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ABSTRACT

Functional magnetic resonance imaging (fMRI) has become one means to understand
the epicentre of the human nervous system, the brain. It represents intrinsic haemo-
dynamic signals in high-dimensional data that linked to neuronal activities. Numerous
studies such as statistical parametric analysis, multivariate pattern analysis and few ma-
chine learning techniques have demonstrated significant results that suggested the links
between human activities and the haemodynamic signals and which sections of the brain
that got activated. In this research, deep learning, a recently discovered method that
broke many benchmark records in areas such as object and speech recognition, is used.
One of the significant advantages of deep learning is that it avoids the problem of labour-
intensive work, such as feature extractions. With that, various deep learning algorithms
were studied and experimented. Contribution to the knowledge sphere in this thesis re-
volves around the data division for deep learning approach to classify high-dimensional
fMRI when a rather low volume of data was adopted in the classification approach. High
dimensionality and low signal-to-noise-ratio (SNR) are the biggest challenges in fMRI
classification. Using a single centre slice of data reduces the anatomical variability
dependence and curse of dimensionality degree. First, a minimal preprocessing stage
is proposed for the two types dataset compilations; randomised and separated valida-
tion data of 1029 control fMRI individual subjects data. Convolutional neural network
(CNN), studied and chosen deep learning method, has been assessed under three as-
pects: convolutional layers size; feature map sizes selection, and inception model blocks
insertion. These aspects are few of many uncertainties in CNN modelling. The minimal
preprocessing stage was proposed as opposed to lengthy conventional methods. Division
of data shows the capabilities of deep learning to overfit the classification algorithm,
though many adjustments were included. Besides, the model training step in processing
stage formulates the problem as a single optimisation problem in which all the compo-
nents of the model share a similar goal. It is an end-to-end deep learning algorithm
reliability testing. This research requires very demanding computational capabilities
with any increase in data volume. As a result, high accuracy was acquired with tested
CNN models but inversely proportional for validation data accuracy when separated
validation set was used. Although this research is designed for one slice of 3D fMRI
data, an impressive set of computation resource such as a high-performance computer
with stacked of dedicated graphic cards may have the ability to analyse a much higher
volume of the whole-brain fMRI data. As a conclusion, this research shows that deep
learning is reliable for classification but has the tendency to overfit and overgenerali-
sation. This was suggested when higher validation loss acquired with low volume of
high-dimensional fMRI data employment. The data division strategy proposed in this
research for end-to-end deep learning solution should be one of the keypoints for the
data processing model.
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW
This thesis is the documentation for a Doctoral research program that was undertaken at
the International Islamic University Malaysia in Kuala Lumpur, Malaysia, between the
years of 2015 and 2019. This Doctoral research program was a part of a larger program of
research, undertaken in collaboration with researchers of the University of Malaya for the
first two years. The next two years then were spent for analysis, publications and thesis
writing. This Doctoral research investigates the relationship between high-dimensional
and high-temporal data for classification approach.

The specific goal of this research is to demonstrate the ability of a deep learning
approach to classify high-dimensional functional magnetic resonance imaging (fMRI)

data. FMRI is one of the neuroimaging modalities in neuroscience field.

1.2 BACKGROUND

Neuroimaging is a branch of neuroscience, a study to understand human’s brain. The
brain is a human central nervous system (CNS). It is the most complex and elegant
computing device that exists and weights less than most desktop computer (Waxman,
2009). Studying how the brain can make complex decisions even under various loads,
think and produce something creative, and feel, are the neuroscience subjects of in-
terest. Neuroimaging is the method that encompasses various technology to gain and
visualise the brain for prognosis, diagnosis, and clinical procedures. Recent advances in

neuroimaging have made it workable to examine the whole brain network for multiple



individual subjects. Anderson et al. (2016) suggested a single-node implementations of
the data, Thirion (2016) reviewed the general framework for multiple subjects inference
and Vieira et al. (2017) hypothesised that the new algorithm that are going to be dis-
cussed extensively in this thesis, the deep learning, is a powerful tool for biomarkers and
neurologic disease.

Other neuroimaging modalities to collect the brain informations are magnetoen-
cephalography (MEG), electroencephalography (EEG) and magnetic resonance imaging
(MRI). These modalities have different procedures and data type. Many have made
tremendous efforts to integrate information across multiple modalities. The integration
is generally based on the same stimuli and performed by the specific subject or multi-
ple subjects to set up a groundwork for early detection and prevention of a particular
disease, for example Dementia. Most familiar integrations were MRI/fMRI, MRI/EEG
and MEG/MRI. High resolution data of MRI provides a good framework for many other
modalities.

Networks of neurons in the brain communicate with each other by means of elec-
trical impulses. It has similar working principle as transmission and receiver operations
in network servers. These imaging techniques are non-invasive and capable of recording
electricity in the brain (Cabeza et al., 2016; Just et al., 2017). The process is known
as bioelectrical activity (B. He, 2010). A standard experiment in neuroimaging is to
name associations between bioelectrical activities and the subject’s perception towards
stimulus or resting state. These impulses then capture for analysis. Capturing method on
the impulses introduced by the different neuroimaging modalities and how researchers
infer results from experiments and their objectives specifically.

These impulses were captured either by electrical potentials (i.e., EEG) or mag-
netic fields (i.e., MEG, MRI and fMRI) methods. Electric potentials passed through
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scalp distorted and captured by EEG test. The recorded EEG signals represent the
summation firing of millions of neurons synchronously (B. He & Lian, 2005). On the
other hand, MEG could detect magnetic field outside of the scalp and not as distorted as
bioelectrical detection by EEG test. Despite that, it is sufficed to have detection done on
an alive or dead brain using the EEG machine. This brain detection is possible due to
its machine sensitivity of firing neurons intensity recorded in the brain (Buzsaki, 2006).
In some medical practices, such mentioned standard analysis using EEG and MEG was
insufficient. EEG and MEG are not capable of producing distinguishable images of
white and grey matter such as size predictions of brain tumours.

MRI and fMRI, the magnetic resonance imaging technology, both has an im-
proved spatial and temporal resolution compared to electrical and magnetic potential
energy detection. The desired temporal resolution for the analysis of bioelectrical ac-
tivities is the operation speed of neurons in the brain networks; which is in millisecond
scale (Buzsaki, 2006). Researchers had tested that fMRI has the capability of capturing
little less than the speed of neurons by having a trade-off with image quality (Goense
et al., 2016; Vu et al., 2017). MRI, on the other hand, has a high spatial resolution but
suffered meagre temporal resolution (Glover, 2011).

As one of the most fascinating and least understood organ in the human body,
brain and its underlying networks introduces vast topics in many research fields. Psychol-
ogy, prognosis and disease diagnosis are a few examples of brain studies that manipulate
MRI and fMRI. The accurate prognosis and diagnosis of a disease in medical imaging
especially neuroimaging technologies depends on both careful image acquisition and
deliberate image interpretation (Razzak et al., 2018). Acquisition of the images has
improved substantially over recent years, with devices acquire data at faster rates and
increased resolution (Greenspan et al., 2016). However, fMRI (the other main topic

3



of discussion in this thesis) image interpretation is in rapid development stage when
computer technology just recently increased in computability capabilities. Though, it
is a step forward to manipulate the fMRI data to the ability not only in prognosis and
diagnosis but it could pave a way to understand further and treat theses problems. For
instance, psychological problem such as Schizophrenia (Stam, 2014) treatment and veg-
etative state patient communication using brain-computer interfaces (BCI) (Owen et al.,
2006; LaConte, 2011).

This challenging task is also motivated by the ability to answer a long-standing
goal of human existence, the conscience (Decety & Jackson, 2004; Ochsner et al., 2002;
Owen, 2013). Monti et al. (2010) had detected five patients out of 54 patients, who had
shown match response on motor imagery task in a vegetative state or minimally conscious
state using fMRI data. fMRI has become one of the means to do the task as it can capture
the signals of human activity despite a low signal-to-noise ratio (Welchman, 2016).
Besides, the acquired data from this imaging modality had a cause-and-effect approach.
The approach is implemented by stimulus activation of the designed experiment to the
subject. The translated millions of neurons firing from the subject’s activity in the brain
(James et al., 2014) then acquired in images type. Because of that, each stimulus was
designed to investigate and understand the associated areas (i.e., activated by stimulus)
of the brain.

Specifically, fMRI measures haemodynamic response of activated areas which
are the changes in blood flow. The measurement is known as blood-oxygen-level-
dependent (BOLD) due to the response (Ogawa et al., 1990). Data from fMRI images
are not easily recognised or interpreted by radiologists. The response that the brain
makes is changing over time of experiment that then translated to series of images.

Ogawa et al. (1990) reported the haemodynamic response due to blood oxygen changes

4



in the brain. It suggests that the BOLD or level of oxygen in the blood could map the
brain in real-time. The research was done on female rats, and blood was periodically
sampled during the time of scanning. Images of the rat brain are easily identified when
it is induced with insulin which was an invasive type of experiment. On the contrary,
fMRI acquisition on any human subject is a non-invasive technique. The only physical
interactions by the subject was such as doing day-to-day activities like reading and
watching a movie. There should be no physical intervention by the experimenters such
as insulin injections into the subject’s brain.

The haemodynamic responses highly depend on the state of blood oxygenation
and the effects of physiological events surrounding the subject on experiment. These
events could be any physical or non-physical actions, which could then be captured by
the MRI scanner, at any given moment. For instance, a resting and a stimulated human
subject during the time of scanning will give different brain response accordingly. Stim-
ulation event is an essential step in paradigm design because the brain as central nervous
system reacts differently to each stimulation (James et al., 2014). The problem arose
when noises were accumulated, and images produced not only holds high-dimension
(3D) due to volumetric characteristics of the brain but added dimension of each time
stamp the data captured. Nevertheless, many studied have proposed various methods to
treat these noisy and high-dimensional problems.

The conventional but significant fMRI interpretation approach to-date is the
statistical parametric map (SPM). It is a complex approach where many child steps are
fundamental that could be grouped as preprocessing, processing and postprocessing
stages. Importance of these steps lies in work to reduce the varied sources of noises
and simultaneously accentuate salient signals. The general statistical algorithm used

based on the General Linear Model (GLM), where the end result is to have statistical
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value (e.g., t-value) for every voxel in the images. However, many published papers had
proposed new approaches that encompass in machine learning approaches such as naive
Bayesian model (Stephan et al., 2009; Penny et al., 2011) and support vector regression
(SVR) (Mete et al., 2016), and dimension reduction approaches such as independent
component analysis (ICA) and principal component analysis (PCA) (Dohmatob et al.,
2016; Bzdok et al., 2015).

Furthermore, the machine learning and artificial intelligence (Al) have progressed
rapidly in recent years with very notable published and commercialised algorithms. Both
fields have contributed in many domains such as natural language translation, image
interpretation, image segmentation and also in medical areas such as computer-aided
diagnosis and medical image processing (Kamnitsas et al., 2017; Bojarski et al., 2016).
With the approach of maximising the ability to make predictions about unobserved data,
it used many types of approaches such as minimising loss and probability comparison
(Poldrack et al., 2011). For example, a particular machine learning approach has help
doctors in determining the size of a tumour but also optimally reduces the time of
extracting the tumour (Havaei et al., 2014).

Deep learning is one of the fields for both machine learning and Al. Deep
learning-based algorithms have shown promising performance in such fields mentioned
above. The three most promising algorithms are Convolutional Neural Network (CNN),
recurrent neural network (RNN) and Generative Adversarial Networks (GANSs) that
have dramatically breaks some benchmark records in many applications (LeCun et al.,
2015). LeCun et al. (2015) showed deep learning as an excellent tool to learn the
intrinsic structure of high dimensional data. Deep learning in MRI classification has
shown remarkable results which Kamnitsas et al. (2017) had published an improved

state-of-the-art of lesion segmentation in the brain. Moreover, Standford Team lead by
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Andrew Ng, one of the founders of deep learning, had published pneumonia diagnosing
algorithms which surpassed the accuracy of radiologists diagnosis (Rajpurkar et al.,
2017). This advancement is one of medical image processing applications where many

other research groups are working forward to assist radiologists and physicians.

1.3 PROBLEM STATEMENTS

Power et al. (2017) briefly explained the problem of fMRI analyses. However, in this
research, the process of setting a relationship between fMRI data, that is known to be
high dimensional, with rapid improvements of deep learning field, contributed to wider
problems and challenges. Thus, given is four main problem statements for this Doctoral

research which includes:

* lengthy preprocessing steps for the established and widely used statistical fMRI

analysis (i.e., SPM);

* lack of underlying neural activity ground truth of fMRI data where it itself is in

the active research areas;

* high-dimensional nature of fMRI data with blended multiple sources of noises
which reduces recorded signals relatively that eventually make harder classification

approach and

* investigators hold diverse medical imaging analysis hypotheses and conclusions
that intrinsically create onerous knowledge aggregation and contribute to varied

challenges.

Thus, the research question arises whether deep learning is viable for high di-

mensional fMRI data classification by reducing preprocessing steps, establishing the



anatomical maps dissimilarities by standard ground truth and restricting deep learning
configurations scope. On the other hand, a new strategy should be imposed on high
dimensional deep learning current methods. The diverse medical imaging analysis con-
clusions should be aggregated in comprehensive manners where other researchers could
move forward from there. In this research, it is hypothesized that small dataset volume
suggests higher training accuracy with larger validation loss on multiple subjects fMRI
data classification due to massive generalisation of deep learning approach. Thus, a new

strategy for data division is researched for robust deep learning classification techniques.

1.4 OBJECTIVES

Classifying the brain areas to specific cognitive states is one of the main goals for most
machine learning researchers and practitioners in the neuroimaging field. Knowledge on
specific states of areas eases the work in medical and non-medical applications such as
mental abnormalities treatment for Dementia and Autism Spectrum Disorder and future
brain computer interface between human and industrial robots. With that motivation,
the central objective of this research is to classify the high-dimensional fMRI data based
on deep learning approach. Following are objective milestones to be completed through

out this Doctoral research program:

i To investigate previous machine learning techniques capabilities to reduce fMRI

preprocessing steps;

ii To develop deep learning classification technique on high-dimensional fMRI data;

iii To test and validate the data division strategy on deep learning technique using fMRI

validation set; and



iv To test and verify the hypothesis.

1.5 RESEARCH PHILOSOPHY

Improving deep learning approach for high dimensional fMRI data may reduce many
steps of the conventional GLM method with statistical parametric mapping classification
approach. This is because deep learning is befitting in learning the intrinsic structure of
high dimensional data when deeper layers were employed. However, the nature of deep
learning algorithms that learn the low to high abstraction of data intrinsically might be
overwhelmed by fMRI data. As such that it learns to classify the brain shape which
is the high abstraction of fMRI data rather than the main objective which is to classify
and interpret the brain state. Brain states, most of the time, are combination of low

abstractions of high-dimensional fMRI data.

1.6 RESEARCH METHODOLOGY

A wide range from the fMRI origin, preprocessing steps, classification approaches and
challenges for low signal-noise-to-ratio were studied extensively. Then, the experiment
start with the data collection. High dimensional fMRI data was downloaded and expected
to have big data size with proper randomly selected subjects from 1200 subjects of Human
Connectome Project dataset. Big data was used to reduce the curse of dimensionality
between the high counts of voxels and the number of subjects. Thus, a relatively fast
workstation was prepared to process this data. Besides, the volume of data has an
important role in the hypothesis testing. However, as a small scale research group, an
intermediate level of workstation was acquired for this research purposed. The previous
works were reviewed endlessly to ensure the best approach taken in dealing with this

high-dimensional fMRI data. Animmeasurable length signifies the importance of testing
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the best approach for deep learning configurations such as long hours of trial and error
during the training and testing stage. Furthermore, specified training and validation sets
of fMRI data were employed to ensure the validity of taken classification approach and
robust to inter-subject of high-dimensional fMRI. In the end, an expected new strategy

for fMRI data division was verified for different deep learning configuration approaches.

1.7 SCOPE OF RESEARCH

An off-line approach is taken in this research study where data of fMRI were downloaded
for training stage preparation. Data was divided in two manner, randomised and separated
validation set. Various deep learning approach were studied to delineate grey areas of
various deep learning configurations. It is fixed to have end-to-end method for each deep
learning model tested. It was done qualitatively where the ending result is compared
and statistically tested with p-test for hypothesis testing.

Feasibility and reliability is of important characteristic for high-dimensional
fMRI classification. Those two characteristics were investigated on various deep learning
models that comparable architectures were taken into hypothesis testing. Moreover,
the small dataset volume used in investigation is hypothesised to have higher training
accuracies with larger validation loss when multiple inter-subjects employed. Then, the

feasibility and reliability of deep learning approach on fMRI will be concluded.

1.8 ORGANISATION OF THE THESIS

The structure of this thesis is broken down into five chapters. Chapter one is an
introductory part of the thesis. It focused on the details of the thesis in simple and brief
manner as described in previous sections.

Chapter 2 provides a general overview of deep learning and its previous achieve-
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