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ABSTRACT

Emotion recognition utilizing pictures, videos, or speech as input is considered an
intriguing issue in the research field over certain years. The introduction of deep
learning procedures like the Convolutional Neural Networks (CNN) has made
emotion recognition achieve promising outcomes. Since human facial appearances are
considered vital in understanding one’s feelings, many research studies have been
carried out in this field. However, it still lacks in developing a visual-based emotion
recognition model with good accuracy and uncertainty in determining influencing
features, type, the number of emotions under consideration, and algorithms. This
research is carried out to develop an image and video-based emotion recognition
model using CNN for automatic feature extraction and classification. The optimum
CNN configuration was found to be having three convolutional layers with max-
pooling attached to each layer. The third convolutional layer was followed by a batch
normalization layer connected with two fully connected layers. This CNN
configuration was selected because it minimized the risk of overfitting along with
produced a normalized output. Five emotions are considered for recognition: angry,
happy, neutral, sad, and surprised, to compare with previous algorithms. The
construction of the emotion recognition model is carried out on two datasets: an image
dataset, namely “Warsaw Set of Emotional Facial Expression Pictures (WSEFEP)”
and a video dataset, namely “Amsterdam Dynamic Facial Expression Set — Bath
Intensity Variations (ADFES-BIV).” Different pre-processing steps have been carried
over data samples, followed by the popular and efficient Viola-Jones algorithm for
face detection. CNN has been used for feature extraction and classification. Evaluating
results using confusion matrix, accuracy, F1-score, precision, and recall shows that
video-based datasets obtained more promising results than image-based datasets. The
recognition accuracy, F1 score, precision, and recall for the video dataset came out to
be 99.38%, 99.22%, 99.4%, 99.38, and that of the image dataset came out to be
83.33%, 79.1%, 84.46%, 80%, respectively. The proposed algorithm has been
benchmarked with two other CNN-based algorithms, and the accuracy performs better
around 5.33% and 3.33%, respectively, for the image dataset, while 4.38% for the
video dataset. The outcome of this research provides the productivity and usability of
the proposed system in visual-based emotion recognition.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND OF THE STUDY
In recent times, emotion recognition has evolved as one of the main highlights in the
domain of artificial intelligence. The gigantic expansion in the improvement of
modern human-computer collaboration advancements has additionally helped the
movement of advancements pertaining to this sphere. Facial activities pass on the
feelings which thusly pass on an individual's character, state of mind, and
expectations. Feelings generally rely on the facial highlights of a person alongside the
voice. Be that as it may, there are some different highlights too, specifically
physiological highlights, social highlights, actual highlights of the body, and some
more. Several works have been done to recognize emotions with more exactness and
accuracy. The objective of feeling acknowledgment can be accomplished by utilizing
visual-based methods or sound-based procedures. Al has changed the field of
computer-human collaboration and gives many Machine Learning methods to arrive at
our point. Many machine learning techniques are present to perceive the feeling,
however, this research will focus on image and video based feeling acknowledgment
utilizing DL. Image and Video-based feeling acknowledgment is multidisciplinary and
incorporates fields like brain science, emotional figuring, and human-PC connection.
Facial expressions consist of 55% of the emotion of an individual (C.-H. Wu, J.-C.
Lin and W.-L. Wei, 2014).

To create a well-fitted model for image and video based feeling
acknowledgment, an appropriate feature casings of the facial appearance must be

available. Rather than utilizing ordinary methods, deep learning gives an assortment

1



regarding precision, learning rate, forecast, and so on. CNN is among one of the deep
learning strategies which have offered help and stage for examining visual symbolism.
Convolution is the basic utilization of a channel to information that result in an
activation. Repeated utilization of a comparative channel to an info achieves a guide
of establishments called an element map, indicating the regions and nature of a
perceived component in contribution, for instance, an image. The improvement of
convolution neural frameworks is the ability to subsequently pick up capability with a
huge number of channels in equivalent unequivocal to a preparation dataset under the
necessities of a specific insightful showing issue, for instance, picture portrayal. The
result is significantly clear features that can be recognized anyplace on input pictures.
Deep learning has made incredible progress in perceiving the feelings, and CNN is the
notable deep learning strategy that has accomplished a wonderful exhibition in picture
preparation. There has been a lot of work in visual pattern acknowledgment for facial
emotion recognition, similarly as in signal preparing for sound-based acknowledgment
of sentiments. Moreover, there are a number of multimodal approaches joining these
prompts (Z. Zeng, M. Pantic, G. I. Roisman and T. S. Huang, 2009). From past
decades, there has been a rapid rise in research in computer vision on facial expression
analysis (V. P.c. and N. K.r., 2015). Inspired by deep learning, this research aims to

formalize an image and video based emotion recognition model.

1.2 PROBLEM STATEMENT

Facial expressions are the main features of the emotions of an individual. Human
facial emotions are the fundamental ways for conveying information among people.
Exchange of emotions can happen during conversation, resulting in change in the

facial expressions. Although much research has been conducted in this sphere,



however the methods that are present are lacking performance in terms accuracy. The
methods with better accuracy (in 80 %) are facing low performance in terms of
precision, recall and F1 score. Majority of the emotion recognition models are
evaluated using passive audio or image-based datasets. With the inclusion of more
emotions the performance parameters of the model tend to decrease. These problems

provided an encouragement to conduct this research.

1.3 RESEARCH OBJECTIVES
The prime objective of this research is to extract and analyze visual features from the
image and video files using MATLAB, then classifying those features using CNN.

The objectives are listed as under:

1- To investigate and analyse various image and video databases and select
two standard datasets; image based and video based.

2- To design an integrated image and video based facial emotion recognition
model using convolutional neural networks.

3- To evaluate the performance parameters of the proposed recognition
model in terms of accuracy, precision, recall, F1-score and confusion

matrix.

1.4 RESEARCH METHODOLOGY
The basic architecture for developing an image and video based emotion recognition

model using DL is shown in Figure 1.1.
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Figure 1.1 Architectural Diagram

As in image/video-based emotion recognition, the input visual samples are
processed, which includes several preprocessing steps, also features are extracted from
the face. Since facial features are important for emotion recognition using images and
videos, these features are then subjected to the training algorithm for the development

of a well fitted model.

1.5 RESEARCH SCOPE
This research aims to create an image and video based emotion recognition model

using convolutional neural networks. Two databases are used in this project one image



and another video. The technique of Convolutional Neural Networks is considered for
model training and testing. This work is focused upon using images or video as input.

Apart from that, no other source will be considered.

1.6 THESIS ORGANIZATION

The flow of this dissertation is categorized as follows. Chapter 2 includes a literature
review and discusses research conducted relating to image/video-based emotion
recognition and DL. Chapter 3 includes the methodology and implementation of the
research. The results and discussion are elaborated in Chapter 4. Finally, Chapter 5

presents the conclusion, benchmarking, and future recommendations.



CHAPTER TWO
LITERATURE REVIEW

2.1 INTRODUCTION

Emotion recognition is one of the trending hot topics in the sphere of research. Facial
expressions are the significant implications of one's emotions. Therefore, to determine
the mood of an individual, facial expressions are to be recognized accurately. With the
inclusion of Artificial Intelligence techniques in the sphere of emotion recognition,
there has been a promising rise in better results and more accurate performance
parameters. According to Lens Organization (http://lens.org) the rise in the interests of
various researchers in this field has tremendously grown over the time. This growth

can be clearly analyzed from the Figure 2.1.

Document Count

Year Published

Publication Type

Figure 2.1 Scholarly works in the sphere of emotion recognition



According to (Y.Cai, W.Zheng, T. Zhang, Q. Li, Z. Cui, and J. Ye, 2016), they
developed a Video ER model using CNN-RNN and C3D ( type of CNN containing 8
layers of convolution, 5 layers of max-pooling, 2 fully connected layers , subsequently
a softmax layer ) Hybrid Networks by extracting and aligning all facial frames present
in the video and then transforming them with respect to the facial vital points. In case
of falsely detected faces, CNN based face filtering was performed. In case of RNN
training, sixteen facial features were arbitrarily selected. For each video clip sixteen
facial frames were given as input to the C3D network, which proved 59.02% accurate
for the testing set. According to (Jirayucharoensak, S., Pan-Ngum, S., &Israsena, P.,
2014), EEG based emotion recognition system is implemented with a stack of three
auto encoders with two softmax layers. Their system performed emotion recognition
by estimation valence and arousal states separately. The technique used in this model
was DLN utilizing unsupervised pertaining technique with greedy layer wise training.

According to (T. S. Wingenbach, C. Ashwin, and M. Brosnan, 2016), they
made and endorsed a bunch of video recordings portraying three levels of facial
emotion intensities, from low to high power. The samples were adjusted from the
Amsterdam Dynamic Facial Expression Set Bath Intensity Variations dataset,
completing a facial inclination acknowledgment task, which recollected six basic
emotions in extension to pride, disgrace and contempt, which were imparted at three
unique forces of appearance and neutrality. Precision rates over the opportunity level
of reacting were found for all feeling classifications, delivering general crude hit pace
of 69% for ADFES-BIV. In, (Sonmez, 2018) tested the grouping explore run on the
ADFES-BIV dataset. The proposed programmed framework utilizes the scanty
portrayal-based classifier and arrives at the top execution of 80% by considering the

worldly data characteristically present in the videos. According to (Fan, Y., Lam, J. C.
7



K., & Li, V. O. K., 2018), in video based emotion recognition using deeply supervised
CNN the objective is to enhance the component guide of each layer, by joining the
associations over the side-yield layers. To this end, they embrace de-convolution
methods in the up sampling activity, which can take the contribution of a discretionary
size and produce size yield correspondingly.

One of the significant drivers of research right now been the emotion
recognition in the wild challenges, which presented and built up an out of research
facility dataset namely acted facial expressions in the wild, gathered from recordings
that copy reality. The EmotiW Challenge, which began in 2013, intends to beat the
difficulties of information assortment, comment, and estimation for multimodal
feeling acknowledgement in nature. The test utilizes the AFEW corpus, which mostly
comprises of motion picture extracts with uncontrolled conditions (Abhinav Dhall,
Roland Goecke, Jyoti Joshi, MichaelWagner, Tom Gedeon, 2013). (Reeshad Khan &
Omar Sharif, 2017) in their literature review on emotion recognition using various
methods, proposed utilizing EEG and various media signal yields the ideal outcomes.
They accepted Long Short-Term Memory Network Recurrent Neural Network
(LSTM-RNN) is the ideal approach to deal with multimodalities. So, their proposition
was centered on emotion recognition by EEG and broad media signal utilizing LSTM-
RNN. This kind of research has been done previously. But their test was to improve
the model where it will be prepared by EEG and varying media information
simultaneously and will make a connection between this information wherein, on the
off chance that one sort of information isn't accessible in a circumstance, the model
could, in any case, produce the outcome, finding the connection inside the

information. Some more scholarly works are present in Table 2.1.



