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ABSTRACT 

Electrochemical microfluidic biosensor is a widely used category of 

bioanalytical microdevices, with applications ranging from home-use glucometers to 

advanced blood analysis devices. They enable powerful microscale analyses in biology, 

physics and chemistry. Conventionally, the methods to fabricate these devices are either 

screen-printing, inkjet printing, or cleanroom-based photolithography. All these 

methods have slow iteration times, and cleanroom facilities are especially expensive 

and are limited in access to researchers in low-and-middle-income (LMIC) countries. 

In this thesis, a low-cost, accessible and rapid fabrication process of electrochemical 

microfluidic biosensors has been developed. This work leverages the accessibility of 

consumer-grade electronic craft cutters as the primary tool for patterning of sensor 

electrodes and microfluidic circuits, while commodity materials such as gold leaf, 

conductive silver ink, double-sided tape, vinyl sticker, plastic transparency films, and 

fabric adhesives are used as its base structural materials. The process enables 

fabrication of gold electrodes with dimensions as small as 450 µm and gaps of 110 µm, 

silver electrodes with dimensions as small as 600 µm, and fluid microchannels as small 

as 300 µm. Micro-volume hydrogen peroxide concentration measurements were 

performed as validation of biosensor performance, which achieved a limit of detection 

of 0.713 mM and sensitivity of 82.002 µA mM-1 cm-2 from 2 µL samples. The rapid 

process allows an iterative design-build-test cycle in less than 2 hours. This method is 

applicable in typical university laboratories and costs less than RM2100 to set up, 

enabling lower access barriers into the biosensor field for academic and industry 

researchers in low-resource settings. 
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 خلاصة البحث  
 

 

 

 

الدقيقة   الحيوي  التحليل  أجهزة  إحدى فئات  الدقيقة هي   المائعية  الكهروكيميائية  إنّ المستشعرات الحيوية
 وأجهزة  المنزلي  في الدم للاستخدام   السكر  قياس  بين أجهزة   تتراوح   وتطبيقاتها  واسع،  نطاق  على  المستخدمة 

 مجالات   في   يالمجهر   المستوى  على   فعّالة   تحليلات  إجراء  من  هذه المستشعرات تمكّن.  المتقدمة  الدم  تحليل
 الحريرية، أو  الشاشة  طباعة   الأجهزة استخدام   هذه  المألوفة لتصنيع  ومن الطرق.  والكيمياء  والفيزياء   الأحياء
 أوقات  الطرق لها  هذه   كل.  الأبحاث النظيفة  غرف  في  الليثوغرافية الضوئية  الطباعة  أو  للحبر،   النافثة  الطباعة
لها   الوصول   وتتّسم بمحدودية  استثنائي،  بشكل  الثمن   ة هظبا  الأبحاث   غرف  كما أنّ مرافق  بطيئة،  تكرار

 تصنيع تطوير عملية تم  الأطروحة،  هذه   في  والمتوسط. خفض ذات الدخل المن البلدان في  من قبل الباحثين 
يستفيد   الدقيقة.  المائعية  الكهروكيميائية  وسريعة، للمستشعرات الحيوية  الوصول،  وسهلة   التكلفة،   منخفضة

 أساسية   كأداة  المصممة للمستهلكين  الإلكترونية  الحرفية  أجهزة القطع  إل   الوصول  يةمكانمن إ   العمل   هذا
 والحبر  الذهبية،  الأوراق  الأولية مثل  المواد  بينما  الدقيقة،   الموائع   ودوائر  المستشعر  لتصميم وتشكيل أقطاب

البلاستيكية، واللواصق    ةالشفاف  والأفلام  الفينيل،  ولاصق   اللاصق ذو الوجهين،   والشريط  الموصّل،   الفضي 
 بأبعاد  ذهبية  كهربائية  أقطاب  تصنيع  لية العم  هذه   وتتيح.  أساسية  هيكلية  كمواد  القماشية، فإنها تستخدم

إل   تصل   صغيرة  بأبعاد  فضية  وأقطاب   ميكرومتر،   110ميكرومتر، وفجوات مقدارها   450إل    تصل   صغيرة
قياسات وقد  .  رومتريكم  300  إل   تصل   مائعة صغيرة   وقنوات  ميكرومتر،   600  بيروكسيد  لتركيز  أجريت 

القياسات دقة في   وحققت  البيولوجي،  المستشعر  أداء  صحة  من  للتحقق  الصغير  الحجم  ذات  الهيدروجين
، وذلك باستخدام 2ميكروأمبير/مليمولار/سم  82.002وحساسية بمقدار  مليمولار،    0.713بلغت    الكشف

 من  أقل في تكرارية )تصميم وبناء واختبار( بدورة  السريعة ليةهذه العم وتسمح.  ميكرولتر  2 عينات بحجم
رنجت   2100من    أقل   وتكلفة تجهيزها   النموذجية  الجامعة   مختبرات  في   للتطبيق  قابلة   الطريقة   هذه .  ساعتين
الوصول   مما  ، ماليزي وتسهيل  العقبات  تذليل  من  استخدام   إل   يمكن  الحيوي  مجال   للباحثين  المستشعر 

 .الموارد  منخفضة  الأماكن  في لصناعييناو   الأكاديميين
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ABSTRAK 

Penderia elektrokimia mikrobendalir ialah salah satu kategori peranti bioanalisa 

mikro yang diguna secara meluas, dengan penggunaan yang merangkumi glukometer 

persendirian sehingga peranti analisa darah termaju. Alatan ini membolehkan analisa 

berskala mikro berkuasa tinggi untuk biologi, fizik dan kimia. Kaedah konvensional 

dalam pembuatan peranti-peranti ini bergantung kepada teknik percetakan skrin, teknik 

percetakan pancut dakwat, atau fotolitografi dalam bilik bersih (cleanroom). Semua 

teknik-teknik tersebut mempunyai kitaran ulang yang perlahan. Fasiliti bilik bersih 

terutamanya berkos tinggi dan mempunyai ketercapaian terhad bagi para penyelidik 

dari negara-negara berpendapatan rendah dan sederhana. Dalam tesis ini, proses 

pemprototaipan penderia elektrokimia mikrobendalir yang pantas, mudah capai, dan 

berkos rendah telah dihasilkan. Kajian ini mengeksplotasi kemudahperolehan penyurih-

potong elektronik gred pengguna sebagai alat utama untuk pembentukan pola elektrod 

penderia dan litar mikrobendalir. Bahan-bahan komoditi seperti kerajang emas, dakwat 

perak konduktif, perekat dwimuka, pelekat vinil, kepingan plastik slaid lutsinar, dan 

perekat fabrik digunakan sebagai bahan struktur asas. Proses ini membolehkan fabrikasi 

elektrod emas dengan dimensi sekecil 450 µm dan sela selebar 110 µm, elektrod perak 

dengan lebar sekecil 600 µm, dan salur mikrobendalir sekecil 300 µm. Pengesahan 

prestasi biopenderia dijalankan melalui pengukuran kepekatan hydrogen peroksida 

berisipadu mikro berjaya mencapai had terendah pengesanan 0.713 mM dan kepekaan 

82.002 µA mM-1 cm-2 dari sampel 2 µL. Proses pantas ini membolehkan kitaran reka-

bina-uji beriterasi dalam masa kurang dua jam. Kaedah ini terpakai di makmal 

universiti biasa dan berkos kurang RM2100 untuk dipasangsedia, sekaligus 

merendahkan sekatan penglibatan ke dalam bidang biopenderia bagi para penyelidik 

akademik dan industri dari sekitaran bersumber rendah. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. INTRODUCTION 

Micro-total analysis systems (µTAS), more commonly known as “lab-on-a-chip” 

(LOC), is a powerful emerging technology used for analytical applications in biology, 

chemistry and physics. These devices exploit the special physical properties in nature 

at the microscale, such as laminar flow and diffusion-dominated kinetics to engineer 

features such as low resource consumption, rapidness, and high precision when doing 

analytical techniques. The use of LOC enables multiple applications across the research 

laboratory, including biological/chemical analysis, chemical synthesis, high-

throughput screening, precise liquid manipulation and creation of new tools to pursue 

novel scientific questions. Additionally, they expand the laboratory capabilities into the 

clinic and in the field outside of the laboratory (Kovarik et al., 2013). 

 

 

1.1.1. Electrochemical Microfluidic Biosensors 

One such category of LOC devices are electrochemical microfluidic biosensors, which 

is of high interest in the fields of point-of-care diagnostics, clinical chemistry, 

environmental monitoring, and precision cellular and molecular analysis. 

Electrochemistry-based biosensors holds several advantages over their optical-based 

and electromechanical-based counterparts, but most particularly for its relatively 

inexpensive instrumentation (compared to optical-based biosensing) and reduced unit 

cost at scale (compared to electromechanical-based biosensing) (Rackus et al., 2015). 
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The most commonly used and most commercially successful example of 

electrochemical microfluidic biosensor is the glucometer (Turner, 2013).  

 

1.1.2. Conventional and New Approaches to Microfabrication 

The majority of LOC are made using cleanroom-associated technologies, which was 

first developed for fabrication of semiconductor devices such as diodes and transistors, 

and later adopted by the micro-electromechanical systems (MEMS) in the 1980s that 

produces accelerometers, miniature pressure and temperature sensors and GPS 

integrated devices (Reyes et al., 2002). Among cleanroom-associated equipment are 

photolithographic mask aligners and thin film deposition machines, such as metal 

sputtering chambers and plasma-enhanced chemical vapor deposition. Cleanrooms are 

not necessarily easy to access, especially to researchers in low-and-middle-income 

countries (LMIC), and the facilities and equipment involved are expensive (Pan & 

Wang, 2011; Walsh et al., 2017). Additionally, with biosensors, often there are region-

specific modifications on the device involving bio-recognition capture molecules, such 

as immobilised proteins, antibodies, and nucleic acid hybridisation probes. These 

molecules are often functionalised onto the device or sensors using microarray spotter, 

a costly robotic instrumentation meant for customising nucleic acid microarrays (Park 

et al., 2008). Each of these instruments may cost anywhere between RM 250,000 to 

RM 3 million, and even membership access to the few available cleanroom facilities 

may cost from RM 5000 to RM 10,000 per annum in Malaysia, non-inclusive of 

equipment per use basis fees. These associated costs and access barriers hinder 

prototyping through iterative design process, which inadvertently delays product 

delivery and discourages LOC development and applications in LMICs. 
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To overcome these financial and access barriers, several independent works 

have been developed to build electrochemical sensors and microfluidic devices, 

including gold leaf lamination (Thompson, Birch, Nelson, et al., 2016), inkjet printing 

(Kawahara et al., 2014), heat-sensitive adhesive lamination (Birch et al., 2017), and 

xurography (Bartholomeusz et al., 2005; Martínez-López et al., 2016; Yuen & Goral, 

2010) – all to a certain degree of limitations in geometric resolution, material versatility, 

and complexity. 

 

1.1.3 The Frugal Approach to Science Tools  

The concept of frugal science and innovation has recently gained momentum. The 

approach of ‘constraint-based science’, often starting by asking questions about costs, 

accessibility and inclusivity, leads to an innovator’s ability to reframe problems and 

solutions  (Ahuja, 2014; Reardon, 2013). Some of the prominent frugal innovations in 

science tools include the 50 cents paper microscope i.e. the Foldscope (Cybulski et al., 

2014), a 125,000 rpm paper centrifuge i.e. Paperfuge (Bhamla et al., 2017), a gas 

lighter-based electroporator i.e. ElectroPen (Byagathvalli et al., 2020), a nebuliser 

powered by bicycle pump (Dzwonczyk et al., 2015), and a solar-powered medical 

oxygen concentrator (Hawkes et al., 2018). These tools have already revolutionised 

chemical and life sciences, as well as being used in real world applications. 

 Within the field of microdevices and biosensors, a common approach is to 

develop “tools to create tools”, usually kits containing modular parts for non-specialists 

to build custom microfluidic circuits and diagnostic kits. A few well known example of 

this is Ampli, which is based on laser-cut lateral flow assay modules (Phillips et al., 

2018), and micromachined Lego bricks (Owens & Hart, 2018). For microfabrication in 
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general, several ‘cleanroom-to-makerspaces’ approaches have been introduced, as 

reviewed by Walsh et al (Walsh et al., 2017). 

This research seeks to explore a combination of these various techniques to 

compensate each techniques’ limitation, to develop a novel, composite process to 

fabricate electrochemical microfluidic devices.  

 

1.2. PROBLEM STATEMENT 

Lab-on-a-chip (LOC) are emerging technologies that has been enabling powerful 

microscale analyses in biology, physics and chemistry. This technology has given rise 

to point-of-care (POC) diagnostics, single cell-associated physiological studies, and 

rapid, low-consumption chemical/bio-reactor systems. Most LOC components such as 

sensors and microfluidic circuits rely on traditional microfabrication methods 

associated with cleanrooms, most notably photolithography and sputtering techniques; 

and/or robotic handling methods such as microarray spotting. Cleanrooms are not 

necessarily easily accessible, especially to researchers in low-and-middle-income 

(LMIC) countries, and the facilities and equipment involved are expensive for early 

stage prototyping. In Malaysia, the rental costs for cleanrooms may go up to RM7500 

per annum, and fees for use of equipment may range between RM50 to RM300 per 

hour or process (see Appendix A). 

Alternatives to cleanroom-based prototyping include industrial and research-

grade material inkjet printers such as the Dimatix DMP-2800 series, and screen-

printing. The Dimatix printer, while overall cheaper than a cleanroom, may cost up to 

RM300,000 (conservative estimate), which is still cost limiting for majority of 

researchers. Furthermore, the Dimatix involve a complex process optimisation for each 

given type of ink and substrate (A. A. Zainuddin et al., 2017). Meanwhile, screen-
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printing enables a low-cost mass manufacturing option for fabrication of sensors. 

However, during early prototyping phase where iterative design is often required, 

fabrication of masks for screen-printing is a time-consuming process which may take 

several hours (if fabricated in-house) to over a week (if made to order). Additionally, 

both methods require functional inks which are either custom formulated in-house or 

purchased from specialty manufacturers which are often expensive. Specific to 

electrochemical sensors, another alternative is present in commercial screen-printed 

electrodes, such as ones commercialised by DropSens. A limitation presented by these 

commercial sensors is that they are sold according to manufacturer specified designs, 

which are non-customisable and not necessarily integrable into microfluidic systems. 

These associated costs and access barriers extend the turnaround time of each 

iteration during the device prototyping phase, which delays product completion and 

delivery. Given that the typical seed funding for academic research in countries such as 

Malaysia has a small quantum – the Research Incentive Grant Scheme (RIGS), for 

example, funds at RM20,000 over two years, with only RM5000 allocated for materials 

and supplies – exacerbating the need for frugal approaches to microfabrication for those 

intending to pursue such endeavor.  

 

1.3. HYPOTHESIS 

We hypothesise that a systematic combination of various frugal approaches will enable 

a reasonable alternative to the cleanroom-based techniques in miniaturised chemical 

and biological systems at a significantly lower cost, with more accessible set of 

instrumentation. 

  


