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ABSTRACT 

The study of quantum key distribution (QKD) which began in the early 80's has seen 
much fruition and development for almost three decades now. Ranging from security 
proofs and new protocols, quantum cryptography takes the limit of security definition 
to the most extreme especially in the context of device independent QKD. This is the 
scenario where even the equipment used by the legitimate parties cannot be trusted 
and is considered as black boxes i.e. the parties are assumed to have no knowledge of 
the device's full function. Further extreme is explored when the adversary, Eve is even 
seen to have access to physics beyond that of quantum mechanics; or commonly 
known as `supra-quantum' and violations of Bell inequalities become a necessary 
condition for security. Moving on to a recent development in a new type of protocol, 
namely counterfactual QKD (CQKD), quantum physics allows for the establishment 
of secure keys without a net transmission of signals between the legitimate parties; 
exploiting the single photon entanglement phenomena. We consider taking this new 
type of protocol to the extreme security requirements of device independence against a 
supra quantum Eve. We begin by exploring binary measurement based QKD with 
binary output within a device independent context in which we present the security 
analysis of the protocol against an individual attack by a supra-quantum adversary 
considering two different scenarios. The two scenarios involved in determining the 
maximal key rate are between the measurement that would maximizes the legitimate 
parties' correlations and those that would achieve maximal violation of Bell-type 
inequality. We show that higher correlation between shared raw keys at the expense of 
maximal Bell violation provide for better key rate for low channel disturbance. This 
naturally allows us to apply to the single photon entanglement QKD where we show 
that a non zero key rate is indeed possible. Finally, we show how, the counterfactual 
QKD protocol, as described in the original papers are not secure given a device 
independent scenario, let alone a supra-quantum adversary. Capitalizing on the results 
of the earlier chapters, we propose a possible framework for device independent 
CQKD against an individual attack by a supra-quantum Eve. We show how, at least, 
as an example of an equivalent protocol could provide for a secure key given a 
heuristic analysis within the device independent framework and how this can be used 
in a CQKD picture with a Bell check. We conclude the thesis with future outlooks on 
how the work could be developed for understanding not only in the field of quantum 
cryptography but also more fundamental issues in physics.   
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خلاصة البحث  
Abstrac 

) التي بداتٔ في ثمانينيات القرن الماضي تطورا ايٕجابيا ملحوظاً خلال العقود QKDشهدت دراسة الكمومية العمومية (

تطبيقات وبراهين امٔنية وبروتوكولات جديدة مدت مفهوم وتعريف نظام التشفير الكمي الٕى اقٔصى الثلاثة الماضية، بدءً من 

الحدود، خاصة في سياق الجهاز العموميّ الكموميّ المستقل. هذا هو السناريوا حيث انٔ المعدات والجهات المستخدمة 

ديق سوداء؛ ائ يفترض انٔ الاطٔراف اؤ الجهات والمتاحة اؤ المتوفرة لا يمكن الوثوق بها وتم اعتبارها حاويات اؤ صنا

المستخدمة ليس لديهم معرفة وظيفة الجهاز الكاملة. وتم استكشاف المزيد من الطرف الاقٔصى حتى عند ما كان 

) موصولا بالفيزياء خارج اؤ وراء الميكانيكا الكم المعروف بشكل عام بسوبرا الكمومي، Eveالمقابل اؤ الخصم (

الانتقال الٕى تطور حديث في نوع و ) حالة ضرورية للامٔن. Bell Inequalityعدم مساوات البل ( واصبحت انتهاكات

يسمح الفيزياء )، CQKD) في التعمية الكومية (counterfactualجديد من البروتوكول، وهي المغاير (كونتيرفاكتوال

استغلال ظاهرة الفوتون ة اؤ المسموحة؛ حيث الكمي لإنشاء مفاتيح آمنة دون انتقال كامل الإشارات بين الاطٔراف المتاح

واعتبر اتخاذ اؤ ايجاد هذا النوع الجديد من البروتوكول  احٔد متطلبات الامٔن القصوى عند  .ذات التشابك الواحد

بدأ هذا البحث باستكشاف ثنائي القياس القائم على كد مع  .)supra-quantumاستقلال الجهاز مقابل اؤ ضد (

ضمن سياق الجهاز المستقل الذي نقدم تحليل امٔني للبروتوكول مقابل اؤ ضد هجوم فردي من قبل  الانتاج الثنائي

وهناك سيناريوهان ينطويان على تحديد المعدل الرئيسي  .الخصم، عدواني الكم، وذلك من خلال سيناريوهين مختلفين

اؤ المسموحة وتلك التي من شانٔها تحقيق الاقٔصى بين القياس الذي من شانٔه انٔ يزيد من ارتباطات الاطٔراف المتاحة 

). وتبين لنا انٔ الارتباط العالي بين المفاتيح مواد الخام Bellاقٔصى قدر من انتهاك عدم المساواة من نوع مبرهنة (

هذا بالطبع يسمح لنا و  .ينص على افٔضل مقياس رئيسي لاضطراب قناة منخفضة اً المشتركة على حساب الاقٔصى انتهاك

فوتون احٔادي اؤ فردي التشابك في التعمية الكومية، حيث ظهر انٔ حصول معدل المفتاح غير صفر ممكن  انٔ نطبق على

كما هو موضح في في التعمية الكومية بروتوكول،  )counterfactualواخٔيرا، تبين للباحث كيف، انٔ المغاير ( .في الواقع

بناء على نتائج  .سوبرا الكموميل، ناهيك عن نظام سيناريو الجهاز المستق اً، خاصة فيالاؤراق الاصٔلية، ليس آمن

مقابل الهجوم الفرادي بواسطة حواء سوبرا  CQKD الفصول السابقة، يقترح الباحث اطٕاراً ممكناً للجهاز المستقل

وتبين للباحث كيف يمكن انٔ توفر ما لا يقل عن مفاتيح آمنة بناء على تحليل الكشف عن مجريات الامٔور  .الكمومي

وانتهت  .)Bellمع التاكٔد من خلال جهاز ( CQKD ار مستقل الجهاز وكيف يمكن استخدامها في صورةفي اطٕ

الدراسة بتوقعات مستقبلية بشانٔ الكيفية التي يمكن بها تطوير العمل لفهم، ليس فقط في مجال التشفير الكم، ولكن 

.ائضا في معظم القضايا الاسٔاسية في علم الفيزياء  
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CHAPTER ONE 

INTRODUCTION 
 
 
 
 
 
1.1 INTRODUCTION 

Confidentiality of information has been a major concern since ancient times, a 

concern that has given birth to a branch of study called cryptography. Examples from 

the ancient world includes the Caesar cipher used by Julius Caesar and the scytale 

used by the Spartans (Sergienko, 2005). Cryptography can be defined as the art of 

rendering a message unintelligible to any unauthorised party (Gisin, Ribordy, Tittel, & 

Zbinden, 2002). In order to achieve this, it is necessary for the communicating parties 

to use a cryptosystem to encrypt and decrypt their message along with a very 

important piece of information known as the key (Van Assche, 2006). Thus the 

invention and design of cryptosystems can in principle be based on the secrecy of the 

workings of a cryptosystem, or the secrecy of the key only, or both. Kerckhoffs 

principle however states that a good protocol only resides its secrecy entirely upon a 

key, while none rests in the knowledge of the cryptosystem (Schneier, 2007). Hence, 

it is assumed that the cryptosystem is always known by the adversary and only the key 

is to be kept secret.  

 It is well known that the security of cryptosystem can be divided into 

information-theoretic security and computational security (Menezes, van Oorschot, & 

Vanstone, 1996). If the security is based on the assumptions of the adversary's 

computational resources, then the cryptosystem is said to be computationally secure. 

This type of security relies on the difficulty of solving hard computational problem 

such as, factoring large integers or computing discrete logarithms. How `hard' or how 



 

2 

`easy' a computational problem is, would be defined based on the amount of resources 

required to solve the problem; the main theme of the field of computational 

complexity. Given a problem with n-bit input, it is considered easy if the resources 

required to solve it is polynomial in n and hard otherwise. In contrast, a cryptosystem 

is said to be information-theoretic secure (or unconditionally secure) if there are no 

assumptions made on the adversary's computational power. Based on this stronger 

definition of security, Claude Shannon (1949) introduced the notion of perfect 

secrecy. Perfect secrecy means that an eavesdropper, conventionally known as Eve, 

would not gain any knowledge about the actual message from the ciphertext. For a 

cryptosystem to be considered perfectly secure, it has to fulfill three conditions: 

namely, the key cannot be reused, needs to be truly random and the key has to be as 

long as the message to be encrypted (Schneier, 2007). 

 Depending on the key used for encryption and decryption purposes, we can 

classify cryptosystems into two types of classes, that is, the symmetric-key and 

asymmetric-key cryptosystems.  

 Suppose that an encryption scheme consists of an encryption transformation 

  Ee : e∈K{ }  and its corresponding decryption transformation   Dd : d ∈K{ } , in which 

 K  is the key space (Menezes et al., 1996). A symmetric-key cryptosystem is as such 

for each pair of key   (e,d) , the encryption key,  e  can be calculated from the 

decryption key,  d  and vice versa. In most symmetric algorithms, the encryption and 

decryption keys are the same, that is,  e = d  hence the term symmetric-key (Schneier, 

2007).  

 One of the most renowned example of a symmetric scheme is the one-time 

pad, which is invented and patented by Gilbert Vernam (1926). Shannon (1949) has 

proven that the security of one-time pad achieved perfect secrecy and in fact, it is the 
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only scheme known today that achieves such level of security (Gisin et al., 2002). Let 

us recall that in order to ensure perfect secrecy, it is essential that the secret key has to 

be as long as the message itself and truly random. It is also required that the key is not 

to be used repetitively. These conditions, however, have become a major hurdle to 

one-time pad in practice due to the difficulty of key distribution between the 

legitimate parties (Menezes et al., 1996). A radical solution to circumvent such a 

problem was the invention of the asymmetric-key cryptosystem or more commonly 

known as public-key cryptosystem.  

 In contrast to symmetric-key cryptosystem, the public-key cryptosystem uses 

two different sets of key for encryption and decryption. To employ this scheme, one 

needs to create a private key that is only known to the user and its corresponding 

public key, which can be publicly known. The scheme works in such a way that a 

message can be encrypted by anyone using the public key and the encrypted message 

can only be decrypted by the corresponding private-key pair. The principle was first 

proposed by Diffie & Hellman (1976), while the actual implementation was first 

developed by Ronald Rivest, Adi Shamir, and Leonard Adleman in 1978 (Rivest, 

Shamir, & Adleman, 1978) which is widely known as RSA. This scheme did manage 

to avoid the key distribution problem that exist in symmetric-key cryptosystem, 

though unfortunately its security relies on unproven assumptions of computational 

complexity which is at the risk of being compromised in a near future.  

 While the search for efficient algorithms to factor large numbers into primes 

has, in the field of mathematics not seen much breakthrough, thus providing further 

support (not proof) for security based on computational complexity, the emergence of 

the field of quantum computation has brought this comfort to question. Quantum 

computation, a research field where quantum properties of nature are used to solve 
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computational problems have brought about many advances including the famous 

`Shor's algorithm’ (Shor, 1994). The algorithm has been demonstrated to be able to 

factor large numbers into prime factors in a much more efficient way with the use of 

quantum computers. Despite the fact that the latter may be seen as an ambitious 

enterprise, a solid research program has been built around it and to date, fears of the 

collapse of classical cryptosytstems may well be founded. This is especially so given 

emerging technologies in the direction of quantum computers, as an example the D-

Wave. 

 A possible solution to this problem would be to implement quantum key 

distribution (QKD) protocol. A QKD protocol involves the transmission of 

information using quantum signal between two distant parties in order to establish 

secret keys in the presence of an eavesdropper. In principle, QKD protocol offers 

unconditional security in the face of an eavesdropper with unlimited computing power 

as it relies on the fundamental laws of physics as oppose to public-key cryptosystem 

which is based on the assumptions of computational complexity. Any attempt to glean 

information about the system in a QKD protocol by an eavesdropper, Eve results in 

inducing errors in the communication channel. This not only alerts the legitimate users 

with regards to the presence of an intruding malicious party but more importantly 

present a way to determine her information gain to ascertain how one could distill a 

secret key thereof through classical procedures of error correction and privacy 

amplification. 

 

1.2 QUANTUM INFORMATION BASICS 

Before we delve further into the discussions on QKD protocol, it is instructive to 

briefly outline certain basic elements of quantum information that we would use 
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throughout the thesis. We refer to Nielsen & Chuang (2010) for a more 

comprehensive reference on the subject.  

 

1.2.1 Quantum States 

The state of a quantum mechanical system can be represented by a normalized vector 

in a Hilbert space. Commonly, this state is written in terms of the Dirac notation, that 

is, the bra-ket notation. The simplest quantum system which is defined in a two 

dimensional Hilbert space, is known as the quantum bit or simply qubit. A qubit can 

be expressed in terms of the two computational states that form an orthonormal basis 

as follows 

 

 
 
0 ≡ 1

0
⎛

⎝⎜
⎞

⎠⎟
; 1 ≡ 0

1
⎛

⎝⎜
⎞

⎠⎟
,  (1.1) 

 

in which the left hand side indicate the ket notation that may also be represented as a 

column vector.  In its most general form, a qubit can be written as a superposition of 

these two states described as 

 

  ψ =α 0 + β 1 ,  (1.2) 

 

in which α  and β  are complex numbers with α 2 + β 2 = 1 .  

 As a column vector may represent a ket ψ , its Hermitian adjoint which 

belongs the dual Hilbert space, the bra, ψ , may be represented by the row vector 

defined as  
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ψ = ψ

†( ) = α
β

⎛

⎝
⎜

⎞

⎠
⎟

†

≡ α * β *( ),  (1.3) 

 

where α *  and β *  are the complex conjugate of α  and β , respectively. Hence, the 

outer product ψ ψ  in its matrix form can be expressed as 

 

 

 

ψ ψ = α
β

⎛

⎝
⎜

⎞

⎠
⎟ α * β *( ) = αα * αβ *

βα * ββ *

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.  (1.4) 

 

1.2.2 Multipartite Quantum States 

A composite system involves the interaction of two or more quantum mechanical 

systems in which the states of such systems are represented by multipartite quantum 

states.  As an explicit example, let us consider bipartite systems. Considering two (two 

dimensional) Hilbert spaces HA  and HB , the vector of a composite two-qubit system 

is given by a state in Ψ ∈HA ⊗HB  in which ⊗  denotes the Kronecker or tensor 

product. Consider two qubits ψ =α 0 + β 1 ∈HA  and ϕ = γ 0 +ζ 1 ∈HB , if 

Ψ  can be written as 

 

 

 

Ψ ≡ ψ ⊗ ϕ = α
β

⎛

⎝
⎜

⎞

⎠
⎟ ⊗

γ
ζ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

αγ
αζ
βγ
βζ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

,  (1.5) 

 

then Ψ  is a separable state. Equivalently, we can also write ψ ⊗ ϕ  as ψ ϕ , 

ψ ,ϕ  or ψϕ .  
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 However, if the composite system cannot be written in terms of the tensor 

product of two states as in the above, then it is said to be entangled. The famously 

known examples of entanglement are the maximally entangled two qubit states, 

known as the Bell states. The four orthogonal Bell states, which form the Bell basis 

are given by 

 

 
 
Φ+ =

00 + 11

2
,  (1.6) 

 
 
Φ− =

00 − 11

2
,  (1.7) 

 
 
Ψ+ =

10 + 01

2
,  (1.8) 

 
 
Ψ− =

01 − 10

2
.  (1.9) 

 

1.2.3 Quantum Measurement 

Suppose that Mm{ }  is a collection of measurement operators that acts on the system 

being measured with m being the possible measurement results. If the state of the 

quantum system is ψ  immediately before the measurement then the probability that 

result m occurs is given by 

 

   p(m) = ψ Mm
† Mm ψ . (1.10) 

 

After the measurement, the state of the system is, 
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Mm ψ

ψ Mm
† Mm ψ

. (1.11)  

 

The measurement operators satisfy the completeness equation 

 

 
  

Mm
† Mm = I

m
∑ ,  (1.12) 

 

where I is defined as the identity operator. 

 

1.2.4 Density Operator 

Another way of describing the state of a quantum system is by resorting to the density 

operator formalism. This formalism is useful to describe the ensembles of quantum 

states that is not completely known (i.e. not prepared in a particular known state). 

 Let us consider a quantum system made up of an ensemble of pure states ψ i  

with respective probability pi . Then, the density operator ρ  associated to the 

quantum system can be written as 

 

 
  
ρ = pi ψ i ψ i

i
∑ ,  (1.13)  

 

where pi = 1i∑ . If the quantum system ρ  is measured with respect to measurement 

operator Mm , then the probability p m( )  that we obtain result m is 

 

   p(m) = tr( Mm
† Mmρ),  (1.14)  
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with tr ⋅( )  representing the trace. The density operator of the system that corresponds 

to the post measurement is given by 

 

 
  
ρm =

MmρMm
†

tr( Mm
† Mmρ)

. (1.15)  

 

Suppose that a quantum system of state ψ  is a pure state i.e. it is known exactly. 

Then, the density operator ρ  corresponding to a pure state ψ  can be defined as 

 

  ρ = ψ ψ ,  (1.16) 

 

with the trace of ρ  being equal to 1 i.e. tr ρ( ) = 1 . 

 

1.2.5 Shannon Entropy 

Let us consider a random variable  X  with probability distribution,  p1…pn . The 

Shannon entropy of a random variable  X ,   H ( X )  can be described as a measure of 

uncertainty about  X  before we learn of its outcome. This entropy can simply be 

written as   

 

 
   
H ( X ) ≡ H ( p1,…, pn ) ≡ − pxlog2 px

x
∑ .  (1.17) 

 

Alternatively, we can view eq. (1.17) as the amount of information that we would 

have acquired after we have learned of its outcome. The entropy of a random variable 
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that only has two outcomes with probabilities  p  and   1− p , is known as the binary 

entropic function written as follows 

 

   h( p) ≡ − p log2 p − (1− p) log2(1− p).  (1.18) 

 

The binary entropic function would be highly relevant to our work, as we will 

consider the case of binary outcomes. 

 

1.3 QUANTUM KEY DISTRIBUTION 

According to Nielsen & Chuang (2010), the idea of quantum cryptography originated 

in the late 1960s, in a work proposed by Wiesner (1983). This work, that was only 

published a decade later, introduced the idea of utilizing the laws of quantum physics 

to realize quantum money that is impossible to counterfeit. Inspired by this concept, 

Bennett & Brassard (1984) developed the first quantum key distribution (QKD) 

protocol that is famously known as BB84, as a secure way of distributing or 

establishing secure keys between parties which is based on quantum theory.  

 

 

Figure 1.1 Generic diagram of a QKD protocol. 

Alice

Eve

Public channel

Quantum channel

Bob
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 The basic framework of a QKD protocol usually involves two distant parties, 

conventionally called Alice and Bob, connected by two types of communication 

channel, that is, the quantum channel and the public channel as shown in Figure 1.1. A 

third party, say Eve, can listen to the communication on the public channel but she 

cannot tamper with it. However, any communication over the quantum channel is 

susceptible to a malicious Eve's interference.  

 The process of extracting a secure key in a QKD protocol can generally be 

divided into two phases. The first phase requires the legitimate parties to communicate 

over the quantum channel, which involves the transmission of information carriers 

(i.e. qubit). In the BB84 protocol, Alice would first prepare a qubit in one of two 

randomly chosen mutually unbiased bases (i.e. two orthonormal bases in which 

measuring a state of one basis in the other basis would result in a random outcome) 

before sending it to Bob through the quantum channel. As Bob receives the qubit, he 

would need to perform a measurement chosen randomly in either one of the two 

mutually unbiased bases. It is obvious to note that in the absence of noise, they will 

share a perfectly correlated result provided that both of them measure in the same 

basis. Hence, the legitimate parties can definitely share a string of bits called the raw 

key. To obtain the final secret key, Alice and Bob proceed to the second phase of the 

protocol, which takes place over the public channel. 

 During the second phase, Bob would publicly declare his choice of 

measurement bases corresponding to each run. Consequently, Alice will reveal 

whether or not his measurement match to hers over the public channel. Any 

measurement in a different basis will result in an uncorrelated bit. They will 

eventually discard the uncorrelated bits and keep a shorter string of correlated bits 

called the sifted key. In a more realistic scenario, the sifted key may contain errors as 
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all channels are noisy. The noisy channel may either be the result of Eve's attempt to 

eavesdrop or simply due to technical imperfections. However, to err on the side of 

caution, Alice and Bob will always assume the worse, i.e. this is due to the presence 

of an eavesdropper. Conventionally, Alice and Bob will then reveal their bits from a 

random subset of the sifted key to each other to estimate the amount of errors and then 

they will commit to an error correction procedure so that the errors in the key can be 

corrected. In this way, they can also estimate the amount of information that Eve may 

gain and ultimately use this estimation to reduce Eve's information in the remaining 

subset to obtain the final secure key. The process of reducing Eve's information can be 

achieve via the procedure known as privacy amplification. 

 Since the first publication of this QKD protocol, there are a number of variants 

of BB84 protocol that have been proposed. Some of the more widely known examples 

include the B92 protocol proposed by Bennett (1992) in which Alice prepares the key 

in one of two non-orthogonal states and the six-state protocol (Bruß, 1998) that 

encodes the key in one of six states selected randomly from three mutually unbiased 

bases. A more comprehensive review is provided in Gisin et al. (2002).  

 Ekert (1991) had presented a different QKD protocol than that of BB84. In 

contrast to BB84 protocol, Ekert proposed to use a pair of entangled particles, one for 

each party, to establish the secret key. In addition to that, the security of the so-called 

E91 protocol is guaranteed by observing the violation of Bell inequality (Freedman & 

Clauser, 1972), particularly, the CHSH inequality (Clauser, Horne, Shimony, & Holt, 

1969). However, Bennett, Brassard, & Mermin (1992) argued that the E91 protocol 

was in fact equivalent to the BB84 protocol, with the former just being an 

entanglement version of the latter. This claim is not completely false considering that 

one would use two-qubit states and perform measurement in mutually unbiased bases. 
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As pointed out by Scarani (2012), detailed investigations has shown that E91 protocol 

cannot be reproduced by local variable, unlike BB84 and its entangled version, 

BBM92 protocol proposed by Bennett et al. (1992). This security advantage of E91 

protocol has become the basis to achieve device independent security in which would 

be further discussed in the next section.  

 Up till now, our discussion on QKD protocol revolves around the idea of 

transmitting information carrier through the quantum channel in order to distribute a 

secret key bit. However, Noh (2009) had introduced a contrasting protocol (we refer 

to it as the counterfactual QKD or CQKD in short) in which information is being 

transferred from one party to another without any qubit travelling between them. The 

CQKD protocol utilizes the counterfactual phenomena, in which we can infer the 

presence of an object effectively without having to measure it (Noh, 2009). A proper 

description of such a notion can be found in (Vaidman, 2016).  

 In the case of counterfactual protocol presented by Noh (2009), given a photon 

sent to Bob over the quantum channel, it would either blocked by Bob or otherwise. 

Alice can infer whether Bob is blocking the path or not without even being near the 

blockade. In order for this phenomena to take effect, one requires as a resource, a 

single photon entanglement which can be attained by submitting a single photon to a 

beam splitter. The single photon entanglement refers to a phenomena of entanglement 

between the photon numbers in two spatially separated modes where one mode is 

connected to Bob as the quantum channel while the other remains with Alice. Given a 

50:50 beam splitter, photons can be found half of the time on the quantum channel.  

 Events where a photon actually travels to Bob would be discarded, while the 

events where the photon has been assuredly blocked by Bob would be considered as 

part of the raw key. A detailed description of the CQKD is deferred to Chapter 4. The 
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discussions concerning the counterfactual protocol includes analyzing its security 

proof (Li, 2014; Yin, Li, Chen, Han, & Guo, 2010), improving its efficiency (Sun & 

Wen, 2010) and also modifications (Shenoy, Srikanth, & Srinivas, 2013). The 

protocol proposed by Noh (2009) has also been implemented experimentally (Brida, 

Cavanna, Degiovanni, Genovese, & Traina, 2012).  

 Despite the various schemes afforded thus far, the most pessimistic demands 

would not be satisfied as these schemes rely strongly on the requirement that the 

exploited degrees of freedom lies within the control of the legitimate users. Relaxing 

such a requirement has led to the birth of “device independent QKD” or simply 

DIQKD protocol.  

 

1.3.1 Analyzing security of a QKD 

The main objective in analyzing eavesdropping attack is to find security proofs for a 

QKD protocol (Gisin et al., 2002). Basically, Eve’s attack strategies in a generic QKD 

protocol can be divided into three classes, namely the individual, collective, and the 

coherent attacks. However, in this work we are only focusing on the individual attack 

scenario and we dedicate a brief discussion on the collective and coherent attack in the 

context of future direction. The individual attacks is defined as such Eve would probe 

and measures Alice’s and Bob’s quantum system using the same strategy, separately 

and independently (Gisin et al., 2002).  

 The Csiszár-Körner theorem (Csiszár & Körner, 1978) states that Alice and 

Bob can distill a secret key if and only if  I AB ≥ I AE  or  I AB ≥ IBE  where  I AB  represents 

Alice-Bob mutual information while  I AE  and  IBE  represent Eve’s information on 

Alice’s and Bob’s raw key, respectively. Practically, the raw key needs to be 

converted to one where   I AB = 1 and   I AE = 0 . This can be achieved by first correcting 
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any possible errors between Alice and Bob and subsequently a contraction of the key 

to eradicate any possible information Eve may have. The process of establishing a 

secret key from a raw key thus involves an error correction procedure, as noted in the 

earlier section, to be executed between Alice and Bob as well as suppressing Eve’s 

information to arbitrarily low levels through privacy amplification. According to 

Shannon, the amount of perfectly correlated bit that can be extracted from the raw 

keys for a one-way communication is given by,   I AB = H ( A)− H ( A | B)  where   H (⋅)  is 

the Shannon entropy (Scarani et al., 2009). This can be understood as having a 

preshared key of that amount to encode any bits transmitted between the legitimate 

parties committing to error corrections. As for privacy amplification, the commonly 

used procedure is for Alice and Bob to agree on a randomly selected hash functions to 

operate on their respective raw keys. The set of hash functions used would be the two-

universal hash function (Gisin et al., 2002). Thus, the achievable secret key rate,  K  

using one-way classical postprocessing (Csiszár & Körner, 1978; Gisin et al., 2002) is 

 

   K = max I AB − I AE , I AB − IBE{ }.  (1.19) 

 

1.4 DEVICE-INDEPENDENT QUANTUM KEY DISTRIBUTION 

In most QKD protocols (Gisin et al., 2002), Alice and Bob are assumed to have 

perfect control of their apparatuses (at least the dimension of the degree of freedom 

used for measurements) and that the devices are ultimately trusted. Though, in reality, 

this is usually not the case as devices are prone to various imperfections and a more 

paranoid view would even suggest Eve to be the person who manufactures Alice's and 

Bob's devices. Given this, there has been a growing interest in developing protocols 

where the legitimate parties are not required to trust their devices, that is, the device 
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independent QKD (DIQKD) protocol. The only set of assumptions for security 

analysis of this protocol, which is also necessary for all QKD protocols, requires that 

(Pironio et al., 2009): 

1. confidential information cannot escape to the outside of the legitimate 

parties' site; 

2. random number generator used can be trusted; 

3. classical devices such as memories and computing devices used by the 

legitimate parties can be trusted; 

4. the parties share an authenticated public channel; 

5. quantum theory is correct. 

The basis for security guarantee of this framework lies in the establishment of 

nonlocal correlations. 

 

1.4.1 Nonlocal Correlation 

In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen proposed a thought 

experiment (Einstein, Podolsky, & Rosen, 1935), aiming to argue the incompleteness 

of quantum mechanics. For a theory to be considered as complete, Einstein et al. 

(1935) states that it should contain element which corresponds to an element in 

physical reality. Without going into the details, it is nevertheless worth noting that the 

work is built upon the assumption that Nature obeys the principle of local realism, 

made up of the following two principles; the principle of realism, in which the 

existence of physical properties are independent of observation; and the principle of 

locality, in which the measurement made by distant parties does not influence each 

other (Nielsen & Chuang, 2010). With respect to these assumptions, John Bell (1964) 

formulated a thought experiment describing how the Nature was supposed to behave 
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in accordance to Einstein et al. (1935), with which he comes up with Bell inequality. 

In his experiment, two systems that may have been produced by the same source are 

each given to two distant parties, Alice and Bob to be measured as depicted by Figure 

1.2.   

 

 
Figure 1.2 Illustration of a bipartite system in Bell experiment. 

 

 Suppose we consider a bipartite system in which we represent the binary input 

settings by  and  for Alice and,  and  for Bob with binary outcomes  and 

, respectively. Let us denote  as the expectation value of the correlation 

 and consider the following correlation function 

 

   S = E( A1, B1)+ E( A2 , B1)+ E( A1, B2 )− E( A2 , B2 ),  (1.20) 

 

in which  with  represent 

the probability of obtaining outcomes  and  given that inputs  and  were 

measured.  

  A1   A2   B1   B2  a

 b   
E( Ai , Bj )

 
Ai Bj

  
E( Ai , Bj ) = p(a = b | Ai , Bj )− p(a ≠ b | Ai , Bj )   

p(ab | Ai , Bj )

 a  b  Ai  
Bj

Alice Bob
Source

a

Ai B j

b
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 Bell (1964) states that if the correlation function of eq. (1.20) satisfies local 

realism principle, then we will necessarily obtain the following 

 

   −2 ≤ S ≤ 2,  (1.21) 

 

which is often known as the CHSH inequality (Clauser et al., 1969). Now, let us 

consider a quantum physics scenario where Alice and Bob are allowed to share a 

maximally entangled system of two qubits state ψ . The correlation of  Ai  and  
Bj  

can then be written as 

 

 
  
EQ ( Ai , Bj ) = ψ Ai ⊗ Bj ψ ,  (1.22) 

 

in which  Ai  and  
Bj  are operators and the subscript Q represent the quantum scenario. 

With appropriate measurements, it can be easily shown that in quantum physics 

description,   S = 2 2  (Cirel’son, 1980); a value which is greater than that predicted in 

eq. (1.21). The violation of eq. (1.21) implies that at least one of the local realism 

assumptions is incorrect, a phenomena we refer to as nonlocality. 

 Nonlocality or nonlocal correlations may be understood as a correlation 

resulting from measurements of a number of systems that cannot be reproduced by 

any local theory. Thus, measurements made by two parties, Alice and Bob on such 

systems may result in nonlocal correlations though it should be clear that such 

correlations are nevertheless no-signaling. Suppose that Alice's measurement choice is 

 x  with outcome  a  while Bob's measurement choice is labelled as  y  and its output as 

 b . Writing   Pr(ab | xy)  as the probability of getting outcomes  a  and  b  when 



 

19 

measuring  x  and  y , respectively. The no-signaling condition states that the marginal 

probability of one party is independent of the other party's choice of measurement 

input, which can simply be written as (Acín, Massar, & Pironio, 2006)  

 

 
  

Pr(ab | xy) = Pr(ab | x ' y) = Pr(b | y)
a
∑ ∀b,x,x ', y,  (1.23) 

 
  

Pr(ab | xy) = Pr(ab | xy ') = Pr(a | x)
b
∑ ∀a,x, y, y '.  (1.24) 

 

Under the no-signalling condition, the CHSH inequality is shown to be equivalent to 

another variant of Bell inequality namely, the Clauser-Horne (CH) inequality (Clauser 

& Horne, 1974) by Mermin (1995) and Cereceda (2001) as pointed out by Renou, 

Rosset, Martin, & Gisin (2016). 

 

1.4.2 Nonlocality as a Resource 

The possibility of exploiting the nonlocal resource as a security measures was initially 

highlighted in Ekert (1991) protocol, in which he proposed the idea of basing the 

protocol's security on Bell inequality.  However, it would be Mayers & Yao (1998) 

idea of self-testing device that points out its potential in a device independent context. 

 The preliminary work in the direction of DIQKD was first proposed to 

demonstrate security proof against a general attack by an eavesdropper constrained 

only by the no-signaling principle (Barrett, Hardy, & Kent, 2005). Even though the 

protocol is proven to be inefficient, it follows from this idea that (Acín, Gisin, & 

Masanes, 2006) proposed a binary input-output scheme namely, the CHSH protocol 

(in which further detail was given in Scarani et al. (2006) that is secure against an 

individual attack by an adversary who is supra-quantum, i.e. not limited by the 
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dictates of quantum theory though bounded by the no-signaling principle. The 

individual attack assumes that Eve would try to gain information on each quantum 

systems separately and independently. The attack requires Eve, to distribute strategies 

extracted from the no-signaling polytope which is described by 8 extremal 

deterministic points plus one nonlocal point given by the nonlocal Popescu and 

Rohrlich (PR) box (Popescu & Rohrlich, 1994). The PR box is defined as the joint 

probability for the output pairs given relevant measurement input pairs as follows 

 

 

  

PrPR(ab | xy) =
1
2 , a⊕ b = xy

0, otherwise
,

⎧
⎨
⎪

⎩⎪
 (1.25) 

 

in which ⊕  is addition modulo 2. It can be easily verified that the PR box violates the 

CHSH value up to algebraic maximum of 4 (Popescu & Rohrlich, 1994), a value that 

is beyond the Tsirelson bound of  2 2  (Cirel’son, 1980) for quantum physics.  

 The protocol has the very interesting feature according to which no 

assumptions are made regarding the nature of measurements by Alice and Bob, which 

can be seen as black boxes. However, an implementation of the CHSH protocol within 

the quantum framework results in nonperfect overlapping of measurement basis for 

key extraction purposes, thus resulting in a noisy channel in the absence of an 

eavesdropper.  

 While the framework for device independent scenario in protocols that 

essentially sees one party submitting a signal to the other party for measurement 

already existed, the counterfactual QKD protocol on the other hand does not have 

such framework. In order to develop the device independent framework for 

counterfactual QKD, it is instructive to have a proper understanding of CHSH like 
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protocol i.e. a binary measurement based protocol, especially in the context of single 

photon entanglement QKD. In the following we will present our approach and 

objectives. 

 

1.5 RESEARCH APPROACH AND OBJECTIVES 

In this thesis, we aim to ultimately develop a device independent framework for 

counterfactual QKD. As we have stated before, the single photon entanglement is 

essential in explaining the counterfactual phenomena. In order to help our 

understanding of the single photon entanglement, we start off by understanding the 

binary measurement QKD using the following maximally entangled states: 

 

 
 
Ψ =

10 − 01

2
,  (1.26) 

 

and how it could be use in the context of single photon entanglement. With this 

knowledge, we hope to apply it to the device independent scenario. The key rates can 

be derived based on the Csiszár-Körner theorem (Csiszár & Körner, 1978) in which 

the details will be provided in the ensuing chapters. Note that throughout the thesis we 

will use the term framework and scenario interchangeably. 

 This research aims to achieve the following three objectives: 

1. To optimize a binary measurement QKD.  

2. To formulate a device independent framework and determine the relevant 

secret key rate for single photon entanglement QKD.  

3. To formulate counterfactual QKD in a device independent scenario. 
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1.6 THESIS OUTLINE 

This thesis is divided into five chapters. The first chapter serves as an introduction for 

the whole thesis.  

 In Chapter 2, we consider an optimal quantum key distribution setup based on 

minimal number of measurement bases with binary yields used by parties against an 

eavesdropper limited only by the no-signaling principle. We compare between two 

versions in which Version I would represent the case where only Alice would reveal 

her measurement bases over a public channel and another scenario, which we refer to 

as Version II, would be for both to disclose their bases. In both cases, the parties will 

determine the security of the protocol by means of checking for violation of Bell 

inequality, particularly the CHSH inequality, on a subset of the measurement results. 

We also consider a simpler form of Version II by having a maximal correlation 

between Alice and Bob in one set of bases' choice by setting  β = 0 . This idea of 

overlapping measurement bases would have immediate use in the next chapter. Parts 

of this work has already been published in Kamaruddin & Shaari (2016). 

 As a preliminary step, in Chapter 3, we briefly review the quantum mechanical 

description of a beam splitter and its role in the homodyne detection scheme. We then 

present a quantum key distribution scheme based on the protocol by Lee, Lee, Chung, 

Lee, & Kim (2003) which exploits an unbalanced homodyne detection scheme to 

demonstrate its security through observation of violation of the CH inequality. We 

describe our analysis of security against individual attack within a device-independent 

scenario where Eve is constrained only by the no-signaling principle. Parts of this 

work has already been published in Kamaruddin & Shaari (2015). 

 We start off Chapter 4 by describing the counterfactual protocol as presented 

by Noh (2009). We proceed to show that the protocol is insecure in a device 
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independent scenario. Consequently, we propose a framework for device independent 

counterfactual QKD with the main ingredient being the single photon entanglement 

QKD protocol presented in Chapter 3. We then provide a heuristic security analysis of 

the proposed protocol. Here we acknowledge that we benefit very much from 

discussions about the single photon entanglement mainly within the context of Mach-

Zehnder interferometer with Piotr Kolenderski.   

 In Chapter 5, we provide a summary of this research and offer some 

suggestions for future research.  
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CHAPTER TWO 

OPTIMAL DEVICE INDEPENDENT QUANTUM KEY 
DISTRIBUTION 

 
 
 
 
 
2.1 PUBLICATION 

The findings reported in this chapter have been published in the journal Scientific 

Reports, Volume 6, 30959 (2016) as Optimal Device Independent Quantum Key 

Distribution, with the citation: (2016) doi: 10.1038/srep30959. The authors for the 

publication are (in order as appears in the publication) Suhaili Kamaruddin and Jesni 

Shamsul Shaari. 

 

2.2 INTRODUCTION 

As briefed in the first chapter, communications in a generic QKD protocol can be 

divided into two phases. The first phase involves communication between the 

legitimate parties that is, Alice and Bob, over a quantum channel in which the 

transmission of quantum signals (commonly photons) and measurements take place. 

On the other hand, the second phase would require the distribution of classical 

information between the parties over a classical channel. The classical channel is not 

required to be private in the sense that it does not need to be able to send private bits; 

it does however need to be free of any manipulation by a malicious attacker. This can 

be achieved by authentication of the channel. Alternatively, the classical information 

can be broadcasted, again with the intent of ensuring that the information sent/ 

received is free from tampering. With the help of classical communication phase, 

Alice and Bob are able to perform basis revelation, error correction and remove Eve's 
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information in privacy amplification procedure. Interestingly enough, a protocol can 

be different with only a change in the feature of classical information distribution. For 

example, if we simply change the classical communication phase of BB84 protocol 

such that Alice would not reveal her bases, rather a set containing a pair of 

nonorthogonal state (with one of it being the state sent) then we will obtain the 

SARG04 protocol proposed by Scarani, Acin, Ribordy, & Gisin (2004). In fact, 

according to Scarani et al. (2004), the SARG04 protocol actually performs better than 

BB84 protocol. Hence, it will be intriguing to observe how variants of classical 

information distribution would influence the performance of a QKD protocol. 

 In this chapter, we shall consider in detail a binary measurement QKD for two 

parties, Alice and Bob, in which each party would commit to either one of two 

measurement bases and each yields only binary results. We will describe the protocol 

using quantum formalism i.e. we assume that the legitimate parties believe that they 

actually perform measurements on quantum states in a well-defined Hilbert space. 

However, the most pessimistic view would suggest that the protocol be seen as black 

boxes and Alice and Bob may not have any prior knowledge of their internal 

processes. We will then consider two different scenarios depending on the variation in 

the subsequent classical distribution of information between the legitimate parties, 

thus defining the protocol to allow for different secure key rates with the aim of 

achieving the highest possible. 

 

2.3 BINARY MEASUREMENT QKD 

We begin with a description of the protocol, which we define within a framework as 

described by quantum physics. Alice submits to Bob a quantum state of which each 

party would measure subsystems thereof available to them. In an ideal setup, we 
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assume that this would result in Alice and Bob sharing the following maximally 

entangled states:  

 

 
 
Ψ = 1

2
10 − 01( ).  (2.1) 

 

In each run, Alice and Bob can independently choose to apply one of two 

measurements with each choice resulting in binary outcomes.  For definiteness, we 

describe Alice’s and Bob’s measurements as x  and y  with x, y∈ 0,1{ }  and the binary 

results for their measurement choices are a,b∈ 0,1{ } , respectively.  

 Restricting measurements to projecting states on the X − Z  plane of the Bloch 

sphere, any measurement can be described as projecting onto the following states; 

 

 
 
θ + = cos(θ ) 0 + sin(θ ) 1 ,  (2.2) 

 
 
θ − = sin(θ ) 0 − cos(θ ) 1 ,  (2.3) 

 

and we set x = 0  to be in the Z  basis i.e. θ = 0  and x = 1  indicates the measurement 

made in angle θ =α . Meanwhile, Bob's setting is described such that y = 0  and 

y = 1  correspond to measurement angles θ = β  and θ = γ , respectively. We note that 

the measurement resulting in state θ +  corresponds to the logical bit value   a = 0  (for 

Alice) and   b = 0  (for Bob) while, θ −  corresponds to   a = 1 (for Alice) and   b = 1 (for 

Bob). At the end of the transmission and measuring process, Alice and Bob would 

exchange classical information to allow them to share a raw key.  
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 The simplest scenario is where only Alice would reveal her measurement 

bases over a public channel (we refer to this as Version I). Another scenario, which 

we refer to as Version II, would be for both Alice and Bob to disclose their bases. In 

both cases, the parties will determine the security of the protocol by means of 

checking for violation of Bell-type inequality on a subset of the measurement results.  

 In this work we will consider the case where Alice and Bob would compute 

the amount of the following CHSH correlations (Clauser et al., 1969): 

 

   CHSH = x = 0, y = 0 + x = 0, y = 1 + x = 1, y = 0 − x = 1, y = 1 ,  (2.4) 

 

in which local correlations is bounded by inequality −2 ≤CHSH ≤ 2 . However, in 

modeling a noisy setting, we shall assume a depolarizing channel between the 

legitimate parties and thus, eq. (2.1) is transformed to a Werner state (Werner, 1989), 

ρ  given as: 

 

 
  
ρ = F Ψ Ψ + (1− F ) I

4
,  (2.5) 

 

where 0 ≤ F ≤1  with the fidelity, F = 1  represents the noise-free condition.  

 From the results obtained when measuring state  (see Table 2.1), it is not 

difficult to show that the estimation of CHSH violation of eq. (2.4),  CHSH  can be 

written as 

 

  (2.6) 

ρ

  CHSH = −F cos(2(α − β ))+ 2sin(α )sin(α − 2γ )+ cos(2β )⎡⎣ ⎤⎦.
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Depending on the results, Alice and Bob may choose to abort the protocol or proceed 

to error correction and privacy amplification. 

 

Table 2.1 The correlations table as a result of measuring state ρ  with 
  
η = 1

4
1− F( ) . 

 

   y = 0,b = 0    y = 0,b = 1    y = 1,b = 0    y = 1,b = 1 

 

  

x = 0,
a = 0

   
F
2

sin2(β )+η   
  
F
2

cos2(β )+η   
  
F
2

sin2(γ )+η   
  
F
2

cos2(γ )+η  

 

  

x = 0,
a = 1

  
  
F
2

cos2(β )+η   
  
F
2

sin2(β )+η   
  
F
2

cos2(γ )+η   
  
F
2

sin2(γ )+η  

 

  

x = 1,
a = 0

   
F
2

sin2(α − β )+η  
  
F
2

cos2(α − β )+η  
  
F
2

sin2(α −γ )+η  
  
F
2

cos2(α −γ )+η  

 

  

x = 1,
a = 1

   
F
2

cos2(α − β )+η  
  
F
2

sin2(α − β )+η  
  
F
2

cos2(α −γ )+η  
  
F
2

sin2(α −γ )+η  

 
 

2.4 SECURITY ANALYSIS: SUPRA-QUANTUM EVE 

We consider the pessimistic view where Eve has control of the degrees of freedom of 

Alice's and Bob's observables. We could imagine that the eavesdropper, Eve 

fabricated the devices and she is in fact controlling the source. The legitimate parties 

are essentially ignorant of the internal process of the protocol and their devices may 

be regarded as black boxes with binary inputs and outputs. We define Eve's strategy 

as being constrained by the no-signaling principle while requiring observations made 

by both Alice and Bob to be consistent with quantum predictions. Similar to the 

CHSH protocol (Acín, Gisin, et al., 2006; Scarani et al., 2006), Eve’s strategy is to 

submit to Alice and Bob a convex combination of probabilistic distributions of 

deterministic and nonlocal strategies.  
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 A deterministic strategy is a strategy for which results obtained for any given 

set of Alice's and Bob's measurement would be fully determined i.e no uncertainty and 

conforms completely to a local theory (Scarani, 2009). On the other hand, a nonlocal 

strategy is one in which a PR box (Popescu & Rohrlich, 1994) is distributed and 

measurement results are not only probabilistic, but also violates the CHSH inequality 

up to its algebraic maximum (Scarani, 2009). However, since our protocol is 

described in terms of an anti-correlated state of eq. (2.1), it would be appropriate to 

use the anti-PR (aPR) box (Skrzypczyk & Brunner, 2009) for which all measurement 

settings (except for   x = y = 1) result in anti-correlations rather than the PR box that 

provides for correlations. The aPR box, which is equivalent to the PR box up to a 

trivial local processing (Scarani, 2009), violates the lower bound of CHSH (as 

opposed to the PR box violating on the positive side) is given by the probability 

function, 

 

 

  

PraPR(ab | xy) =
1
2 , a + b = xy⊕1

0, otherwise     

⎧
⎨
⎪

⎩⎪
,  (2.7) 

 

where ⊕  is addition modulo 2. The deterministic strategies are described by four 

deterministic functions   G : 4⎡⎣ ⎤⎦ × 0,1{ }→ 0,1{ }  for   r = 1,2,3,4  defined by  

 

 

  

G(r,x) =

0, r = 1
1, r = 2
x, r = 3
x +1, r = 4

⎧

⎨

⎪
⎪

⎩

⎪
⎪

.  (2.8) 

 

Thus, the sixteen deterministic strategies,   Drs  are given by 
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Drs = Drs

xy (a,b) = δG(r ,x )=aδG(s,y )=b | a,b,x, y ∈ 0,1{ }{ },  (2.9) 

 

where   Drs
xy (a,b)   gives the probability of having input   x, y   resulting in output   a,b   

for strategy  rs  (Scarani, 2009). 

 However, we are only interested in the following eight deterministic strategies, 

 which would saturate the local bound on the 

negative side of the CHSH range. Eve's strategy and her information on Alice-Bob 

distribution can be summarized in Table 2.2 which is a ‘complimentary’ table to that 

in Scarani et al. (2006) where Eve would use a PR box instead. Note that the symbol 

 represents the probability of sending strategy  and  is the probability of 

sending aPR box. With aPR box violating the CHSH inequality up to its algebraic 

minimum value of , the estimation of local correlation,  that Alice and 

Bob may find would be 

 

  (2.10) 

 

in which the probability of sending local correlation,  with 

. 

 In the ensuing sections, the security analysis, given Eve's attack is constructed 

within the framework of an eavesdropper who may be supra-quantum but would 

emulate Alice and Bob's expectations; i.e. the statistics of their measurement results 

must be consistent with the expectation of quantum physics. We thus assume a one-to-

one correspondence rule from the set of Eve's probabilities of strategies sent, , 

  D12 ,D14 ,D21,D23,D32 ,D33,D41,D44

 prs   Drs  pNL

 −4  CHSH

  CHSH ≥ (−4)(1− pL )+ (−2) pL

  pL = 1− pNL

  pL = p12 + p14 + p21 + p23 + p32 + p33 + p41 + p44

 
Eijkl
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where  and  are Alice and Bob's measurement settings and results respectively 

to the set of probabilities of Alice-Bob's measurements, . 

 

Table 2.2 Table showing probability distribution of Eve sending the corresponding 
strategy (as shown in the parentheses) to Alice and Bob. This is ‘complimentary’  

table to that in Scarani et al. (2006) where Eve would use a PR box instead. 
 

 
  y = 0,b = 0    y = 0,b = 1    y = 1,b = 0    y = 1,b = 1 

 

  x = 0,a = 0  
   p33 D33( )  

   

pNL 2 PaPR( )
p12 D12( )
p14 D14( )
p32 D32( )

 

   p14 D14( )  

   

pNL 2 PaPR( )
p12 D12( )
p32 D32( )
p33 D33( )

 

 

  x = 0,a = 1  

   

pNL 2 PaPR( )
p21 D21( )
p23 D23( )
p41 D41( )

 

   p44 D44( )  

   

pNL 2 PaPR( )
p21 D21( )
p41 D41( )
p44 D44( )

 

   p23 D23( )  

 

  x = 1,a = 0  
   p41 D41( )  

   

pNL 2 PaPR( )
p12 D12( )
p14 D14( )
p44 D44( )

 

   

pNL 2 PaPR( )
p14 D14( )
p41 D41( )
p44 D44( )

 

   p12 D12( )  

 

  x = 1,a = 1 

   

pNL 2 PaPR( )
p21 D21( )
p23 D23( )
p33 D33( )

 

   p32 D32( )     p21 D21( )  

   

pNL 2 PaPR( )
p23 D23( )
p32 D32( )
p33 D33( )

 

   

 
2.4.1 Version I 

We consider the simplest case, that is, when only one party, say Alice, would publicly 

disclose her measurement bases. The error rate for Alice and Bob,  eAB  which 

  i,k   j,l

  Pr(a = i,b = j | x = k, y = l)
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originates from Eve’s sending strategies, is given by the probability, 
  

Ei( i⊕1)klk ,l ,i∑ . In 

terms of the angles  α ,β ,  and  γ ,  we refer to the one-to-one correspondence between 

the legitimate parties’ measurement settings and the probabilities of Eve’s strategies 

(Table 2.1 and Table 2.2 respectively) and the error rate,  eAB  is then given by 

 

 
  
eAB = 1

4
2− 2F + F sin2(α −γ )+ sin2(α − β )+ sin2(β )+ sin2(γ )⎡⎣ ⎤⎦( ).  (2.11) 

 

Since Bob’s bases are not revealed to public, we can view Eve’s information on Alice-

Bob distribution as represented in Table 2.3.  

 The readings of Table 2.3 are as follows. Suppose that Eve sends strategy  

to the legitimate parties and Alice has publicly disclosed that she chose . Then, 

Eve would know for sure that Alice's and Bob's outcome is  and . 

However, if Eve sends strategy  while Alice declares her choice to be , then 

Eve would be uncertain of Bob’s outcome as half of the time it could result in  or 

. It is obvious from Table 2.3 that Eve’s information on Bob’s outcome,  IBE , 

would comes from sending strategy  and , in which can be rewritten 

in terms of the angles  as follows 

 

  (2.12) 

 

Hence, with respect to eq. (2.11) and eq. (2.12), the formula for the key rate,   K ,  is 

given by (Csiszár & Körner, 1978): 

  D12

  x = 0

  a = 0   b = 1

  D14   x = 0

  b = 0

  b = 1

  D12 ,D21,D32 ,   D41

 (α ,β ,γ )

  IBE = F cos2(α −γ )+ F sin2(α − β )+1− F.
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   K = 1− IBE − h(eAB ),  (2.13) 

 

with  being the binary entropic function. 

 

Table 2.3 Table showing Eve’s information on Alice-Bob distribution  
when Alice’s basis is known. 

 
   b = 0    b = 1 
 

  x = 0,a = 0  
   

1
2 p14 D14( )
1
2 p33 D33( )

 

   

1
2 pNL PaPR( )
1
2 p14 D14( )
1
2 p33 D33( )
p12 D12( )
p32 D32( )

 

 
  x = 0,a = 1  

   

1
2 pNL PaPR( )
1
2 p23 D23( )
1
2 p44 D44( )
p21 D21( )
p41 D41( )

 
   

1
2 p23 D23( )
1
2 p44 D44( )

 

 
  x = 1,a = 0  

   

1
4 pNL PaPR( )
1
2 p14 D14( )
1
2 p44 D44( )
p41 D41( )

 

   

1
4 pNL PaPR( )
1
2 p14 D14( )
1
2 p44 D44( )
p12 D12( )

 

 
  x = 1,a = 1 

   

1
4 pNL PaPR( )
1
2 p23 D23( )
1
2 p33 D33( )
p21 D21( )

 

   

1
4 pNL PaPR( )
1
2 p23 D23( )
1
2 p33 D33( )
p32 D32( )

 

 
 

 By numerically optimizing eq. (2.13) in a noiseless condition, we would find 

that there are no useful key rate that can be extracted. This finding is not at all 

surprising as it is apparent from Table 2.2 that the bit strings derived from  

  h( p) ≡ − p log2 p − (1− p) log2(1− p)

  x = y = 1



 

34 

does not come from correlations that include the nonlocal strategies. Hence, a large 

amount of bits has to be thrown away in the privacy amplification procedure due to 

the fact that in the cases of  the bits that contribute for the key string would 

be known to Eve. 

 

2.4.1.1 Pseudosifting 

In order to ensure that Eve would be at a disadvantage in regards to the correlations 

between Alice and Bob, i.e. to ensure the correlations are derived from strategies that 

should include the nonlocal box, referring to Table 2.2, we consider the stipulation 

where Bob would flip all his bits except in the event where Alice declares   x = 1  and 

Bob measure   y = 1.  This step is equivalent to the pseudosifting procedure introduced 

by Scarani et al. (2006) (the main concern there was to maximize the correlations 

between Alice and Bob).  

 Hence, the error rate between Alice and Bob,  eAB
I  with regards to the triplet 

angles  (α ,β ,γ )  would be 

 

 
  

eAB
I = 1

4
2− 2F + F sin2(α −γ )+ cos2(α − β )+cos2(β )+ cos2(γ )⎡⎣ ⎤⎦( )

= −
CHSH

8
+ 1

2
.  (2.14) 

 

Based on Table 2.4, we can see that for each deterministic strategy, Eve would only 

learns about one of Alice’s setting, while being totally ignorant about the other. For 

example, let us assume that Eve submit strategy   D32  to the legitimate parties. With 

regards to Table 2.4, Eve would know for sure of Bob’s outcome provided that 

  x = y = 1



 

35 

Alice’s choice is   x = 0,  however the same strategy would result in Eve being 

uncertain of the outcome when Alice’s setting is   x = 1 . 

  

Table 2.4 Table representing Eve’s knowledge on Alice-Bob probability  
distribution in the event where Bob flip all his bits except for   x = y = 1 . 

 
   b = 0    b = 1 
 

  x = 0,a = 0  
   

1
2 p14 D14( )
1
2 p33 D33( )

 

   

1
2 pNL PaPR( )
1
2 p14 D14( )
1
2 p33 D33( )
p12 D12( )
p32 D32( )

 

 
  x = 0,a = 1  

   

1
2 pNL PaPR( )
1
2 p23 D23( )
1
2 p44 D44( )
p21 D21( )
p41 D41( )

 
   

1
2 p23 D23( )
1
2 p44 D44( )

 

 
  x = 1,a = 0  

   

1
2 p12 D12( )
1
2 p41 D41( )

 

   

1
2 pNL PaPR( )
1
2 p12 D12( )
1
2 p41 D41( )
p14 D14( )
p44 D44( )

 

 
  x = 1,a = 1 

   

1
2 pNL PaPR( )
1
2 p21 D21( )
1
2 p32 D32( )
p23 D23( )
p33 D33( )

 
   

1
2 p21 D21( )
1
2 p32 D32( )

 

 
 

Assuming the choice of measurement basis is equiprobable, Eve’s information gain on 

Bob,  IBE
I  would then be  
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IBE
I =

pL

2

=
CHSH + 4

4
. (2.15) 

 

From eq. (2.14) and eq. (2.15), the key rate,  is then given by                                          

 

 
  

KI = 1− IBE
I − h(eAB

I )

≥1−
CHSH + 4

4

⎛

⎝
⎜

⎞

⎠
⎟ − h(eAB

I ).  (2.16) 

 

 It is obvious that the secret key rate is a monotonically increasing function of 

the CHSH violation (it is clear from eq. (2.14) that an increase in  CHSH  would 

decrease the uncertainty between Alice and Bob) and thus maximized for angles 

 (α ,β ,γ )  maximizing the CHSH violation and the protocol would be the CHSH 

protocol (Acín, Gisin, et al., 2006; Scarani et al., 2006). This could be actually derived 

from eq. (25) in Scarani et al. (2006) where in a quantum setup, Alice and Bob 

prescribe measurements that would maximize the Bell violation. Thus we can 

conclude that generalizing the angles of measurements, in a case where only Alice 

reveals her measurement bases, the most optimal protocol would necessarily reduce to 

that of CHSH protocol (Acín, Gisin, et al., 2006; Scarani et al., 2006).  

 Therefore, from now onwards we will be referring version I to the event where 

Bob would perform the pseudosifting procedure as of the CHSH protocol. 

 KI
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2.4.2 Version II 

In this version, we require that both Alice and Bob reveal their measurement bases. 

With Eve’s strategy given by 
  

Ei( i⊕1)klk ,l ,i∑ , the uncertainty between Alice and Bob, 

 ω (α ,β ,γ )  is given by 

 

 
  

ω (α ,β ,γ ) = 1
4

h Fsin2(α − β )+ 1− F
2

⎛
⎝⎜

⎞
⎠⎟
+ h Fsin2(α −γ )+ 1− F

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

+h Fsin2(β )+ 1− F
2

⎛
⎝⎜

⎞
⎠⎟
+ h Fsin2(γ )+ 1− F

2
⎛
⎝⎜

⎞
⎠⎟

.  (2.17) 

 

As Alice’s and Bob’s measurements’ settings are eventually made known, any 

measurement coinciding with the receipt of Eve’s deterministic strategies would 

provide the latter with complete information. Given that Eve’s information gain, 

  I
'
BE = pL  and along with eq. (2.10), the key rate,   K '  can be shown to be 

 

 
  

K ' = 1− IBE
' −ω (α ,β ,γ )

≥1−
CHSH + 4

2

⎛

⎝
⎜

⎞

⎠
⎟ −ω (α ,β ,γ ). (2.18) 

  

 Through numerical optimization of eq. (2.18) for a perfect error-free channel, 

we would see that no positive key can be derived. As the  CHSH  value decreases, 

the error in the strings naturally increases, which implies a noisier channel. This 

would result in a large number of bits being thrown away for privacy amplification. 

The only way to avoid throwing a lot of bits during the privacy amplification is to 

reduce the error in the strings by managing the triplet angles  (α ,β ,γ ) .  
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 However, as we can see from the right hand side of eq. (2.17), minimizing 

error in one of the term would necessarily increase the error in another term of the 

equation. For example, if we managed the angle β  so that the error in the third term 

of eq. (2.17) is being minimized, then the error of the first term will increase due to 

the big difference between angle α  and β . Eventually, a lot of bits will be discarded 

due to error correction procedure. The only way to obtain a secure key is to find a 

balance between the decrease in the  CHSH  value and the increase in the 

correlations between Alice and Bob.  

 Nevertheless, we are not able to do this in this scenario, which may probably 

due to the impossibility of optimizing all the angles to have a minimal kind of error 

correction and at the same time privacy amplification. However, if we were to have 

fewer angles to work with, then we would have more control over the angles and 

decrease the error. Hence, in what follows, we propose a protocol in which the bits for 

key purposes would be extracted only from one correlation so that we could manage 

the error in the bit strings and finally obtain a positive key rates. 

 

2.4.2.1 An Optimized Protocol 

As mentioned previously, we consider that the bit strings involved for key purposes 

would only comes from one correlation, specifically from the case   x = y = 0 . Then, 

the error in the strings that Alice and Bob would have to correct,  eAB
II  (corresponding 

to Eve's strategy 
  

Ei( i⊕1)00i∑ ) is given by, 

 

 
  
eAB

II = 1
2

1− F cos(2β )⎡⎣ ⎤⎦.  (2.19) 
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As Eve’s information gain,  IBE
II = pL  and along with eq. (2.10) the key rate,  KII  can be 

shown to be, 

 

 

  

KII = 1− IBE
II − h(eAB

II )

≥1−
CHSH + 4

2

⎛

⎝
⎜

⎞

⎠
⎟ − h(eAB

II ),
 (2.20) 

 

in which 

 

 
  
h(eAB

II ) = 1
2

2+ Fcos(2β )log2

1− F cos(2β )
Fcos(2β )+1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢ − log2 1− (Fcos(2β ))2( )⎤⎦.  (2.21) 

  

 It should be noted that, as Alice’s and Bob’s measurement bases are randomly 

chosen, the actual fraction of bits that go into  KII  from the total number of runs 

would be less than  1  (in fact if the choices were equiprobable, then the case   x = y = 0  

would occur only  1 4  of the time). However, given that the cases when   x, y = 1  are 

not used for raw key purposes, i.e. only for checking a CHSH violation (along with a 

sample for when   x, y = 0 ), similar to Acín, Massar, et al. (2006), one can imagine 

having a bias in bases’ choice, and so long as sufficient statistics is achieved towards 

determining CHSH violation, one can have the probability for   x = y = 0  approaching 

1. 

 In maximizing the key rate,  KII  we consider the following partial derivatives;  

 

 
  

∂KII

∂α
= 2Fsin(β −γ )cos(2α − β −γ ),  (2.22) 
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∂KII

∂γ
= −2Fsin(α )cos(α − 2γ ),  (2.23) 

 
  

∂KII

∂β
= 2Fcos(α )sin(α − 2β )−

∂h(eAB
II )

∂β
,  (2.24) 

 

where 

 

 
  

∂h(eAB
II )

∂β
= −Fsin(2β ) log2

1− Fcos(2β )
1+ Fcos(2β )
⎡

⎣
⎢

⎤

⎦
⎥. (2.25) 

 

Considering eq. (2.4), it is obvious that measurement choices such   x = 0{ } = x = 1{ }  

or   y = 0{ } = y = 1{ }  would result in no violation of the CHSH inequality no matter 

the given bipartite state. Thus,  α ≠ 0  and β ≠ γ  and equating the partial derivatives 

of  KII  to zero, we find 

 

   α − 2γ = π 2+ I1π ; 2α − β −γ = π 2+ I2π ,  (2.26) 

 

where   I1  and   I2  are integers. Solving eq. (2.26) gives us 

 

   3γ − β = −π 2+ I3π ; I3 = I2 − 2I1.  (2.27) 

  

 Thus a choice of one variable, say β  determines all other angles. By defining 

the fidelity,   F = 1− 2D  (Scarani et al., 2006), such that the disturbance,  D  represent 

the probability that the measurement results from the same basis agree, we can see 
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from Figure 2.1, a plot of the secure key rate for varying β  (for simplicity we choose  

  I1 = I2 = 0 ). 

 
 

 
Figure 2.1 Key rate,  for varying  and . 

 

 It is possible to consider a choice of values for   I1  and   I2  differently from 0. 

However, this would only force the value of the angles used by Alice and Bob to 

include some phase factor and affect Eve’s information gain (which contains 

trigonometric functions of the angles). A maximal key rate then needs to be searched 

and identified for a possibly different value for β . We have in fact done a number of 

numerical search for a maximal key rate for such a scenario and found no advantage 

over the simpler choice of choose   I1 = I2 = 0 .  

 This can possibly be understood as follows: referring to eq. (2.26), we can 

absorb   I1π  into γ  by introducing 
  
′γ = γ + I1

π
2

. Then we consider using 

  
′β = β − I1

π
2
+ I2π  resulting in a set of equations identical to eq. (2.26) and eq. (2.27) 

except for the substitution of γ  and β  with ′γ  and ′β  respectively and the terms 

 KII β  D
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related to   I1  and   I2  disappear (effectively eq. (2.26) and eq. (2.27) with   I1 = I2 = 0 ). 

We can then imagine that Alice and Bob use the angles α , ′β  and ′γ  instead. The 

key rate formula thus is retained with no modification to the possible values of key 

rates achievable.  

 An analytical solution is unfortunately not immediate; and we plot a 

numerically optimized secure key rate in Figure 2.2. While it is the case that a 

different value for disturbance, , would require a different set of angles used, this 

may be not too practical as one must commit to determining  prior to choosing the 

angles. It is possibly simpler to decide on one fixed value of  (thus the other angles 

as well) and derive a secure key for every possible .  We could simplify matters 

greatly by considering , and letting . We then have  and 

.  

 
 

 

 D

 D

β

 D

 β = 0   I1 = I2 = 0  γ = −π 6

 α = π 6

Figure 2.2 Key rate as a function of disturbance, . (a)  represent  

numerically optimized key rate. (b)  denote the extracted key rate  
given that . (c)  indicate the key rate achievable by CHSH  

protocol without postprocessing. 
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 In order to show that a maximal key rate is in fact achievable with such angles 

for  β = 0 , we consider the Hessian matrix,  H  (Gradshteyn & Ryzhik, 2007) which is 

given by 

 

 
   
H = −2F F

F −2F
⎡

⎣
⎢

⎤

⎦
⎥. (2.28) 

 

From eq. (2.28), the upper left element of the matrix,  gives 
  
∂2 KII

∂α 2 = −2F . We can 

then calculate the determinant of the Hessian matrix,  H  as 

 

    H = (−2F )(−2F )− (F )(F ) = 3F 2. (2.29) 

 

Since  F  does not take on a negative value and   F 2  will always be positive then we 

can deduce that 

 

 
   

∂2 KII

∂α 2 < 0; H > 0,  (2.30) 

 

thus implying that a maximal key rate is achievable when  γ = −π 6  and  α = π 6  

given  β = 0 . 

 

2.5 DISCUSSION 

We compare the performance of the protocols of Version I and II in Figure 2.2. We 

can immediately observe that the protocol of Version II (for varying β  and  β = 0 ) 

 H
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outperforms Version I for  D  up to about  3%  and  2.4%  respectively when the terms 

related to error correction (in terms of Alice-Bob mutual information) play a more 

prominent role in determining the maximal achievable key rate as opposed to privacy 

amplification. In general, this can be understood in the context of the legitimate 

parties making measurements to maximize correlations between them at the expense 

of determining the actual amount of local violation their bits are derived from.  

 On the other hand, for larger values of  D , the information that Eve gleans 

from Bob becomes more pronounced for Version II; where Alice and Bob have little 

information on the type of correlation they actually share. We can in fact, in this vein, 

write an inequality to denote when the secure key rate of one protocol,  KII  would 

exceed another,  KI  in terms of the difference of mutual information between the 

protocols as follows  

 

   KII > KI ⇒ I AB
II − I AB

I > IBE
II − IBE

I ,  (2.31) 

 

where  I AB
I  and  I AB

II  are the mutual information between Alice-Bob for protocols I and 

II respectively while,  IBE
I  and  IBE

II  are Eve's information gain for protocols I and II 

respectively. 

 We see from Figure 2.3 in fact such an inequality holds only up to   D ≈ 0.03  

where errors between the two legitimate parties become less important in determining 

the key rate as the difference between the two versions decrease while the difference 

in Eve's gain increases.  The case for the protocol of Version II with  against 

Version I is similar and applying inequality of eq. (2.31) gives 

 β = 0
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1− 5+ 2 2

4

⎛

⎝
⎜

⎞

⎠
⎟ F < h 1− F

2
⎛
⎝⎜

⎞
⎠⎟
− h 2− 2F

4

⎛

⎝
⎜

⎞

⎠
⎟ ,  (2.32) 

 

so long as  (this can be checked through simple numeric for eq. (2.32)). The 

fact that the protocol of Version II for varying  exceeds that of  is rather 

obvious from the fact that the former is based on the optimal choice for .  

 
 

 
Figure 2.3 Differences of Alice-Bob mutual information (orange curve)  

and Eve information gain (blue curve) between the protocols of  
Version I and Version II (with varying β ) versus  D . 

 
 

2.6 CONCLUSION 

In the search for an ultimately secure key distribution procedure with the most 

pessimistic assumptions, protocols based on violating Bell inequalities were 

conceived. Limiting an adversary, Eve, with only the no-signaling principle while 

being supra-quantum still nevertheless allows for secure key distribution to be 

established. However, in this work we have noted that deriving a secure key and 

  D < 2.4%

β  β = 0

β
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determining a Bell violation are clearly two incompatible processes; one can only be 

achieved maximally at the expense of the other and thus generating the most optimal 

secure key rate must necessarily capitalize on a possible trade-off.  

 In this work, we have considered two variants of a QKD protocol where the 

basic building block would really be two parties committing to measurements, each 

chosen from a set of two bases and each yielding binary results. Version I, which 

allows for the legitimate parties to make measurements with non overlapping bases 

and minimal disclosure of bases (by Alice only) provides for maximal determination 

of a Bell violation. This naturally results in the CHSH protocol (Scarani et al., 2006). 

It however, evidently sacrifices the actual correlation between the resulting shared raw 

key. Version II on the other hand allows for higher correlation between the shared raw 

key though at the expense of ascertaining a Bell violation; hence decreasing the 

legitimate parties' ability to determine how secure their key is from Eve and 

effectively resulting in more bits to be discarded in privacy amplification.  

 We have also used a simpler form of Version II by having a maximal 

correlation between Alice and Bob in one set of bases' choice (setting β = 0 ). On the 

whole, we note that Version II exceeds Version I for disturbance on the channel for up 

to about 3%  and 2.4% , the latter is for the case β = 0 . The latter may provide for 

ease for practical implementation due to having a fixed set of measurement bases for 

any disturbance on the channel while Version II on the whole is better suited for the 

low channel disturbance. 

 We should like to note that about a year after the completion and publication 

of this particular work we came upon a work by Hänggi, Renner, & Wolf (2010) that 

bears  some semblance to ours considering a binary input-output device independent 

cryptosystem in which its security relies on nonlocal correlations and the assumption 
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that the eavesdropper Eve is only restricted by the no-signaling postulate. However, 

we should note the difference nevertheless in our approach where we started off with 

measurement angles α ,β,γ( )  within a quantum scenario and then proceed to 

determine the measurement angles that would maximize Bell violation and those that 

maximize the bit correlation between the parties.  

 Moreover, we limit our study to the case where Eve distributes only two-party 

no-signaling correlation instead of a possible three-party scenario as in Hänggi et al. 

(2010). Our motivation comes from the fact that nonlocal three-party correlations 

result in outcomes for which two out of three parties are totally uncorrelated, resulting 

in the irreducibility of nonlocal three-party correlations to a two-party scenario using 

local operations (Barrett, Linden, et al., 2005). 
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CHAPTER THREE 

DEVICE INDEPENDENT QUANTUM KEY DISTRIBUTION 
USING SINGLE PHOTON ENTANGLEMENT 

 
 
 
 
 
3.1 PUBLICATION 

The main findings reported in this chapter have been published in the journal 

Europhysics Letters, Volume 110, 20003 (2015) as Device-independent quantum key 

distribution using single-photon entanglement, with the citation: (2015) doi: 

10.1209/0295-5075/110/20003. The authors for the publication are (in order as 

appears in the publication) Suhaili Kamaruddin and Jesni Shamsul Shaari. 

 

3.2 INTRODUCTION 

In the aforementioned device independent schemes, entanglement of at least two 

particles is used as the resource for nonlocality. However, the counterfactual 

phenomena is described within the context of a single photon entanglement, which 

can be demonstrated from a single photon incident on a beam splitter. In order to talk 

about counterfactual protocol in a device independent scenario, it is instructive to 

consider the use of single photon entanglement as a nonlocal resource. The possibility 

of utilizing the entanglement between a photon and a vacuum as a means for 

nonlocality was first proposed by Tan, Walls, & Collett (1991), which initially has 

been controversial at best. This issue, at any rate, seems to be settled following the 

discussion made by Van Enk (2005) and Dunningham & Vedral (2007) as pointed out 

by Wildfeuer & Dowling (2008) and later on shown experimentally in Pramanik, 

Adhikari, Majumdar, & Home (2012). 
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 In this chapter, we will consider a QKD protocol based on nonlocality of a 

single particle originally proposed by Lee, Lee, Chung, Lee, & Kim (2003), where 

Alice and Bob, each can randomly choose to perform one of the two projective 

measurements on the entangled state of a single photon and the vacuum. Indeed, it is 

worth stressing that the entanglement is really between the particle number degrees of 

freedom in two spatial modes. The expectation value obtain from the measurements is 

then used to test for violation of a particular version of Bell inequality as in Peres 

(1995). 

 The general features of the protocol itself follows closely that of the previous 

chapter's where the legitimate parties would commit to a measurement that would 

maximize the correlation of the shared raw key. More specifically, it is the protocol of 

Version II of chapter 2 (the case where Alice and Bob use overlapping basis in one set 

of bases' choice). The measurement probes that we consider would be based on 

displacement operators as described in Banaszek & Wódkiewicz (1999) and in 

Wildfeuer & Dowling (2008) where the Clauser-Horne (CH) inequality (Clauser & 

Horne, 1974) is used to check for locality violation. Again, the protocol has the very 

interesting feature according to which no assumptions are made regarding the nature 

of measurements by Alice and Bob which can be seen as black boxes. We then 

present our analysis of security against individual attack within a device-independent 

scenario where Eve is constrained only by the no-signaling principle. Given the 

similarity in structure of the protocol to that of Version II of the previous chapter, the 

security analysis follows where Eve distributes a combination of deterministic as well 

as nonlocal strategies to the legitimate parties.  

 Before we proceed with the protocol, we will first review the quantum 

mechanical description of the beam splitters. 
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3.3 BEAM SPLITTER 

We consider a beam splitter with two input and output ports as depicted in Figure 3.1. 

The two annihilation operators,   â2  and   â3  of the output fields are linearly related to 

the operators of the input field,   â0  and   â1  by 

 

 

  

â2

â3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=U

â0

â1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,  (3.1) 

 

where we define the beam splitter transformation matrix,  U  as 

 

 
  
U = t ′r

r ′t
⎛

⎝⎜
⎞

⎠⎟
,  (3.2) 

 

with the element of the matrix,  r  and  t  being the respective reflectance and 

transmittance of the beam splitter. In order to determine the elements of  U , we would 

assume that the beam splitter is lossless, which implies that the transformation matrix 

 U  is unitary. Hence, we would find that 

 

   ′r = r , ′t = t ; r
2
+ t

2
= 1; t* ′r + r* ′t = 0.  (3.3) 

 

As long as eq. (3.3) holds, it can be seen that the operators of both the input and 

output fields satisfied the following commutation relations 

 

 
  

âi , â j
†⎡⎣ ⎤⎦ = δ ij , âi , â j

⎡⎣ ⎤⎦ = 0 = âi
†, â j

†⎡⎣ ⎤⎦. (3.4) 
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Thus, the unitary matrix,  U  can be written as 

 

 
  
U = cosθ eiϕsinθ

−eiϕsinθ cosθ

⎛

⎝
⎜

⎞

⎠
⎟ .  (3.5) 

 

For  beam splitter (i.e ) and phase shift, , the beam splitter 

transformation matrix  can be represented as the Hadamard transformation matrix, 

 

 
  
U = 1

2
1 1
−1 1

⎛

⎝⎜
⎞

⎠⎟
.  (3.6) 

 

Indeed, it is worth noting that, other forms of  which correspond to different phase 

values are also used in the literature. 

 

 
Figure 3.1 A representation of the input and  

output fields on a beam splitter in  
quantum mechanics. 

 
 
  

 50 :50  θ = π 4  ϕ = 0

 U

 U

a�0 a�2

a�3

a�1

(r,t)

(r',t')
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 Now, let us consider the case where a single photon incident in one of the 

input ports (say, mode  0 ) on the beam splitter. The single photon input state 
 
1

0
0

1
, 

can be rewritten (in terms of the annihilation and creation operator) as 
  
â0

† 0
0

0
1
. For 

the beam splitter described by eq. (3.6), we find that  

 

 
  
â0

† = 1
2

â2
† − â3

†( ),  (3.7) 

 
  
â1

† = 1
2

â2
† + â3

†( ).  (3.8) 

 

Thus, using 
   
0

0
0

1
BS!"! 0

2
0

3
 we may write  

 

 
   

0
0

0
1

BS!"!
1
2

â2
† − â3

†( ) 0
2

0
3

= 1
2

1
2

0
3
− 0

2
1

3( ).  (3.9) 

 

3.3.1 Homodyne Detection 

Let us consider a homodyne detection scheme as depicted in Figure 3.2. The method 

involves combining a signal field to be measured with a beam of strong coherent light 

γ , also called local oscillator, using a beam splitter. The superimposed light can be 

described by the beam splitter transformation of eq. (3.6). Basically, a homodyne 

detection scheme can be divided into two types, that is, balanced and unbalanced 

homodyne detection scheme. 
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Figure 3.2 A representation of a homodyne 

 detection scheme. 
 
 

 A balanced homodyne detection scheme is such that the signal interferes with 

local oscillator at a well-balanced 50:50 beam splitter which results in all four ports 

being used. Meanwhile, the beam splitter of an unbalanced homodyning is 

characterized such that  r << t , which leads to only three out of four ports being 

used. In the limit   t →1 and γ → ∞ , the effect of the beam splitter is described by the 

coherent displacement operator 

 

   D̂(α ) = e− 1
2 α

2

eα â†

e−α*â ,  (3.10) 

 

expressed in terms of the photon creation and annihilation operator,   â†  and   â  as well 

as the coherent displacement  where  denotes the transmissivity of the 

beam splitter. 

 

3.4 THE PROTOCOL  

We consider a single photon entanglement protocol and denote it as SDI protocol. In 

the protocol, we suppose that Alice and Bob share a quantum channel consisting of a 

  α = γ 1−T  T
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light source (LS) that emits a single photon. The single photon passes through a 50:50 

beam splitter (BS), which may be represented by a Hadamard transformation of the 

input modes, consisting of a single photon and a vacuum state (Agarwal, 2013), 

resulting in a state given by 

 

 
  
Ψ = 1

2
1

A
0

B
− 0

A
1

B( ),  (3.11) 

 

where the path accessible to Alice and Bob are represented by mode  A  and  B , 

respectively. We require both parties to commit to measurements where the 

measurement setting in each of the mode consists of a BS and a photon detector where 

a strong coherent state γ  is injected into the second input port of the BS (see Figure 

3.3).  

 

 
Figure 3.3 A schematic diagram of the proposed protocol where  
the single photon entanglement source is under Alice’s control  

and measurement apparatuses are trusted. 
 

D
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 The measurement operators depending on the coherent displacement α  are 

described by  

 

   Q̂(α ) = D̂(α ) 0 0 D̂†(α ),  (3.12) 

 
  
P̂(α ) = D̂(α ) n n D̂†(α )

n=1

∞

∑ .  (3.13) 

 

Here, the operators   Q̂(α )  and   P̂(α )  would give the probabilities for the absence and 

presence of photon(s), respectively, with    Q̂(α )+ P̂(α ) = 1̂  where   ̂1  is the identity 

operator. In what follows, we shall identify the measurement operators on Alice’s side 

with   Q̂A(α )  and   P̂A(α )  while Bob’s with   Q̂B(β )  and   P̂B(β )  in which  and  are 

the coherent displacements correspond to Alice’s and Bob’s measurement operator, 

respectively. 

 Given a quantum state, say ρ , we can calculate the expectation values of the 

measurement operators to determine the probability of each events happening. As in 

this case where ρ = Ψ Ψ , the probability of Alice’s detector clicking when Bob’s 

detector does not click,   QAPB(α ,β ,ρ)  can be obtain from  

 

 

  

QAPB(α ,β ,ρ) = tr Q̂A(α )⊗ P̂B(β ) ρ( ),
= 1

2
e−α 2

α
2
+1− α − β

2
e− β 2( ),  (3.14) 

 

while the probability of Bob’s detector clicking when Alice’s detector does not click, 

  PAQB(α ,β ,ρ)  is 

α β
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PAQB(α ,β ,ρ) = tr P̂A(α )⊗ Q̂B(β )ρ( ),
= 1

2
e− β 2

β
2
+1− α − β

2
e−α 2( ),  (3.15) 

 

in which α  and β  are the coherent displacements for mode  A  and  B , respectively. 

In the instances where no photon registration in detectors of both sides, the joint 

probability distribution,   QAB(α ,β ,ρ)  is given by 

 

 
  

QAB(α ,β ,ρ) = tr Q̂A(α )⊗ Q̂B(β ) ρ( ),
= 1

2
e−α 2

− β 2

α − β
2
,  (3.16) 

 

with the marginal probabilities of no photon count in each modes are 

 

 
   

QA(α ,ρ) = tr Q̂A(α )⊗ 1̂Bρ( ),
= 1

2
α

2
+1( )e−α 2

,  (3.17) 

 
   

QB(β ,ρ) = tr 1̂A ⊗ Q̂B(β )ρ( ),
= 1

2
β

2
+1( )e− β 2

.  (3.18) 

 

 The measurements taking place in both settings are performed when Alice 

randomly chooses between two possible values of   α ∈ 0,s{ } , and Bob between two 

possible values of   β ∈ 0,−s{ }  denoting their measurement ‘bases’. In the events 
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where Alice and Bob happen to choose  α = 0  and  β = 0 , respectively, it can be easily 

shown that for the state ρ = Ψ Ψ , eq. (3.14) and eq. (3.15) thus amount to 

 

 
  
QAPB(0,0,ρ) = PAQB(0,0,ρ) = 1

2
.  (3.19) 

 

Assigning the logical value ‘0’ (‘1’) to the event only Alice’s (Bob’s) detector clicks, 

it is clear that Alice and Bob can share a string of bits. To determine its secrecy, they 

need to assure themselves that the results of their measurements are in fact derived 

from the measurements on the state Ψ  rather than some predetermined states. Thus 

they can resort to checking for a particular Bell violation, i.e. the Clauser-Horne (CH) 

inequality (Clauser & Horne, 1974), by determining the expectation value,  CH  

given as: 

 

   

CH = QAB(0,0,ρ)+QAB(s,0,ρ)+QAB(0,−s,ρ)

−QAB(s,−s,ρ)−QA(0,ρ)−QB(0,ρ).  (3.20) 

 

Note that the nonlocality is satisfied if eq. (3.20) violates inequality   −1≤ CH ≤ 0 . It 

has been shown in Banaszek & Wódkiewicz (1999) that a maximal violation happens 

for  α = −β ≈ 0.5 , a value that can be obtained by minimizing eq. (3.20).  

 The protocol can now be summarized as follows: 

1. Alice and Bob measure states by choosing   α ∈ 0,s{ }  and   β ∈ 0,−s{ }  ( s  

is optimal value for maximal CH violation). 
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2. At the end of transmission and measurement of all quantum states, Alice 

and Bob would reveal over a public channel their measurement bases.  

3. A subset for the measurement results where Alice and Bob both chose 

 α = β = 0  along with the other measurement settings (each randomly 

selected) would be revealed for bit error and  CH  value estimation. 

4. The remaining subset for  α = β = 0  would be used as a raw key. 

5. Based on step 3. above, Alice and Bob may execute error correction and 

privacy amplification to distill a secret key. 

 

3.5 INDIVIDUAL ATTACK FROM SUPRA QUANTUM ADVERSARY 

We assume the worst case scenario as depicted in Figure 3.4, in which Alice and Bob 

are each given access to a black box and the source is controlled by Eve instead of 

carrying out the illustrated operation in Figure 3.4.  

 

 
Figure 3.4 A schematic representation of Figure 3.3 in the  

device-independent scenario where Alice’s and Bob’s  
measurement apparatuses are deemed as black boxes  

and the source is controlled by Eve. 

Bob

Alice

Eve
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 In ascertaining the secrecy of the protocol, we shall consider the case where 

Eve is supra-quantum, i.e. she is not limited by quantum physics though constrained 

by the no-signaling principle. While the protocol described above makes use of 

nontraceless measurement operators and results in a different range of values for a CH 

violation compared to the standard Werner state scenario with a standard spin 

correlation measurement (Wildfeuer & Dowling, 2008), the measurements 

nevertheless do yield binary outcomes. Hence, the protocol is effectively a case in 

which Alice and Bob both make binary measurements with each measurement 

resulting in binary outcomes. This allows for the consideration of an individual attack 

scenario where Eve can be seen as sending to the legitimate parties a mixture of 

deterministic strategies plus a nonlocal box. The nonlocal box itself can be chosen to 

violate the inequality at its algebraic maximum such that even a fraction used may 

nevertheless give Alice and Bob the impression that they are actually measuring 

maximally entangled states.  

 As in Chapter 2, we shall resort to the use of the aPR box (Skrzypczyk & 

Brunner, 2009), which would violate the CH inequality up to its maximal algebraic on 

the negative side of the  CH  range (as opposed to the PR box which violates the 

inequalities on the positive side). We referred to the aPR box of eq. (2.7), where 

  PraPR(ab | xy) = 1
2  for   a + b = xy⊕1  and   PraPR(ab | xy) = 0 , otherwise. In consideration 

of the protocol described in the previous section, the binary inputs   x = 0,1  and 

  y = 0,1 would correspond to the coherent displacements of the measurement 

operators   α = 0,s  and   β = 0,−s , respectively. The binary outputs for   a,b  each as  0  

or  1  would correspond to ``no photons” or ``photon present”, respectively. Here, we 

again use the four deterministic function   G : 4⎡⎣ ⎤⎦ × 0,1{ }→ 0,1{ }  for   r = 1,2,3,4  as 
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defined by eq. (2.8). Of the sixteen possible strategies described by eq. (2.9), the eight 

that are of interest would be the   D12 ,D14 ,D21,D23,D32 ,D33,D41,D44 , which saturate the 

local bound on the negative side of the  CH  range. We denote  
pij  as the probability 

of Eve sending strategy   
Dij  and  pNL  the probability of sending the aPR box. 

 We can see from Table 3.1 that Alice and Bob would share a raw key for 

 (more specifically ) with probability , where 

 and the fraction of error in the key,  pe  is given by 

. With the aPR box violating the CH inequality up to a value of , 

the value Alice and Bob may find for their estimation of local violation,  would 

be 

 

   CH ≥ −1.5 1− ( pD + pe )⎡⎣ ⎤⎦ + (−1)( pD + pe ).  (3.21)  

 

Table 3.1 Table showing probability distribution of Eve sending the corresponding 
strategy (as shown in the parentheses) to Alice and Bob for   x = y = 0 . Note that this 

table is a part of Table 2.2 in previous chapter. 
 
 

  y = 0,b = 0    y = 0,b = 1  

 

  x = 0,a = 0  
   p33 D33( )  

   

pNL 2 PaPR( )
p12 D12( )
p14 D14( )
p32 D32( )

 

 

  x = 0,a = 1  

   

pNL 2 PaPR( )
p21 D21( )
p23 D23( )
p41 D41( )

 

   p44 D44( )  

  x = y = 0  α = β = 0  pNL + pD

  pD = p12 + p14 + p32 + p21 + p23 + p41

  pe = p33 + p44  −1.5

 CH
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 In what follows, we would consider the case where Eve provides for a scenario 

that Alice and Bob would expect from quantum theory. Hence, they would imagine 

that the shared quantum channel is noisy and the single-photon entangled state of eq. 

(3.11) is transformed into a Werner-like state, ρ  (Wildfeuer & Dowling, 2008): 

 

 
  
ρ = F Ψ Ψ + (1− F ) I

4
,  (3.22) 

 

with fidelity,   F = 1  represent the noise-free condition in which . The joint 

probability distribution of no photon registration events in both detectors, 

  QAB(α ,β ,ρ)  is now given as 

 

 
  

QAB(α ,β ,ρ) = F
2

e−α 2
− β 2

α − β
2

+1− F
4

e−α 2
− β 2

1+ α
2
+ β

2
+ α

2
β

2( ),  (3.23) 

 

where α  and β  are the coherent displacements for mode  A  and  B , respectively.  

 The probability of Alice’s detector clicking when Bob’s detector does not click 

and vice versa with  α = β = 0  is given by 

 

 
  
QAPB(0,0,ρ) = PAQB(0,0,ρ) = 1

2
− 1− F

4
.  (3.24) 

 

Thus error,  pe  should be given by 

 

  0 ≤ F ≤1
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pe = 1−QAPB(0,0,ρ)− PAQB(0,0,ρ) = 1− F

2
.  (3.25) 

 

With  α = −β = s , an estimation of CH,  CH  can be shown to be 

 

 

  

CH = 1
4

e−2s2

(−e2s2

(3+ F )− (1+ s2 )2 + F(1− 6s2 + s4 )

+2es2

(1+ s2 + F(−1+ s2 ))).

 (3.26) 

 

Rearranging eq. (3.26) gives us  F  in terms of  CH  as follows  

 

 
  
F =

−4 CH e2s2

− s4 + 2es2

s2 − 2s2 + 2es2

− 3e2s2

−1

−s4 − 2es2

s2 + 6s2 + 2es2

+ e2s2

−1
.  (3.27) 

  

 To ensure that the error  pe  in the key would correspond to the CH violation 

(or lack of it), Eve needs to decide the amount of information she would want to gain, 

 I AE = pD + pe . This defines the value of  CH  Alice and Bob would measure. 

Writing  pe  in terms of  CH , Eve can easily determine the amount of  pe  and  pD  she 

should commit to subject to the constraint  

 

 
  
pD + pe ≤ 2 CH

max
+1.5( ),  (3.28) 

 

where 
  

CH
max

 represent the maximal CH violation. However, care must be taken 

with respect to the value for  pD , as a strategy which sets   pD = 1  would result in no 
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Bell violation without errors, and would not meet Alice's and Bob's expectation for an 

error free channel.  

 From eq. (3.25) and eq. (3.27), we can rewrite the error,  pe  in term of the CH 

violation,  as 

 

 
  
pe =

2 ( CH +1)e2s2

− es2

s2 + 2s2( )
−s4 + 6s2 + e2s2

− 2es2

(s2 −1)−1
.  (3.29) 

 

Applying the Csiszár-Körner theorem, the key rate formula,  K  can be written as 

 

   K = 1− I AE − h( pe ). (3.30) 

 

Given that Eve’s information gain,  I AE = pD + pe  and inequality (3.21), we can then 

rewrite the key rate formula of eq. (3.30) as 

 

 
  
K ≥1− 2 CH +1.5( )− h( pe ).  (3.31) 

 

Inserting eq. (3.29) into eq. (3.31), we can have the achievable key rate shown as the 

solid curve in Figure 3.5 Figure with the maximum key rate obtained being 

approximately 0.22 for zero error rate (  F = 1) and greater than zero for a CH violation 

up to about  −1.08 . This is greater than CHSH protocol (Acín, Gisin, et al., 2006; 

Scarani et al., 2006) for error free scenario (given isotropic distribution) of only about 

0.12 though lesser than Acín, Massar, et al. (2006)  at about 0.414. 

 

 CH
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Figure 3.5 Key rate as a function of CH violation. The solid curve  
represents the achievable key rate in what would be expected by  

Alice and Bob in a quantum scenario provided by the no-signaling  
Eve, while the dashed line corresponds to the case of a quantum  

Eve and trusted devices. 
 
 

 We could consider a more optimistic scenario, where Eve is in fact constrained 

to quantum physics while the legitimate parties trust their devices. Hence, Eve would 

be seen distributing maximally entangled states instead of aPR boxes and separable 

ones for deterministic strategies. The measurement on the maximally entangled states, 

with regard to overlapping measurement basis used in key extraction, violates the CH 

inequality up to   
ξq ≈ −1.108 . Thus, the estimation of local violation  CH  that the 

legitimate parties would find is 

 

 
  

CH ≥ ξq 1− ( pD + pe )⎡⎣ ⎤⎦ + (−1)( pD + pe ).  (3.32) 

 

With Eve’s information gain,  I AE = pD + pe  and eq. (3.32), the key rate formula of eq. 

(3.30) gives the dashed curve in Figure 3.5 for distillable secret key. 
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 Even here, at least for a noiseless channel, the achievable key rate of unity is 

better when compared to the CHSH protocol (about 0.4) under trusted conditions. 

This is mainly due to the fact that unlike the CHSH protocol, the SDI protocol does 

not suffer from issues of non overlapping measurement basis for key extraction 

purpose. It is possible to consider the statistics of the individual terms of eq. (3.20) for 

a Werner-like state and let Eve's attack to be further constrained so as these would be 

true. However, without doing so, we would thus limit ourselves to the minimal 

consideration to ensure a secret key could be derived. 

 

3.5.1 Decoupling; a non quantum picture 

In this short subsection, we consider relaxing the requirement, that is, Eve is not 

required to provide a scenario that is expected by Alice and Bob from a quantum 

theory. 

 It is worth noting that, with respect to Table 3.1, strategies inducing errors are 

essentially decoupled from error-free strategies; i.e. Eve can choose not to induce any 

error by simply not sending the   D33  and   D44  strategies. On the other hand, should she 

choose to introduce errors, she would very well decrease the correlation in Alice's and 

Bob's strings which need to be subjected to error correction without penalizing her 

own information gain, which is maximal whenever she sends deterministic strategies. 

The key rate given in eq. (3.30) is necessarily a function of both the estimation of 

local violation,  and error rate,  (refer to Figure 3.6). The former is to ensure 

that the legitimate parties have some correlations derived from nonlocal resources 

while the latter is necessary for error correction purposes. Such a feature is actually 

not at all surprising and is ultimately the result of using overlapping basis 

measurements for key generation purposes. 

 CH  pe
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Figure 3.6 Key rate as a function of error rate,  pe  and  

estimation of local violation, CH. 
 
   

 As an example, if we imagine a protocol where Alice and Bob commit to 

measurements in the bases  Ai  and  Bi  respectively for   i = 1,...,n . With measurements 

on a maximally entangled state and   Pr(ak = bk | Ak Bk ) = 1  for a particular  k , while the 

other   n−1  measurements are used for estimating some Bell violation, an 

eavesdropper could always send deterministic strategies corresponding to eigenstates 

of the measurement operators of  Ak  and  Bk  to ensure Alice and Bob would always 

get correlated results. The case for overlapping bases measurements that result in anti-

correlations between Alice and Bob instead would be completely equivalent.  

 In such a noise free scenario, the key derived is completely insecure. This is 

why the ‘Ekert’ like protocol in Acín, Massar, et al. (2006) using only one 

overlapping measurement basis between Alice and Bob to derive a key requires a 

combination of sufficient statistics to ensure a Bell violation along with the key rate 
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given. On its own, the key rate formula (which can be effectively written only as a 

function of errors) does not provide for a secure key. Such freedom on Eve's side 

however may not spell for a very useful scenario. A quick example is if we assume 

that Eve makes use of an isotropic distribution in describing her strategies; with 

  pe = (1− pNL ) 4 , it can be shown that no positive key rate may be gained despite a 

maximal CH violation. This would be counterintuitive to Alice and Bob who would 

imagine that a maximal violation can only be the result of a noiseless channel.  

 

3.6 CONCLUSION 

In this chapter, we have analyzed a QKD protocol relying on the nonlocality features 

of a single particle to demonstrate its security within a device independent context. 

Regardless of how the protocol is illustrated, the security analysis assumes that the 

legitimate parties are up against an individual attack strategy prepared by an 

eavesdropper limited only by the no signaling principle. We have shown that a secret 

key can be extracted from a mixture of deterministic strategies and a nonlocal one i.e 

anti-PR box distributed by Eve. 

 In presenting a reference for realistic settings where errors in the key should 

imply a decrease in the CH violation (as would be true if dealing with a Werner like 

state), we considered the case where Eve prepared a scenario that would be expected 

by Alice and Bob from quantum theory. In this scenario, Eve has the freedom to 

determine the amount of her information gain,  I AE  which must always satisfy the 

constraint 
  
pD + pe ≤ 2 CH

max
+1.5( ) . As long as this holds, it represents the minimal 

consideration for parameters to be estimated by the legitimate parties in a realistic 

scenario for sufficiency to assume access to a Werner like state without compromising 
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security. We show that a positive key rate may be obtained for a CH violation up to 

 −1.08 . 

 Given the overlapping measurement basis, we also note how Eve's strategy 

decouples the error induced from meaningful information gain on her side. It thus 

becomes essential for the key rate to be described in terms of both local violation and 

error rate; while the latter is essential in determining the amount of correlation 

between Alice's and Bob's raw keys, without the former, there is no guarantee for the 

secrecy of the key.  
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CHAPTER FOUR 

DEVICE INDEPENDENT COUNTERFACTUAL QUANTUM KEY 
DISTRIBUTION 

 
 
 
 
 
4.1 INTRODUCTION 

While CQKD gives the picture of a secure protocol where no signal is effectively sent 

between the legitimate parties, the basis for the protocol is really the quantum 

phenomena of entanglement, in this case, between a polarized photon and the vacuum. 

Entanglement which can be viewed as the source of the nonlocal nature of quantum 

theory is however not verified in the protocol and this begs the question if the entire 

protocol can be simulated by a setup which does not require the use of entanglement. 

This is our starting point for understanding the possible security that can be achieved 

within a device independent framework.  

 Stressing the fact that such a framework represents an extremely pessimistic 

stand where the very apparatus used by the legitimate parties could in principle be 

constructed by Eve (for her benefit), like the earlier chapters, we consider an 

eavesdropper who would be supra-quantum in the sense that she has access to 

nonlocal correlations that go beyond afforded by quantum physics, limited only by the 

no-signaling principle. 

 In the following, we will show that given the device independent framework 

for secrecy, the CQKD as proposed by Noh (2009) is in fact completely insecure. 

Though actually this is the case even if Eve is limited only by quantum physics. We 

propose a setup for which would be considered as black boxes for Alice and Bob to 

completely simulate the expected statistics of the CQKD while allowing Eve to have 
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full knowledge of the shared key. The setup would consist of only separable systems 

as signals and we further show that protocol fails even in the case of entangled 

sources. Given that, we identify the essential source of insecurity and propose a 

modification and subsequently a proper CQKD, which would be secure within a 

device independent framework. 

 

4.2 COUNTERFACTUAL PROTOCOL 

Let us begin with a description of the counterfactual protocol in reference to the 

protocol of Li (2014). It must be noted that this description is completely equivalent to 

the one proposed by Noh (2009); though it has, to a certain extent, some simplicity in 

its description. We imagine that two parties, say Alice and Bob, share a setup as 

depicted in Figure 4.1.  

 

 
Figure 4.1 A diagram of counterfactual protocol proposed by 
Li (2014). BS1 and BS2 are beam splitters, D1, D2 and D3  

are detectors, M1 and M2 are mirrors and  
PBS is a polarizing beam splitter. 

BS2
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PBS D1

D2

D3

S Alice

Bob
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 The protocol starts when Alice triggers the photon source (S) that emits a pulse 

containing a single-photon. Depending on Alice's random choices, the single-photon 

could be in either horizontally polarized state , which represent Alice's bit ‘0’ or 

vertically polarized state  as bit ‘1’. The single-photon pulse passes through a 

50:50 beam splitter (BS1) in which the output results in either one of the following 

states (in accordance with Alice’s choice of polarization state): 

 

  (4.1) 

  (4.2) 

 

where  denotes the vacuum state with  represent the path towards Alice’s 

mirror M1 and Bob’s site, respectively. We further denote the paths ,  and  

for the paths from the source towards M1, from the beam splitter BS1 to the mirror 

M2 and from M2 to BS2 respectively. 

 The pulse that travels through path  B  is reflected by M2 before entering the 

input port of the polarizing beam splitter (PBS) on Bob’s site. Bob will randomly 

choose between horizontal and vertical polarization to represent his bit. The PBS is 

configured such that, if Bob’s choice of polarization is not equal to Alice, the PBS 

will transmit the pulse towards BS2 and the split pulse that travels in the two modes 

are recombined at beam splitter, BS2. In an ideal setting, the interference effect will 

cause the photon to be detected at D1 with certainty. However, if the incoming 

polarization is the same with Bob’s choice, the pulse will be reflected towards Bob’s 
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measurement setting, which consists of photon detector, D3. The measurement 

process will cause the state 
 
Ψ

H
 to collapse to either 

  
H

A
0

B
 or 

  
0

A
H

B
; or state 

 
Ψ

V
 to either 

  
V

A
0

B
 or 

  
0

A
V

B
, which eventually destroys the interference. 

 In the event that the state collapses to either 
  
H

A
0

B
 or 

  
V

A
0

B
 the detector 

D1 and D2 in Alice’s site will click with equal probability. On the other hand, if the 

state collapses to either 
  
0

A
H

B
 or 

  
0

A
V

B
, the detector D3 will click with 

certainty. At the end of transmission, Alice and Bob will reveal which of their 

detectors click. The case of detector D3 clicking implies that Alice gets nothing, while 

a click of either D1 or D2 implies that Bob effectively did not receive a photon. As D1 

also clicks in the case of an interference, only the click at D2 provides Alice with a 

conclusive guess of Bob's choice of polarization. Thus the raw key will be extracted 

from the event in which detector D2 clicks. 

 

4.2.1 Security Analysis and Black Boxes 

In this section, we will describe the counterfactual protocol within a device 

independent scenario in which Alice and Bob are provided with untrusted devices and 

they have no knowledge of the internal function of the QKD devices. The adversary 

may configure the devices such that they will simulate the results that would be 

obtained from executing a counterfactual QKD protocol as described above. 

 In what follows, we can view these devices as black boxes (`A' for Alice and 

`B' for Bob) each provided with binary input, say a `H' and a `V' button as potrayed in 

Figure 4.2. For definiteness, we define `H' as bit `0' and `V' as bit `1'. We further 

consider two different strategies by Eve in determining how the black boxes should 

behave. In either case, Eve would be distributing tripartite states to Alice and Bob, 
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though in the first strategy, the states between Alice and Bob are completely separable 

and the second, an entangled bipartite state is separable from a (relevant) third 

polarized state.  

 

 
Figure 4.2 A schematic diagram of the proposed protocol. 

 
 

4.2.1.1 CQKD with separable states 

Let us now propose a protocol by prescribing requirements of how the boxes should 

behave in order to replicate the effects of the counterfactual QKD.  

 Suppose Alice chooses to click one of the buttons; instead of sending a 

polarized state to a beam splitter as in the actual counterfactual QKD, the state that is 

really being distributed is a three-qubit state, either: 
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A
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B
m

B
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B
,  (4.3) 
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where   m∈ H ,V{ }  depends on Alice's choice of a button and the subscript  A  and  B  

represent the qubit that is being distributed to Alice and Bob, respectively. While we 

do not make any requirement on state  
m

B
 to be a polarized state we nevertheless 

assume so in what follows for the sake of simplicity. The two-qubit state (either 

  
1

B
m

B
 or 

  
0

B
m

B
) would then be sent to Bob's box, B. Bob will also randomly 

choose between his `H’ or `V’ button.  

 At first glance, it may seem as if information is leaked out of Alice's site by 

sending the state  
m

B
 over to Bob. However, in a counterfactual perspective, it is 

crucial that the state  
m

B
 i.e the polarization degree of freedom to be accessible to 

Bob otherwise the PBS cannot work. Eve would eventually know the values of  m  as 

she can make a measurement to distinguish the two polarization states perfectly. 

Based on the choices made by Alice and Bob, we will consider the following two 

cases. 

 Case 1: Alice’s and Bob’s bit do not match.  Bob’s device will resend the 

second qubit to Alice’s site. This qubit along with her qubit would be inputs to box A 

in which would result in D1 clicking. This replicates the interference effect of the 

counterfactual QKD. We note that while this may seemingly ‘violate’ a requirement 

of device-independence where no information is leaked from Bob’s station, we argue 

this to be exceptional given the necessary channel (path   B2 ) from Bob to Alice in a 

counterfactual setup. 

 Case 2: Alice’s and Bob’s bit coincide. Bob’s box will not send anything 

towards Alice’s site. This action is similar to the path-blocking procedure as in Noh 

(2009) and Li (2014). We then consider the following scenarios: 
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1. In the event where Eve had distributed 
  
1

A
0

B
m

B
, Alice’s qubit 

  
1

A
 

will be submitted to box A to result in either detector D1 or D2 clicking 

with equal probability.  

2. On the other hand, had Eve distributed 
  
0

A
1

B
m

B
, then Bob’s detector 

D3 will click. When box A detects Alice’s qubit as 
  
0

A
, neither D1 nor 

D2 click. 

 The above can in fact be achieved by first equipping box B with a 

measurement device to distinguish between the polarization states of the third 

incoming qubit; whether it is horizontally or vertically polarized. Since it is 

orthogonal, then it can be done perfectly. We further require box B to act as follows: 

when Bob inputs a choice for polarization (using either the H or V button), his choice 

would be compared to the polarization of the incoming qubit. If they are the same, a 

further measurement is made to distinguish between states 
  
0

B
 and 

  
1

B
 of the 

second qubit. In the case of the latter, the detector D3 is fired. Either way the process 

for box B ends and no qubit is sent out of Bob’s site. On the other hand, if the 

polarization of the incoming qubit is different from Bob’s button choice, the second 

qubit is sent to Alice. 

 In order to simulate the counterfactual protocol we propose the following 

ansatz. For Case 1, we require that box A to behave as such that the probability of 

detector  clicking given  is written as 

 

 
  
P(Dj | i⊕1

B
i

A
) = 1+ (−1)( j+1)

2
,  (4.4) 

 

  Dj
  
i⊕1

B
i

A
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in which   j = 1,2  and   i = 0,1 . Meanwhile, in Case 2 we need box A to behave as such 

that the probability of detector  clicking given 
  
no input

B
i

A
 is  

 

 
  
P(Dj | no input

B
i

A
) =

1
2 , i = 1

0, i = 0
,

⎧
⎨
⎪

⎩⎪
 (4.5) 

 

for   j = 1,2  with 
  
no input

B
 represents the event when there is no incoming qubit 

from Bob. This box can be done by virtue of having the  CNOT  function in which 

  CNOT : b,a → b,a⊕ b . Hence, let us reconsider both cases.  

 In Case 1, box A will receive the second qubit from Bob as well as Alice’s 

qubit as inputs. Box A will then perform the  CNOT  function on either one of the 

following: 

 

 
  
CNOT 0

B
1

A
,  (4.6) 

 
  
CNOT 1

B
0

A
,  (4.7) 

 

with Alice’s resulting state would eventually be detected by either detector D1 or D2. 

Assuming that detector D1 will detect state 
  
0

A
 and D2 will detect state 

  
1

A
, the 

above  CNOT  function will eventually result in D2 only clicking. 

 When Alice’s and Bob’s bit are the same, no qubit from Bob will be sent out 

to box A. In the event where box A detects Alice’s qubit as 
  
1

A
, it will perform a 

 CNOT  function on state 
  
x + = 0 + 1( ) 2  along with Alice’s state written as 

  Dj
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CNOT x + 1

A
. (4.8) 

 

We can assume that the state  x +  is supplied by the box A. As a result, with 

equiprobability detector D1 and D2 will click. On the other hand, if state 
  
0

A
 is being 

detected, then box A will end its process. 

 As demonstrated above, Eve can perfectly simulate the protocol by distributing 

a system that is made up of entirely separable states. As she knows the values of  m , as 

well as when Alice and Bob accepts or rejects a run, Eve basically has complete 

knowledge of the key. It is then obvious that the protocol presented by Noh (2009) 

and Li (2014) are not secure in a device independent context.  

 

4.2.1.2 CQKD with entangled states 

The requirement made in Noh (2009) and Li (2014) to disclose ‘which detector 

clicked’ in public channel was intended to allow for Alice and Bob to know when a 

bit is accepted for key purposes. This however actually provides Eve with information 

on the bit string regardless of whether the qubits are entangled or not. Let us suppose 

that the state,  
Ψ

m
 being distributed are as follows: 

 

 
  
Ψ

m
=

1
A

0
B
− 0

A
1

B( )
2

⊗ m
B

,  (4.9) 

 

in which   m∈ H ,V{ }  depends on Alice's choice of a button. Since the state 
 
H

B
 and 

 
V

B
 can be measured perfectly without disturbing the entangled state, then knowing 
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‘which detector clicked’ will allow Eve to know with certainty which bit is accepted 

as a key. As a matter of fact, this strategy is much more straightforward than the case 

for the separable states as Eve does not need to prescribe the various ways the boxes 

behave as described in the earlier subsection. It is only more demanding in the context 

of Eve having perfect control of some entangled state.  

 We note clearly that the main loophole in the protocol comes from the 

revelation of ‘which detector clicked’ as in either strategy, Eve knows fully well on 

the values of  m  which she can determine. One way of closing this loophole while still 

allowing for the legitimate parties to share a key is by having Alice to only declare 

when detector D2 clicks. In this way, whenever Bob does not measure a photon (D3), 

he would know when D2 clicks thus not use those for key sharing and when D1 clicks 

for key bits.  

 The second less obvious loophole is the case for Bob’s resending of a qubit in 

the path   B2  as in the separable state strategy. Hence, if Alice and Bob were to drop 

this requirement i.e. they do not reveal which detector clicked in the public channel, or 

at most mention only when D2 clicks, and assure themselves that their first two qubits 

are in fact a maximally entangled states (which can violate a Bell inequality) then it is 

possible for them to extract a secure key.  

 By not revealing the information on ‘which detector clicked’, Eve would not 

have known which bit is going to be accepted even if the strings for raw key is 

publicly broadcasted. It would seem that both scenarios can be viewed as a separate 

system. In what follows, we are going to propose a framework for device independent 

counterfactual QKD (DI CQKD) based on these conditions. 
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4.3 THE PROPOSED COUNTERFACTUAL PROTOCOL 

In this protocol, we suppose that Alice and Bob would share two setups as shown in 

Figure 4.3. For definiteness, we named the setup that consists of source   S1  as Setup 1 

while the other as Setup 2.  

 

 
Figure 4.3 A schematic diagram of the proposed  

counterfactual protocol. 
 
 

 In Setup 1, we will consider the SDI protocol of Chapter 3 in which Setup 1 

starts as Alice triggers the single photon source . The resulting state, Ψ  from 

single photon incident on the 50:50 beam splitter (BS) is given by 

 

 
  
Ψ = 1

2
1

A
0

B
− 0

A
1

B( ),  (4.10) 
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where  and  are the path towards Alice and Bob, respectively. Both parties then 

commit to an unbalanced homodyne measurement with a strong coherent state  

where  represent the coherent state used in Alice’s and Bob’s measurement 

setting, respectively. The event of either Alice’s or Bob’s detector click corresponds 

to the binary value for the bit strings. A certain amount of secrecy (i.e. non zero value 

for Eve’s uncertainty) is assured by having Alice and Bob testing for a CH inequality 

on the measurement that they should make. For detailed description of the protocol, 

we referred to Chapter 3 of this thesis. 

 Meanwhile, in Setup 2, Alice would prepare the qubit to be in either 

horizontally polarized state  H  or vertically polarized state  V . She would then 

submit this qubit to Bob where he will measure it in the rectilinear basis (this can be 

achieved by a polarizing beam splitter with two detectors) and the measurements 

would distinguish between the polarization states perfectly. For the sake of simplicity, 

we shall assume that the channel for Setup 2 is completely error free. This is not 

unreasonable as given the fact that the states can be distinguished perfectly, even by 

Eve, one can imagine that there is no reason for them to be transmitted as single 

photons subject to a depolarising channel; rather these states can be essentially 

‘broadcast’ and the only real critical issue is to have it authenticated. Note that, we 

also do not put the requirement that both setups need to be performed simultaneously. 

Now, using the results from both setups we can establish the key as follows. We 

discard the result for all runs in Setup 2 that correspond to bit 1 in Setup 1. The 

remaining bits from Setup 2 will then serve as key strings for Alice and Bob. As an 

example, imagine a sample of the strings resulting each from Setup 1 and Setup 2, as 

shown from Table 4.1.  

 A  B

 
γ

j

  j ∈ A, B{ }
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Table 4.1 Sample of strings resulting from Setup 1 and Setup 2. 
 

Setup 1 results 0 1 0 0 1 0 1 1 0 

Setup 2 results H H V H V V H V H 

 
 

         

After discard H  V H  V   H 

Raw key 0  1 0  1   0 

 
 

 Alice and Bob, without disclosing publicly could discard the results of Setup 2 

corresponding to bit 1 of Setup 1 to result in the following string: ‘H V H V H’. 

Representing H as 0 and V as 1, we can see how the binary string now shared between 

Alice and Bob derived from Setup 2 can be used as a raw key which contains some 

uncertainty for Eve due to her ignorance of exactly which results are to be discarded 

and which to retain. As the bits between Alice and Bob in Setup 1 must be necessarily 

correlated (perfectly) it is obvious to note that an error correction procedure needs to 

be done for the results of Setup 1 prior to the establishing of the key based on Setup 2 

as just described. 

 The protocol can now be outlined as follows. 

1. Alice submits a photon to the 50:50 beam splitter, resulting in an 

entangled states of single photon and vacuum that is accessible to both 

Alice (in path  A ) and Bob (in path  B ). 

2. Both of them would make a homodyne measurement, identical to the ones 

presented in Chapter 3. 
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3. After completing the transmission and measurement process, Alice and 

Bob would estimate the CH value on the measurement results and perform 

error correction procedure. 

4. Note that steps 1 to 3 are identical to the protocol described in Chapter 3, 

with the exception of privacy amplification, which we do not execute. 

5. Alice sends to Bob a string of polarized photon. 

6. Bob measures the states using rectilinear basis. 

7. Based on the results of step 2 and 5, the legitimate parties will discard the 

rounds in both setups, which corresponds to bit 1 of Setup 1. 

8. The remaining bits would then be used as a raw key. 

 It is worth noting that we are proposing an equivalent protocol to CQKD 

within a device independent scenario. By equivalence we mean that the protocol 

actually capitalizes on the nature of single photon entanglement while the bits used for 

key is derive from the case where photons have not travelled to Bob but only to Alice. 

This is in fact the working principle for the CQKD. In what follows we will provide 

an analysis of the proposed protocol's security. 

 

4.3.1 Security Analysis 

Supposedly, Alice and Bob share  N  bit strings in which we consider that on average, 

there would be an equal number between bit 0 and bit 1.  Within these  N  bits, there 

are  U  bits that are unknown to Eve in which half of them will eventually be 

discarded. Hence, the possible ways for the parties to throw out the bits,  W  can be 

determine as follows 
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W =
U
U
2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= U !
U
2 ! U − U

2( )!.  (4.11) 

 

Eve’s uncertainty,  U E  related to the unknown bits is given by the Shannon entropy of 

eq. (1.17) as 

 

   

U E = − 1
W

log2

1
W

⎛
⎝⎜

⎞
⎠⎟∑

= log2W .  (4.12) 

 

 Now, let us apply the above scenario in which Alice and Bob would initially 

share  N  bits string to the SDI protocol of Chapter 3. Similarly, we imagine that Eve 

would not have any knowledge on  U  bits out of these  N  bits. Then, Eve’s 

uncertainty per bit for this protocol is given by  

 

 
  
U
N

≈ pNL ,  (4.13) 

 

which is approximately equal to the probability of Eve sending a nonlocal box,  pNL .  

 Let us consider a scenario where Alice and Bob discard an equal fraction of 

bits in the SDI protocol i.e. the bits that correspond to Eve sending nonlocal boxes is 

halved. Therefore, the uncertainty that she has in that scenario,  USDI  would be 
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USDI = − 1

2
U
2

log2

1

2
U
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⎛
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= log2 2
U
2

= U
2

.  (4.14) 

 

We define  R  as the ratio of the uncertainty of this protocol to Eve’s uncertainty when 

half of SDI protocol bits are discarded in which can be written as 

 

 
  
R =

log2W
U
2

.  (4.15) 

 

In the limit of long keys i.e. as  U  approaching infinite, we obtain 

 

 
  
lim
U→∞

R = 2,  (4.16) 

 

as shown in Figure 4.4. This is of course the result that we would attain considering 

that the number of the two bits are equal.  

 With Eve’s uncertainty,   Eu = pNL ⋅R  and Eve’s information    I AE = 1− Eu , the 

key rate,  K  is given by the following formula 

 

   K = 1− I AE − h(eAB ),  (4.17) 

 

in which the   h(⋅)  is the binary entropic function. Note that  eAB  is the error between 

Alice and Bob, which corresponds to Setup 1. 
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Figure 4.4 The ratio of this protocol to SDI protocol versus  

Eve’s unknown bits,  U . 
 
 

 Hence, it is instructive to compare the performance of DI CQKD with SDI 

protocol of Chapter 3. We note that the key rate that is described in eq. (4.17) should 

be divided by 2 when comparing the protocols. This is due to our assumption that the 

number of bit ‘0’ and ‘1’ in the string are necessarily the same. As we can see from 

Figure 4.5, the maximum key rate achievable for the DI CQKD protocol (represented 

as the solid curve) being approximately 0.22, which is the same as the SDI protocol 

described by the dashed curve. However, it is obvious from the graph that the key rate 

of DI CQKD is non zero for a CH violation up to about  −1.06  whereas the SDI 

protocol obtain a non zero key rate only up till  −1.08  of the CH violation. The DI 

CQKD perform better than the SDI protocol, as the key rate of DI CQKD remains 

greater than the key rate of SDI protocol throughout the graph. This obvious 

increment is the result of Eve’s information being suppress in the DI CQKD making 

her uncertainty per bit is twice than that of SDI protocol. 
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Figure 4.5 Key rate versus estimation of local violation,  CH . The  
dashed line represent the achievable key rate of SDI protocol, while  

the solid curve corresponds to the DI CQKD protocol. 
 
 

 The case for Eve’s increased uncertainty may not be as surprising if one 

considers the simple case of using a ‘partially’ secret key to encrypt a message, say by 

a simple XOR procedure. Assuming both the key and the message are strings of bits 

such that there are no correlations between the bits, then the encrypted message 

cannot provide any more information to Eve than the key does. As an example, if we 

imagine the case where Eve knows parts of the key while being ignorant of the rest; 

an XOR of a known bit with a completely unknown one would result in a bit with the 

equal probability of being one or the other; thus maximum uncertainty for that bit. An 

analogous argument holds for the compromised parts of the bit to Eve’s benefit. 

Although admittedly this example is different from what we are currently dealing 

with, it exemplifies the possible fact that using a partially known key to encrypt (in 

the simple manner above) should not decrease Eve’s uncertainty of the cryptogram 

beyond her uncertainty of the key. 
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 In our case above, we see that the final bit value is strongly dependent on its 

position and whether the bits before it were accepted or otherwise, for which the latter 

is decided by the ‘partially secret key’ of Setup 1. In other words, the case we 

consider here is actually a mapping of the known message (of Setup 2) to a shorter 

string with the number of possible mapping determined by the number of how many 

ways one can have a binary string of equal numbers of 1 and 0 from Eve’s unknown 

subset derived from Setup 1. Admittedly, the key rate derived is an optimistic scenario 

as we do not consider the possibility of mappings resulting in identical strings 

(collisions) though the probability of such an event we believe can be made small by 

having longer strings. We admit that these arguments are heuristically in nature and it 

is desirable to have a more rigorous proof. However, we also understand that such a 

matter may be highly nontrivial and we would consider it as part of future work. 

 

4.4 EXTENDING TO CQKD WITH BELL TEST: A DI CQKD 

The above scenario we considered is based on the equivalence of the CQKD protocol 

and any QKD protocol that sees a bit being shared between Alice and Bob with no 

(nett) signal being sent between them. It is not difficult to imagine how we can apply 

the above scenario to a CQKD with a Bell test.  

 Let us consider the CQKD with the following addendum: 

1. Bob’s measurement is not simply a click of the detector when a signal 

reaches it (in a successfully blocked scenario), but the measurement would 

be a homodyne detection like that of Setup 1 (with coherent displacement 

of  β = 0,−s ). 

2. Alice has a choice of either 



 

88 

a. making a measurement like that of CQKD where she may have D1 or 

D2 clicking or only D3 clicks when Bob successfully blocks (we refer 

to this as the Key Mode, or KM); or 

b. making a CHSH measurement like that of Setup 1 in which the beam 

splitter, BS2 of Figure 4.1 would be removed (we refer to this as the 

CHSH mode, or CHSHM). 

 We do not specify exactly how this can be experimentally achieved except that 

Alice's buttons would allow her to do as above. Hence, we can imagine the protocol to 

run as follows: 

1. Alice determines whether she wants to perform KM or CHSHM. 

2. With probability   1− c , she commits to perform KM and with probability 

 c , she commits to CHSHM measurement. 

3. Bob will randomly decide on his polarization. He will also randomly 

choose between the possible configurations for his homodyne detection. 

4. At the end of the protocol, Alice announces when she actually used a 

CHSH measurement.  

5. Based on item 4, Alice and Bob would determine their CHSH value. 

6. For the remaining runs, Alice would only announce instances when she 

gets a click at D1 (which would be discarded).  

7. Runs where Alice chooses KM and Bob chooses  β = −s  would also be 

discarded (Bob would need to announce these). 

8. The remaining runs would then be subjected to the sifting procedure of 

our equivalent protocol of the prior section. 

 The above protocol is in effect the CQKD with a Bell test. At first glance it 

would seem that Alice and Bob would have plenty buttons to choose from; i.e. Bob 
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has 4 - a combination of two polarization and two homodyne parameters while Alice 

has a choice of 6 - two buttons for KM and 4 buttons for CHSHM. However, if we 

assume that Eve distributes the signals (strategies) to both Alice and Bob, we can 

assume she knows perfectly the polarization values (reducing this to the equivalent 

protocol where the polarization states are ‘broadcasted’). Further to that, we assume 

the CHSH test would be done for separate choices of polarizations; thus this 

effectively makes Bob’s choice of buttons only 2.  

 A similar argument would reduce Alice’s to 3; where 2 of it is used for CHSH 

check. This effectively results in a protocol with 2 measurement basis on Bob’s side 

and 3 on Alice’s, similar to that of Acín, Massar, et al. (2006). As the key is derived in 

cases where Bob successfully blocks the signal, with the actual information of which 

detector clicked (Alice’s or Bob’s side) not divulged, this results in an identical 

scenario as the case for the equivalent protocol. Obviously there would be some 

differences in a detailed analysis (example, whether there would be errors related to 

Bob’s choice of polarization when compared to Alice which we assume as non), 

though one can see that Eve, not knowing which button Alice (nor Bob) presses, the 

strategies she sends to determine which detectors actually clicked in the cases where a 

key is derived would also be the same type of strategies sent when a CHSH is tested; 

thus we conclude that the amount of nonlocal strategies resulting in a CHSH violation 

in a CHSHM would also be the (statistically) same amount that would allow for Alice 

and Bob to share a key in the KM. Thus we argue that the security of the DI CQKD 

reduces to that of the equivalent protocol.  
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4.5 CONCLUSION 

In this work, we have outline the counterfactual QKD as described by Noh (2009) and 

Li (2014) and analyzed the security of the counterfactual protocol within a device 

independent context. We eventually show that the security of the protocol is 

compromised, as the protocol is reproducible using separable states, resulting in 

entirely classical correlations between the systems where the states can actually be 

predetermined by Eve.  We further show that the need for the legitimate parties to 

disclose ‘which detector clicked’ in the public channel has given Eve access to the 

information of the shared key despite the state being entangled. This is because the 

entanglement is only between the first two qubits while the polarized state that is used 

to establish the key string is not. Hence, we propose our own (equivalent) version of a 

device independent counterfactual QKD (DI CQKD) with the basic building block 

being the SDI protocol of the previous chapter. 

 Subscribing to a heuristic analysis for an individual attack strategy by a supra-

quantum Eve, we compare the performance of DI CQKD and SDI protocol. Based on 

our findings, both the DI CQKD protocol and SDI protocol achieve the same highest 

key rate of approximately 0.22. However, we note that the performance of DI CQKD 

protocol exceeds SDI as a positive key rate is obtained for a violation of CH up till 

 −1.06  compared to SDI that is only up to  −1.08  with the DI CQKD key rate being 

greater than that of SDI the entire time.  

 Finally we show how one can actually use this equivalent protocol to construct 

a DI CQKD where selected runs of a conventional CQKD (similar to Li (2014)) is 

randomly substituted with runs to determine a Bell violation.  
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CHAPTER FIVE 

CONCLUSION AND FUTURE OUTLOOK 
 
 
 
 
 
5.1 INTRODUCTION 

The main objective of this thesis is to propose a device independent framework for the 

counterfactual QKD of Noh (2009) and Li (2014). We divided the thesis into five 

chapters in which Chapter 1 consists of some background on QKD and DI QKD. We 

opted for a concise approach to the chapter, highlighting only what we believe is the 

more necessary elements. 

 Chapter 2 sees our first contribution where we consider an optimized QKD 

setup in which the parties commit to measurements with binary input and output. 

Here, Eve is assumed to be supra-quantum, that is, she is only constrained by the no-

signaling principle. We compare between two different versions of the setup in which 

we consider Version I as the event where only Alice disclose her measurement bases. 

On the other hand, Version II would refer to the event where both Alice and Bob 

reveal their bases over the public channel. In both versions, Alice and Bob will 

determine the security of the protocol against an individual attack by Eve by means of 

checking for violation of CHSH inequality, on a subset of the measurement results. A 

key can be derived by optimizing the angles of the measurements. We also consider a 

simpler form of Version II by having a maximal correlation between Alice and Bob in 

one set of bases' choice by setting  β = 0 . We note that Version II exceeds Version I 

for disturbance on the channel for up to about  3%  and  2.4% , the latter is for the case 

 β = 0 . Despite being more generic in nature, we use the result of this chapter, namely, 

the case of  β = 0  in the following chapter on single photon entanglement QKD. 
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 In Chapter 3, we have analyzed a QKD protocol relying on the nonlocality 

features of a single particle to demonstrate its security within a device independent 

context. Regardless of how the protocol is illustrated, the security analysis assumes 

that the legitimate parties are up against an individual attack strategy prepared by an 

eavesdropper limited only by the no-signaling principle. In order to determine its 

secrecy, the legitimate parties resort to observe the violation of the CH inequality. We 

show that a positive key rate may be obtained for a CH violation up to  −1.08 .  

 We start off Chapter 4 by describing the counterfactual protocol of Noh (2009) 

(or more precisely as presented by Li (2014)). We then proceed to show that the 

protocol is insecure in a device independent scenario. The main reason for the 

insecurity can be attributed to two main elements. They are 

1. Alice’s and Bob’s complete disclosure of detector clicks; 

2. absence of a CHSH check (which is a necessary ingredient for all device 

independent QKD). 

Consequently, we propose a framework for device independent counterfactual QKD 

and then heuristically show that it is possible to have a positive key rate; which is 

impossible for the original CQKD protocol. This essentially concludes the 

development of the device independent framework for counterfactual QKD. 

 In the next section, we present several suggestions for future outlook that are 

of interest but unable to cover in a justifiable manner.  

 

5.2 FUTURE OUTLOOK 

The current work would contain interests in both the cryptographic as well as a more 

fundamental nature for future research. In the ensuing subsection, we will present 

cryptographic concerns borne from this work first before delving into fundamental 
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issues. It would be interesting to note that these latter issues may open up new 

perspectives in quantum physics.   

 

5.2.1 Cryptographic interest: Eavesdropping strategy 

In a standard QKD protocol, Eve's strategy can generally be divided into three types 

of attacks, namely, individual attack, collective attack and joint attack. Recall that in 

individual attack, Eve probes and measures Alice's and Bob's quantum systems 

separately and independently, using the same strategy (Gisin et al., 2002).  

 According to Gisin et al. (2002), a collective attack can be described as a 

strategy in which Eve attacks each quantum systems independently using the same 

strategy as in individual attack. However, in collective attack, Eve would perform 

collective measurement on the qubits hence the name. For one-way postprocessing 

under the collective attacks, the secret key rate achievable is bounded by the Devetak-

Winter bound (Devetak & Winter, 2005). Assuming that Eve’s information on Alice 

is more than Bob, the key rate,  K  is then given by the following  

 

   K = I AB − I AE ,  (5.1) 

 

with Eve’s information on Alice,  I AE  can be described by 

 

   I AE = max χ( A : E),  (5.2) 

 

in which   χ( A : E)  is the Holevo quantity between Eve and Alice.  
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 Meanwhile, another class of eavesdropping attack is the joint attack. This is 

considered as the most general attack and it is defined as a strategy in which Eve can 

probe and measure all quantum systems jointly. In both collective and joint attacks, it 

is assumed that Eve would perform her measurement only after the legitimate parties 

completed all public communications about basis reconciliation, error correction, and 

privacy amplification (Gisin et al., 2002).  

 

5.2.1.1 Supra-quantum Eve 

In our work thus far we have only consider an attack by a supra-quantum Eve. Her 

attack strategy includes submitting a mixture of deterministic strategies and nonlocal 

boxes i.e. PR boxes, sent individually making it ultimately an individual type attack. 

According to Jones & Masanes (2005), PR boxes can be viewed as the basic unit of 

nonlocal correlation. Hence, it may be of interest to consider Eve’s attack strategy that 

includes a more generalized nonlocal boxes. However, it may be trivial to consider a 

nonlocal box with arbitrary inputs and binary outputs as Jones & Masanes (2005) has 

shown that all bipartite no-signaling correlations with binary outputs can be simulated 

by PR box. For the case of binary inputs and arbitrary outputs, Barrett, Linden, et al. 

(2005) has characterized its corresponding distribution,   Pr(ab | xy)  as follows 

 

 
  

Pr(ab | xy) =
1
k , (b− a) mod k = xy

0, otherwise

⎧
⎨
⎪

⎩⎪
,  (5.3) 

 

where input   x, y ∈ 0,1{ }  and output    a,b∈ 0,…,k −1{ }  with    k ∈ 2,…,min(da ,db ){ } . 

Note that,   k,da and db  are integers. The case where   da = db = 2  represents the PR box 

correlation. 
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 Therefore, the most natural question to ask is: would there be strategies for a 

supra-quantum Eve, which are analogous to the collective and joint attack in standard 

QKD literature?  

 

5.2.1.2 Quantum Eve 

We have mainly considered the case for a supra-quantum Eve, the eavesdropper who 

is not limited by quantum mechanics, but only on the no-signaling principle. This has 

provided us with the most pessimistic picture and may be less realistic. It would be 

interesting, though possibly an academic exercise to determine the actual performance 

of the QKD protocols of the earlier chapters within the context of a quantum Eve, i.e. 

an eavesdropper who is limited in fact by quantum mechanics. 

 The essential picture is as follows: Eve could distribute between the legitimate 

parties a Bell diagonal state for which Alice and Bob are subject to perform 

measurement on a random subset of their particles in well-chosen bases. Based on the 

results, they can estimate the locality violation and decide whether it is possible to 

distill a secure key rate from them. While the actual calculations may not be trivial, 

we expect that the results would not provide much insight into the QKD problem 

beyond a possibly more optimistic picture and may be of interest to the more practical 

side of quantum cryptography. It is instructive to extend the discussion to include 

collective attacks and joint attacks as well. 

 However, it is important to note that a device independent QKD against a 

collective attack by a quantum Eve has already exist in literature. In the protocol 

proposed by Pironio et al. (2009), Alice would have three measurement bases as 

opposed to only two, of which one would maximally overlap with Bob's for key 

purposes, though the Bell violation to be estimated by the relevant parties comes from 
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a set of measurements excluding the ones for raw key. Hence, it is interesting to see 

the performance of the binary measurement based QKD as in our work would result 

against a collective attack by a quantum Eve. 

 

5.2.2 Cryptographic Interest: Device Independent CQKD 

We have proposed in Chapter 4, a device independent framework for counterfactual 

QKD. We have seen how in analyzing the security of the protocol, we have made 

several simplistic assumptions as follows: 

 Assumption 1: On average, there would be an equal number between bit 0 and 

bit 1. Note that this assumption is reasonable given an infinitely long key scenario. 

This is because the probability that the bit would result in bit 0 or bit 1 would 

converge to an average value when the number of rounds of the protocol increases as 

described by the law of large numbers. However, it is compelling to consider the case 

where the string of bits is made up of uneven number of these two bits within the 

finite key perspective and then determine its performance. This may well be a possible 

starting point for a finite key analysis. 

 Assumption 2: Colliding strings at the end of the protocol happens with a very 

small probability. We consider that at the end of the protocol, given an infinitely long 

string would see collisions (identical strings) with negligible probability. However, it 

would be desirable to have a proper quantification of such a probability and determine 

the relevant quantities that would affect it. This problem lies in the details of classical 

information theory. 
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5.2.3 Fundamental interest: Correlation versus Nature of Correlation 

We saw in the second chapter how, given a binary measurement based QKD setup 

with each party committing to two different measurement bases, a key can be derived 

by optimizing the angles of the measurements. This understandably is the issue of 

identifying the point where measurements in overlapping bases (or nearly so) between 

the two parties, Alice and Bob and those where they maximize the CHSH estimation. 

The former provides for maximal correlation between them but allows for an 

eavesdropper to simulate the whole picture and thus compromising on the security by 

allowing Eve to have more information than the latter. On the other hand, the latter 

creates a situation where Eve’s uncertainty of the key is higher than that between 

Alice and Bob, which in principle allow for key extraction. 

 Notwithstanding the cryptographic concern above, the whole issue possibly 

hides a more fundamental interest. This is the issue of non-compatible measurements. 

Since its early days, quantum mechanics saw bounds being set on the precision for 

which two observables can be measured; the famous Heisenberg uncertainty principle. 

 Suppose we consider two quantum mechanical observables  A  and  B , with 

 ΔA  and  ΔB  being the standard deviation of the measurement results of observables 

 A  and  B , respectively. The Heisenberg uncertainty principle can be expressed as 

 

 
  
ΔAΔB ≥ 1

2
A, B⎡⎣ ⎤⎦ ,  (5.4) 

 

in which   A, B⎡⎣ ⎤⎦  being the commutator of  A  and  B . With regard to eq. (5.4), if 

observables  A  and  B  are non-commutating i.e. when   A, B⎡⎣ ⎤⎦ > 0 , then it follows from 

this   ΔAΔB > 0 . We can see that by reducing the uncertainty of  A  would increase the 



 

98 

uncertainty of  B  and vice versa. Hence, the Heisenberg uncertainty principle 

indicates that it is not possible to measure the two observables both simultaneously 

and precisely, though it is possible to measure one observable accurately at the 

expense of the other. 

 However, this is not the only way to characterize the uncertainty relations. In 

information-theoretic definition, uncertainty is closely related to entropy. The entropy 

works as a measure of the amount of uncertainty in the state of a physical system. 

Hence, rather than make use of eq. (5.4), it is more instructive to use the well known 

entropic uncertainty relation of the form (Coles, Berta, Tomamichel, & Wehner, 

2017): 

 

 
  
H ( A)+ H (B) ≥ log

1
c

,  (5.5) 

 

in which   H (⋅)  is defined as Shannon’s entropy with  c  being the maximal overlap 

between observables  A  and  B . For an excellent review kindly refer to Coles et al. 

(2017).  

 Though the incompatibility discussed above is in the context of measurement 

(incompatibility between observables), the concept of incompatibility however has 

been generalized to other collections of input-output devices (Heinosaari, Miyadera, 

& Ziman, 2016). A quick example given in the same reference would be process 

measurements (Heinosaari et al., 2016). 

 Going back to the issue of the measurements made in the QKD protocol 

above, let us rewrite in terms of the following. Imagine the scenario where two parties 

are given each, a qubit that is part of a bipartite system (not necessarily entangled). 
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We allow the parties to commit to any measurement bases (two each) to determine the 

following: 

1. The nature of the correlation between the qubits. 

2. The correlations between the two qubits. 

The first is really an estimation of the CHSH, while the second is the estimation of the 

mutual information between the two. We see that measurements that allow for the 

maximization of the CHSH value, i.e. determining precisely the nature of the 

correlation between the two parties, i.e. whether it is local or otherwise may not be 

compatible with establishing the amount of correlated bits between the two parties. It 

is worth noting that these may not be an issue with incompatibility between 

observables. 

 

5.2.4 Fundamental interest: Quantum Cheshire Cat 

The Quantum Cheshire Cat was first introduced by Aharonov, Popescu, Rohrlich, & 

Skrzypczyk (2013). In the paper, they suggested that physical properties could be 

separated from the objects, just like the Cheshire Cat of Alice in Wonderland and its 

grin. It maintains polarization as a separable degree of freedom from the (existence) 

photon itself. A polarized photon (e.g horizontal) state, Ψ  after passing through a 

beam splitter can be written as 

 

 
  
Ψ = 1

2
B1 − B2( ) H ,  (5.6) 

 

 in which   B1  and   B2  correspond to the photon being in the output paths of the 

beam splitter. This, in principle, should open the counterfactual QKD to a natural 
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vulnerability where the polarization degree of freedom can be measured 

independently of the photon. It would be interesting to design such a measurement. 

 However, this matter of Quantum Cheshire Cat has not been fully resolved and 

is currently a matter of debate and further research (Corrêa, Santos, Monken, & 

Saldanha, 2015). 
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