrim algorithm, all bases with Qphred less than 20 were trimmed, and the
LengthSort algorithm was used to remove sequences less than 50 bp. de Bruijn graph
of de novo assembly algorithm has organised the reads on k-mers to build contigs, and
Velvet optimiser has selected the optimum k-mers. These contigs were the input of
SSPACE algorithm used to locate and orient contigs. Codon DNA sequences (CDS)
were identified with PRODIGAL software. The genes identification was carried out
following Blastp and SmartBLAST. Seventeen of bioprospected putative cellulose-
degrading enzymes were cloned into pPBAD-TOPO plasmid and expressed in TOP10
E.coli cloning. Enzymes were purified with HisTrap HP column with the aid of a
FPLC system. Two putative glucanases and two putative R-glucosidases were then
biochemically characterised for optimal pH and temperature in the presence of
substrates MUGIc and MUC, pNPG and pNPC and CMC as well. In NGS-data
analysis step, 4900 contigs and 3540 scaffolds were constructed. 42,247 CDS were
detected and 96 potential cellulose-degrading enzymes were identified which evinces
the richness of POME metagenome on biocatalysts. The protein sequences of 15
cellulose-degrading enzymes are 100% similar to protein sequences available in
protein databases while 40 enzymes show (80-99%) similarities, 24 enzymes (60-
79%), 14 enzymes (40-59%) and 3 enzymes show less than 40% similarity, this
reflects the qualification of functional metagenomics to bioprospect untapped
enzymes. The potential types of enzymes are 19.20% glucanases, 31.32%
glucosidases and 46.48% glucoside hydrolases with cellulose-degrading enzyme
conserved domains. For the 17 expressed enzymes, three different glycoside hydrolase



families, (enzyme 1, 2, 10 and 21) from GH3, (enzyme 6, 12 and 20) from GHS5,
(enzyme 3) from GH8 and other glycoside hydrolase families. Enzyme 3 is probably
an example of untapped enzyme; it was active toward MUC and MUGIc. The
optimum catalysis activity by enzyme 3 occurred at 50 °C and pH 4. For enzymes 4,
11 and 13, no enzymatic activity was detected due to low expression level. This
research was very challenging but rewarding. It lays the foundation of diverse and
untapped biocatalysts discovery. The bioprospected enzymes found in this
metagenomic DNA library can be produced and optimised to be used in different
industrial applications. In addition, the NGS-analysed-data can be usd to study the
diversity of POME.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Various industries have utilised enzymes as part of their production due to their high
selectivity, efficiency and rapidity in catalytic reactions. By using enzyme in industrial
processes, it is possible to eliminate or at least prevent possible hazards caused by
extreme parameters (including pressure, temperature, and pH) for chemical reactions
to occur. In addition, lower energy consumption is possible as enzyme’s optimum
parameters are relatively mild. Enzyme usage also allows production of specific
products only, therefore it is possible to avoid production of unwanted by-products
that may be challenging and expensive to dispose or may even pose negative effect
(Binod et al., 2013).

Lignocellulose is the major structural component of plant material; it is a
sustainable and renewable resource available for use in biotechnological applications.
Thus, cellulose-degrading enzymes are amongst the highly demanded industrial
enzymes due to their ap plications in various industries including detergents,
fermentation, food, textile, pulp and paper (Hill et al., 2006). Using cellulose-
degrading enzymes in enzymatic hydrolysis of cellulosic materials into fermentable
sugars for bioethanol production may reduce the process cost greatly as the processes
may be improved to take plate at mild conditions (temperature 45 to 50 °C and pH 4
to 6) (Kuhad et al., 2011). Cellulose-degrading enzymes are commonly synthesised by
microorganisms such as fungi, bacteria and actinomycetes during their growth on

cellulosic materials; these enzymes may be thermophilic, mesophilic, aerobic or



anaerobic. Several genera are more extensively studied compared to others including
Aspergillus, Cellulomonas, Clostridium, and Trichoderma (Kuhad et al., 2010).

Microbial enzymes are normally obtained through cultivation and subsequent
screening of pure strains of microorganisms. It is later found out that only 1-15% of
microbial genomes are cultivable under laboratory conditions while more than 85%
have never been studied before (Amann, 1995).

Techniques of specifically cloning environmental DNA involving the
hereditary diagrams of whole microbial consortia what is called metagenome, furnish
molecular grouping space that alongside cunning in vitro advancement technologies
will collaborate synergistically to bring a limit of accessible succession space into
biocatalytic application (Lorenz et al., 2002). The new method involves direct DNA
isolation from an environmental sample followed by direct cloning for subsequent
screening and product expression to allow unbiased genomic representation of the
microbes.

Molecular techniques of environmental DNA cloning in synergy with in vitro
microbiological technologies facilitate the biocatalytic application (Handelsman et al.,
1998). This field is mostly similar to genome library development and screening, with
the distinction that the cloned DNA does not start from a solitary known
microorganism, but instead from the whole consortia in a special environment.
Function-based metagenomics has developed as a strong strategy for DNA model
approval and protein bioprospecting from natural and hand-engineered biological
systems (Mewis et al., 2013).

The success of the cloning may be proven by positive presence of novel
proteins through function-based screening where the clones’ biological activity is

monitored (Kumar et al., 2015). Screening may be performed through two



alternatives; sequence-based and activity or function-based screening. It is
recommended to combine both methods to obtain the complete picture of the
community. Sequence based screening allows the identification of the sequence of
interest while functional screening provides identification of unknown and novel
genes that might not be recognisable by only sequence based screening (Riesenfeld et
al., 2004). It is a challenge to develop effective and sensitive functional screening
where it previously relies on noticeable changes in colony morphology or the
appearance of zymogram (Teather and Wood, 1982). High throughput screening is
introduced where screens are conducted in 384-well plate format to increase the
efficiency and comparability between samples. Cell lysis is also imposed in this
method to overcome intracellular accumulation of enzyme activity. Substrate of
interest (in this case fluorogenic substrate) may interact with the enzyme released
from the cells and allow the reading of enzyme activity using fluorescence-based
microplate readers (Taupp et al., 2011).

In this study, palm oil mill effluent (POME) was chosen because it is a rich
habitat for microorganisms since it contains nutrients and growth factors. In the
presence of significant quantity of cellulosic fruit residues, microorganisms secrete
cellulose-degrading enzymes to adapt and survive in POME environment. Malaysia’s
POME samples were collected and enriched in the laboratory to enhance the screening
of cellulose-degrading enzymes. After metagenomic DNA extraction, sequences of
around 40 kb were cloned into a fosmid vector and transformed into a bacterial host,
which is generally Escherichia coli. A high number of multiplications of E. coli with
the inserted DNA created fosmid libraries of POME metagenomic DNA. The presence
of cellulose-degrading enzymes was conducted with microtiter high-throughput

screening of the four libraries using fluorogenic substrates in fluorescence-able



microplate reader. Only clones with the desired enzymes were able to metabolise the
substrate and merge fluorescence to predict their presence. Due to the limited budget,
only 100 high-rated clones were sequenced with next generation sequencing (NGS).
Their DNA was sequenced to define the coding DNA sequence of each enzyme.
Second cloning was carried out with those sequences into an expression vector.
Finally, the enzymes were expressed, purified and characterised to discover more

about the cellulose-degrading enzymes.

1.2 PROBLEM STATEMENT AND RESEARCH SIGNIFICANCE

The number of cellulose-degrading enzymes which are currently successfully utilised
at the industrial level is considered low compared to the high demand due to the
variety of cellulosic composition in plant biomass. In addition, the available enzymes
in the market are considered expensive which imposes a real obstacle of the process.
These problems indicate the need for further research and development of versatile
and low-cost enzymes to grow progressively sustainable and financially competitive
generation processes (Adrio & Demain, 2014). As microorganisms are the main
source of enzymes, the real problem behind the lack of enzymes versatility and
novelty is the weakness of classical methods to benifit the maximum possible of this
available source (Kumar et al., 2015; Vavourakis et al., 2018). The evolution of
bioinformatic techniques to study the biodiversity of microorganisms revealed the
presence of unexpected numbers of unkown species with complicated phylogenetic
connections which have been missed by traditional cultivation methods. Named
“unculturable microorganisms”, are a prosperous source of biocatalysts if the right

method of investigation is followed.





