CHARACTERIZATION OF HEAT AFFECTED ZONE FOR TIG TORCH WELDED HIGH STRENGTH LOW ALLOY STEEL WITH MICROALLOYING ELEMENTS ADDITION

BY

MUSA MOH. H. ABDULLRHMAN

A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

DECEMBER 2020

ABSTRACT

High strength low alloy (HSLA) steels possess an excellent combination of strength and toughness obtained by suitable alloying design and thermo-mechanical controlled processing. However, the strength and toughness combination are deteriorated by the welding parameters and the thermal cycles that the steel experiences during welding. Since welding is an unavoidable stage in HSLA steel manufacturing, it is essential to produce welded sections with as low heat energy as possible, while preserving an appropriate joint geometry and properties. Heat affected zone, particularly adjacent to the weld pool region, has higher hardness and lower fracture toughness compared with the substrate material. The deterioration of heat affected zone (HAZ) mechanical properties are attributed to the formation of martensite-austenite (M-A) constituents and local brittle zones (LBZ). Therefore, the main aim of this research is to improve the HAZ mechanical properties such as tensile strength, hardness and impact toughness of welded high strength low alloy (HSLA) steel using TIG torch melting at different welding process parameters with and without microalloying elements addition (Ti and V). The research investigation was conducted in three-phases. The first phase involves the experimental designs by Taguchi method and producing the welding track under different welding parameters such as welding current, welding voltage, welding speed and gas flow rate with and without microalloying element addition (Ti and V) using powder preplacement and TIG torch welding process. Secondly, optimization the input parameters with the responses to the heat affected zone properties of hardness, tensile strength, and impact toughness. In the last phase, characterization and evaluation of the welded HSLA steel specially HAZ in terms of microstructure, microhardness, tensile strength, and impact toughness. The HAZ microstructural characterization was performed using OM, SEM-EDX, and XRD analyzer. The results showed that the highest tensile strength achieved was 692.85 MPa and 729.80 MPa with Ti and V microalloving element additions, respectively. The impact toughness was 81 J and 76 J for Ti and V addition, and the hardness attained was 202 Hv for both Ti and V microalloying additions. The different ferrite phases formed in the HAZ including acicular ferrite and ferrite with secondary phase aligned along with the bainitic microstructure due to the enhancement of the grain refinement in the HAZ morphology. The best-optimized welding parameters achieved by Taguchi S/N ratio analysis were current, 100 A; voltage, 40 V; speed, 1.5 mm/s; and argon flow rate 20 L/min. The validation of the Taguchi predictive model and optimal parameters for HAZ responses shows that their prediction accuracy error is within the acceptable limit. The improvement of tensile strength value for the HAZ was \approx 4.20 % for Ti addition and \approx 5.20 % for V addition, and the average increment of impact toughness value was ≈ 30.36 % for Ti addition and \approx 37.46 % for V addition. However, the reduction of hardness value for the HAZ was $\approx 14.5\%$ for Ti addition and $\approx 19\%$ for V addition compared to the TIG welded sample without the additions of microalloying elements. Due to the positive outcome on the mechanical properties and metallurgical characteristics of the HAZ obtained using the addition of microalloying elements (Ti and V), it can be said that this technique is suitable for improving the welded HAZ mechanical and microstructural performance of HSLA steel.

خلاصة البحث

يمتاز الفولاذ العالى المقاومة (HSLA) بمزيج ممتاز من القوة والمتانة التي تم الحصول عليها من خلال التصميم المناسب والتحكم في المعالجة الحرارية الميكانيكية لهذه السبائك. ومع ذلك ، يمكن لهذه الخصائص أن تتدهور من خلال المدخلات الحرارة العالية والدورات الحرارية التي يتعرض لها الفولاذ أثناء عمليات اللحام والتي لا يمكن تجنبها خلال مرحلة تصنيع هذا الفولاذ (HSLA) بواسطة اللحام، فمن الضروري إنتاج مقاطع ملحومة مع طاقة حرارية منخفضة قدر الإمكان ، مع الحفاظ على الخصائص الهندسية المشتركة بين المعدن الأصلى والمنطقة الملحومة. المنطقة المتأثرة بالحرارة، وبصورة خاصة المتاخمة لمنطقة حمام اللحام عادة ما يكون لها صلابة أعلى ومتانة كسر أقل مقارنة بمنطقة المعدن الغير ملحومة. يعزى تدهور الخواص الميكانيكية للمنطقة (HAZ) إلى تكوين طور المارتنسيت - الأوستينيت (M-A) والمناطق الهشة (LBZ) المصاحبة. لذلك ، فإن الهدف الرئيسي من هذا البحث هو تحسين خصائص HAZ ، المتمثلة في خاصية قوة الشد ، الصلادة ، طاقة الصدمات والبنية المجهرية لل HAZ. في هذا البحث ، تم إجراء التحقيق على ثلاث مراحل. تتضمن المرحلة الأولى التصميمات التجريبية التي تم تبنيها باستخدام طريقة تاجوتشي وإنتاج مسار اللحام وفقًا لمعايير اللحام المختلفة مثل تيار اللحام، جهد اللحام، سرعة اللحام ومعدل تدفق الغاز مع وبدون إضافة عنصري التيتانيوم والفانديوم باستخدام تقنية إلصاق المسحوق على المعدن ومن ثم عملية اللحام بالشعلة TIG. ثانياً، تحسين معلمات الإدخال بالاستجابات لخو اص المنطقة المتأثرة بالحرارة (HAZ) ،الصلادة، قوة الشد ، وطاقة الصدم. في المرحلة الأخيرة ، توصيف وتقييم لحام HSLA الصلب، خاصة HAZ من خلال نتائج الصلادة الدقيقة ، قوة الشد ، وطاقة الصدم. أخيرًا ، يتم توصيف خصائص البني الدقيقة HAZ باستخدام OM و SEM-EDX و XRD. أظهرت النتائج، أن أعلى قوة شد تم تحقيقها كانت 692.85 ميجا باسكال و 729.80 ميجا باسكال للعينات المضاف إليها Ti و V على التوالي. إلى جانب ذلك ، كان التحسن في صلابة الصدمات J 81 و J 76 للعينات المضاف إليها Ti و V ، وكان أدنى صلادة هو 202 Hv لكليهما (Ti وV). كانت أفضل المعلمات المحسّنة التي حققها تحليل (Taguchi S/N ratio) مع إضافات مساحيق Ti وV هي 1.5 مجم/مم² ، التيار 100 أمبير، الجهد 40 فولت ، السرعة 1.5 ملم/ثانية ، ومعدل تدفق الأرجون 20 لتر/دقيقة. يظهر التحقق من صحة نموذج تنبؤ Taguchi والمعلمات المثلى لأستجابات (الخصائص) HAZ أن خطأ دقة التنبؤ الخاص به يقع ضمن الحد المقبول. علاوة على ذلك، كان تحسين قيم مقاومة الشد القصوى pprox 4.20 للعينات المضاف إليها ال Ti وبنسبة pproxللعينات المضاف إليها ال ${
m Ti}$ وpprox 37.46٪ للعينات المضاف إليها ال v، بينما كان الأنخفاض في قيم الصلادة في منطقة ال HAZ ≈ HAZ للعينات المضاف إليها ال Ti و ≈ 19٪ للعينات المضاف إليها ال v مقارنة مع عينات TIG الملحومة دون إضافة عنصري التيتانيوم والفانديوم للمنطقة الملحومة. نظرًا للنتائج الإيجابية للخواص الميكانيكية والخصائص المجهرية لمنطقة HAZ التي تم الحصول عليها باستُخدام إضافة عنصري (Ti و V)، يمكن التوصية باستخدام هذه التقنية لتحسين ً أداء منطقة لحام فولاذ HSLA الملحوم.

APPROVAL PAGE

The thesis of Musa Moh. H. Abdullrhman has been approved by the following:

Md. Abdul Maleque Supervisor

Mohammad Yeakub Ali Co-Supervisor

> Meftah Hrairi Internal Examiner

Mustafizur Rahman External Examiner

Kanao Fukuda External Examiner

Fouad Mahmoud Mohamed Rawash Chairman

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Musa Moh. H. Abdullrhman

Signature.....

Date.....

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

CHARACTERIZATION OF HEAT AFFECTED ZONE FOR TIG TORCH WELDED HIGH STRENGTH LOW ALLOY STEEL WITH MICROALLOYING ELEMENTS ADDITION

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2020 Musa Moh. H. Abdullrhman and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Musa Moh. H. Abdullrhman

. Signature

Date

Dedicated to... To my beloved parents, Alhaj Mohamed H. Abdullrhman, And Alhaaja Maryam A. Amen For their love, encourage and care May Almighty Allah continue to show His choicest mercy on them, and provide them with health and wellness...Amin?

> My sweetheart wife (Munira) And our children (Marwa, Safa, Mohammed, Maryam, and Marh) For their love, understanding and their sacrifices The comfort of eyes..... forever and ever

ACKNOWLEDGEMENTS

Foremost, all praises are due to Almighty Allah (SWT) for granting me the wisdom, guidance, knowledge, and strength to complete this thesis.

I would like to express my gratitude and appreciation to my thesis supervisor Prof. Dr Md Abdul Maleque "main supervisor", a Professor in the Department of Manufacturing and Materials Engineering in International Islamic University Malaysia (IIUM), who has given constant guidance, friendly enthusiasm, constructive criticism, valuable suggestions and encouragement during the pursuit of this research. I wish to thank Prof. Dr. Yeakub Ali (co-supervisor) for his support and advice, which helped me to achieve this project.

Similar appreciation goes to my colleagues; Bro Ishtiaq Jamil, bro Faraj Haider, bro Ezzidin Aboadla, bro Mussa Abudena. I appreciate their brotherly and wonderful display of love and cares to me.

Sincere thanks are due to school technicians for their generous assistance, especially to Br. Hamri, Br. Husni, Br. Ibrahim, Br. Adanan, Br. Rahimie, Br, Tirmize, Br. Zahir, Br. Shaiful, Br. Faisl and others.

Last but not least, I wish to express my gratitude to my lovely parents, my admirable sweetheart wife, my lovely kids, brothers, and sisters for their continued encouragement, understanding, and inspiration throughout my life as well as during this completed Ph.D. research program.

I pray to Allah (S.W.T), whom I owed the knowledge, strength, and determination to complete this research, to reward you all and others that space could not permit me to mention.

TABLE OF CONTENTS

Abstract	ii
Abstract in Arabic	iii
Approval Page	iv
Declaration	V
Copyright Page	vi
Dedication	vii
Acknowledgements	viii
List of Tables	xiii
List of Figures	XV
List of Abbreviations	XX
List of Symbols	xxv
CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement and its Significance	5
1.3 Research Philosophy	8
1.4 Research Objectives	9
1.5 Research Methodology	9
1.6 Research Scope	13
1.7 Thesis Organization	13
CHADTED TWO. I ITEDATIDE DEVIEW	15
2.1 Introduction	13 15
2.1 Introduction	15
2.2 High Strength Low Anoy (HSLA) Steels	15
2.3 1 Polygonal Ferrite	10
2.3.1 1 orygonal 1 entre 2.3.2 Acicular Ferrite	10
2.3.2 Recutar Fernie	
2.3.5 Damite 2.3.4 Martensite	20
2.4 Effects of Alloving Elements in HSLA Steel	22
2.5 Fracture Behavior of HSLA Steel	25
2.6 Welding Metallurgy of HSLA Steels	
2.6 1 Microstructure of the HAZ	30
2.6.2 Fracture in Heat Affected Zone (HAZ)	33
2.7 TIG Torch Welding Process	36
2.8 Effect of Parameters on Microstructure and Mechanical	
Properties of Welded HSLA Steel	39
2.8.1 Effect of Heat Input	39
2.8.2 Effect of Cooling Rate (CR)	42
2.8.3 Effect of Welding Voltage (V)	
2.8.4 Effect of Welding Current (I)	13
2.8.5 Effect of Welding Sped (S)	48
2.9 Effect of Additional Microalloving Flements on HAZ	4 0 <u>4</u> 9
2.9 1 Ti Additions During Welding	12
2.9.2 Vanadium Additions During Welding	

2.10 Structure and Properties of Welded HSLA Steel	
2.10.1 Hardness	
2.10.2 Toughness	60
2.10.3 Strength	62
2.11 Optimization of TIG Process Parameters	65
2.12 Summary of the Previous Works	
2.13 Summary	79
•	

CHAPTER THREE: EXPERIMENTAL DESIGN AND

METHODOLOGY	80
3.1 Introduction	80
3.2 Raw Materials	80
3.2.1 Substrate Material	80
3.2.2 Microalloying Element	81
3.2.3 Polyvinyl Alcohol Binder	82
3.3 Experimental Equipment	82
3.4 TIG Torch Experimental Set-Up	84
3.5 Design of Experiment	85
3.5.1 Selection of TIG Torch Process Parameters	85
3.5.2 Selection of TIG Torch Response Variables	87
3.5.3 Taguchi Design Matrix for Microalloying Elements Addition	87
3.6 TIG Torch Melting Procedure	91
3.6.1 Preparation of Preplaced Microalloying Element on	
HSLA Steel Substrate	92
3.6.2 TIG Melting of Preplaced Microalloying Element on	
HSLA Steel Substrate	93
3.7 Optimization of Process Parameters	94
3.7.1 Level Average Response Analysis	95
3.7.2 Taguchi Confirmation Experiment	96
3.8 Characterization of TIG Melted HSLA Steel	96
3.8.1 Hardness Testing	97
3.8.2 Impact Toughness Testing	98
3.8.3 Tensile Testing	99
3.8.4 Metallographic and Microstructural Investigation	100
3.9 Summary	101
CHAPTER FOUR RESULTS AND DISCUSSION	102
4.1 Introduction	102
4.2 Characteristics of the HSLA Steel Substrate Material	102
4.3 Taguchi's Matrix Design and Experimental Results	106
4.4 Parametric Optimization	111
4.4.1 Process Parameters Optimization for HAZ Hardness (HD)	111
4.4.1.1 Without Microalloying Elements Addition (HD1)	112
4.4.1.2 With Ti-Microalloying Element Addition (HD2)	114
4.4.1.3 With V-Microalloying Element Addition (HD3)	116
4.4.1.4 Confirmation of Experimental Results on HAZ	
Hardness (HD)	118
4.4.2 Process Parameters Optimization for HAZ Impact	
Toughness (IT)	121

4.4.2.1 Without Microalloying Elements Addition (IT1)1	122
4.4.2.2 With Ti-Microalloying Element Addition (IT2)1	24
4.4.2.3 With V-Microalloying Element Addition (IT3)	26
4.4.2.4 Confirmation of Experimental Results on HAZ	
Impact Toughness (IT)	129
4.4.3 Process Parameters Optimization for HAZ Tensile	
Strength (TS) 1	131
4.4.3.1 Without Microalloying Elements Addition (TS1)	132
4.4.3.2 With Ti-microalloying Element Addition (TS2) 1	134
4.4.3.3 With V-microalloying Elements Addition (TS3)	136
4.4.3.4 Confirmation of Experimental Results on HAZ	
Tensile Strength (TS)1	139
4.5 Characterization of TIG Torch Welded HSLA Steel	41
4.5.1 Microstructure Features of Heat Affected Zone	42
4.5.1.1 HAZ Microstructure without Microalloying	
Element Addition	42
4.5.1.2 HAZ Microstructures with Ti-Microalloving Element	46
4.5.1.3 HAZ Microstructures with V-Microalloving Element	53
4.5.2 X-Ray Diffraction (XRD) Analysis of HAZ of HSLA Steel 1	59
4.6 Correlation Between Responses Optimization and Microstructures	
of HAZ1	65
4.7 Mechanical Properties of TIG Torch Welded HSLA Steel	68
4.7.1 HAZ Microhardness	68
4.7.1.1 HAZ Hardness without Microalloving Element	
Additions	68
4.7.1.2 HAZ Hardness with Ti-Microalloving Element	
Addition 1	71
4.7.1.3 HAZ Hardness with V-Microalloying Element	
Addition	174
4.7.1.4 Comparison of HAZ Hardness Response with and	
without Microalloying Elements	178
4.7.2 Tensile and Properties of TIG Torch Welded HSLA Steel	79
4.7.2.1 Strength Properties of Welded HSLA Steel without	
Microalloving Additions	79
4.7.2.2 Tensile Properties with Ti Microalloying Element	
Addition	183
4.7.2.3 Tensile Properties with V Microalloying Element	
Addition	86
4.7.2.4 Comparison of Tensile Response with and	
without Microalloying Element	89
4.7.3 HAZ Impact Toughness and Fractography of Welded	
HSLA Steel 1	91
4.7.3.1 HAZ Impact Toughness and Fractography of Welded	
HSLA Steel without Microalloying Addition	193
4.7.3.2 HAZ Impact Toughness and Fractography of Welded	
HSLA Steel with Ti-Microalloying Addition	197
4.7.3.3 HAZ Impact Toughness and Fractography of Welded	
HSLA Steel with V-Microalloying Addition	200
4.7.3.4 Comparison of HAZ Impact Toughness Response	

4.8 Summary.206CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS.2095.1 Conclusion.2095.2 Contribution to Knowledge2115.3 Recommendations for Further works212REFERENCES.214LIST OF PUBLICATIONS.231APPENDIX A232	with and without Microalloying Element	204
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS.2095.1 Conclusion.2095.2 Contribution to Knowledge2115.3 Recommendations for Further works212REFERENCES.214LIST OF PUBLICATIONS.231APPENDIX A232	4.8 Summary	206
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS		••••
5.1 Conclusion.2095.2 Contribution to Knowledge2115.3 Recommendations for Further works212 REFERENCES214 LIST OF PUBLICATIONS 231APPENDIX A232	CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	209
5.2 Contribution to Knowledge 211 5.3 Recommendations for Further works 212 REFERENCES 214 LIST OF PUBLICATIONS 231 APPENDIX A 232	5.1 Conclusion	209
5.3 Recommendations for Further works 212 REFERENCES 214 LIST OF PUBLICATIONS 231 APPENDIX A 232	5.2 Contribution to Knowledge	211
REFERENCES	5.3 Recommendations for Further works	212
REFERENCES		
LIST OF PUBLICATIONS	REFERENCES	214
LIST OF PUBLICATIONS		
APPENDIX A	LIST OF PUBLICATIONS	231
APPENDIX A		
	APPENDIX A	232
APPENDIX R 235	APPENDIX R	235
		433
APPENDIX C	APPENDIX C	238

LIST OF TABLES

Table 2.1	Major alloying elements in steel and their effects	22
Table 2.2	Summary of the previous works	70
Table 3.1	The chemical composition of the API-X65 steel by (wt. %)	81
Table 3.2	The mechanical properties for API X-65 HSLA steel as received	81
Table 3.3	Physical properties of polyvinyl alcohol (PVA)	82
Table 3.4	Process Parameters and levels for Taguchi design experiment	86
Table 3.5	Design matrix and responses for TIG torch processing of HSLA steel without microalloying elements addition	89
Table 3.6	Design matrix and responses for TIG torch processing of HSLA steel with Ti microalloying element addition	90
Table 3.7	Design matrix and responses for TIG torch processing of HSLA steel with V microalloying element addition	91
Table 3.8	Details of TIG melting parameters	94
Table 4.1	Mechanical properties of HSLA steel base metal	105
Table 4.2	L-9 Orthogonal Array (OA) experimental results for TIG torch welded HSLA Steel without microalloying elements addition	108
Table 4.3	L-9 Orthogonal Array (OA) experimental results for TIG torch welded HSLA steel with Ti-microalloying element addition	109
Table 4.4	L-9 Orthogonal Array (OA) experimental results for TIG torch welded HSLA steel with V-microalloying element addition	110
Table 4.5	Mean S/N ratio responses for HAZ hardness (HD1) of TIG torch welded HSLA steel	113
Table 4.6	Mean S/N ratio responses for HAZ hardness (HD2) of TIG torch welded HSLA steel with Ti microalloying element addition	115
Table 4.7	Mean S/N ratio responses for HAZ hardness (HD3) of TIG torch	

	welded HSLA steel with V addition	117
Table 4.8	Summary of optimal parameter for HAZ hardness of TIG torch welded HSLA steel	118
Table 4.9	Analysis of confirmation experiment for HAZ hardness of TIG torch welded HSLA steel with and without microalloying addition	120
Table 4.10	Mean S/N ratio responses for HAZ impact toughness (IT1) of TIG torch welded HSLA steel	123
Table 4.11	Mean S/N ratio responses for HAZ impact toughness (IT2) of TIG torch welded HSLA steel with Ti-microalloying element addition	125
Table 4.12	Mean S/N ratio responses for HAZ impact toughness (IT3) of TIG torch welded HSLA steel with V-microalloying element addition	128
Table 4.13	Summary of optimal parameter for HAZ impact toughness (IT) of TIG torch welded HSLA steel	129
Table 4.14	Analysis of confirmation experiment for HAZ toughness of TIG torch welded HSLA steel with and without microalloying addition	130
Table 4.15	Mean S/N ratio responses for HAZ tensile strength (TS1) of TIG torch welded HSLA steel	133
Table 4.16	Mean S/N ratio responses for HAZ tensile strength (TS2) of TIG torch welded HSLA steel with Ti addition	136
Table 4.17	Mean S/N ratio responses for HAZ tensile strength (TS3) of TIG Torch welded HSLA steel with V addition	138
Table 4.18	Summary of optimal parameter for HAZ tensile strength of TIG torch welded HSLA steel	139
Table 4.19	Analysis of confirmation experiment for HAZ Tensile strength of TIG torch welded HSLA steel with and without microalloying addition	140

LIST OF FIGURES

Figure 1.1	Development of High Strength Low Alloy Steels	2
Figure 1.2	Thesis Flow chart	12
Figure 2.1	Schematic of a continuous cooling transformation diagram of HSLA steel showing how various cooling rate influence the final microstructure	17
Figure 2.2	Optical micrograph of equiaxed (polygonal) ferrite and pearlite (dark)	18
Figure 2.3	Replica transmission electron micrograph of acicular ferrite plates in a steel weld Deposit a steel weld deposit	19
Figure 2.4	Optical micrograph of bainite found in heat treated HSLA steel	20
Figure 2.5	Optical micrograph of lath martensite	21
Figure 2.6	Distribution of structural areas of HAZ for low alloy steel as a function of temperature, in relation to the iron-carbon phase equilibrium	28
Figure 2.7	Schematic arrangement of Tungsten Inert Gas (TIG) welding Setup	37
Figure 2.8	Schematic of a CCT diagram showing how various factors Influence the final microstructure in the HAZ	43
Figure 2.9	HAZ microstructure and dissolution position of microalloying nitrides and carbides	50
Figure 3.1	Experimental equipment	83
Figure 3.2	TIG torch experimental set up with welding configuration	84
Figure 3.3	A schematic black box for a TIG torch arc welding process	88
Figure 3.4	Powder preplacement and welding track development	93
Figure 3.5	Schematic diagrams showing the path of hardness measurements of the weld; FZ: Fusion Zone, HAZ: Heat Affected Zone and	

BM: Base Metal

Figure 3.6	(a) ASTM E23 proportions of Charpy V-notch specimen(b) Position of specimen during the test and (c) Impact testing machine	98
Figure 3.7	(a) The dimension of the tensile test specimen (ASTM E8) and (b) Universal tensile testing machine	99
Figure 3.8	Schematic diagram showing transverse section of the weld	100
Figure 4.1	X-ray diffraction of HSLA steel API-X65 substrate material	103
Figure 4.2	(a) Optical microstructure and (b) SEM microstructure of HSLA steel substrate material	103
Figure 4.3	Stress-Strain curves of HSLA steel (API X-65) base material	104
Figure 4.4	(a) Sample with V-notch of HSLA steel after testing of impact toughness and (b) SEM micrograph for a notch fracture surface of HSLA steel base material	105
Figure 4.5	Influence of process parameters on mean S/N ratio for Hardness (HD1) without microalloying element additions	113
Figure 4.6	Influence of process parameters on mean S/N ratio for Hardness (HD2) with Ti-microalloying element addition	115
Figure 4.7	Influence of process parameters on mean S/N ratio for Hardness (HD3) with V microalloying element addition	118
Figure 4.8	Influence of process parameters on mean S/N ratio for impact toughness (IT1) without microalloying elements addition	123
Figure 4.9	Influence of process parameters on mean S/N Ratio for Impact toughness (IT2) with Ti-microalloying element addition	125
Figure 4.10	Influence of process parameters on mean S/N ratio for Impact toughness (IT3) with V-micralloying element addition	128
Figure 4.11	Influence of process parameters on mean S/N ratio for Tensile Strength (TS1) without microalloying element additions	133
Figure 4.12	Influence of process parameters on mean S/N ratio for Tensile Strength (TS2) with Ti microalloying element addition	136

97

Figure 4.13	Influence of process parameters on mean S/N ratio for Tensile Strength (TS3) with V-microalloying element addition	138
Figure 4.14	OM and SEM micrographs of HAZ of welded HSLA steel without microalloying additions with heat input of 1152 J/mm	142
Figure 4.15	OM and SEM micrographs of HAZ of welded HSLA steel without microalloying additions with heat input of 1512 J/mm	144
Figure 4.16	OM and SEM micrographs of HAZ of welded HSLA steel without microalloying additions with heat input of 1920 J/mm	145
Figure 4.17	OM and SEM micrographs of HAZ of welded HSLA steel with 1.0 mg/mm ² Ti-microalloying element addition	147
Figure 4.18	OM and SEM micrographs of HAZ of welded HSLA steel with 1.5 mg/mm ² Ti-microalloying element addition	148
Figure 4.19	OM and SEM micrographs of HAZ of welded HSLA steel with 2.0 mg/mm ² Ti-microalloying element addition	149
Figure 4.20	EDX spectrum of TIG torch welded HSLA steel with Ti- microalloying addition; (a) Substrate HSLA steel, (b) Run #1 (Ti = 1.0 mg/mm^2) at 1152 J/mm, (c) Run #5 (Ti = 1.5 mg/mm^2) at 1728 J/mm, and (d) Run #9 (Ti = 2.0 mg/mm^2) at 1680 J/mm	152
Figure 4.21	OM and SEM micrographs of HAZ of welded HSLA steel with 1.0 mg/mm ² V-microalloying element addition	154
Figure 4.22	OM and SEM micrographs of HAZ of welded HSLA steel with 1.5 mg/mm ² V-microalloying element addition	155
Figure 4.23	OM and SEM micrographs of HAZ of welded HSLA steel with 2.0 mg/mm ² V-microalloying element addition	156
Figure 4.24	EDX spectrum of TIG torch welded HSLA steel with V– microalloying addition; (a) Substrate HSLA steel, (b) Run #1 $(V = 1.0 \text{ mg/mm}^2)$ at 1152 J/mm, (c) Run #5 $(V = 1.5 \text{ mg/mm}^2)$ at 1728 J/mm, and (d) Run #9 $(V = 2.0 \text{ mg/mm}^2)$ at 1680 J/mm	158
Figure 4.25	XRD spectrum of TIG torch welded HSLA steel with Ti- microalloying addition; (a) Substrate HSLA steel, (b) Run #1 (Ti = 1.0 mg/mm^2) at 1152 J/mm, (c) Run #5 (Ti = 1.5 mg/mm^2) at 1728 J/mm, and (d) Run #9 (Ti = 2.0 mg/mm^2) at 1680 J/mm	161

Figure 4.26	XRD spectrum of TIG torch welded HSLA steel with V- microalloying addition; (a) Substrate HSLA steel, (b) Run #1 $(V = 1.0 \text{ mg/mm}^2)$ at 1152 J/mm, (c) Run #5 $(V = 1.5 \text{ mg/mm}^2)$ at 1728 J/mm, and (d) Run #9 $(V = 2.0 \text{ mg/mm}^2)$ at 1680 J/mm	164
Figure 4.27	Hardness profile of the TIG torch welded HSLA steel of nine experimental runs with various heat input	169
Figure 4.28	Hardness profile of the TIG torch welded HSLA steel for three different heat inputs (low, medium, and high)	171
Figure 4.29	Hardness profile of the TIG torch welded HSLA steel with Ti-microalloying element addition for nine experimental runs with various heat input	172
Figure 4.30	Hardness profile of the TIG torch welded HSLA steel for three different Ti-microalloying element addition (1.0 mg/mm ² , 1.5 mg/mm ² , and 2.0 mg/mm ²)	174
Figure 4.31	Hardness profile of the TIG torch welded HSLA steel with V-microalloying element addition for nine experimental runs with various heat input	176
Figure 4.32	Hardness profile of the TIG torch welded HSLA steel for three different V-microalloying element addition $(1.0 \text{ mg/mm}^2, 1.5 \text{ mg/mm}^2, \text{ and } 2.0 \text{ mg/mm}^2)$	177
Figure 4.33	Comparison of the effect of the hardness response on the HAZ with and without microalloying element addition	178
Figure 4.34	The engineering stress-strain curves for base metal and nine welded HSLA Steel without microalloying element addition	180
Figure 4.35	The engineering stress-strain curves for base metal and for three different heat inputs (low, medium, and high) for welded HSLA steel without microalloying addition	181
Figure 4.36	Fracture macrograph of tensile specimen for welded HSLA steel with three heat input	182
Figure 4.37	The engineering stress-strain curves for base metal and nine welded HSLA steel with Ti-microalloying element addition	184
Figure 4.38	The engineering stress-strain curves for base metal and for three different Ti-microalloying element addition (1.0 mg/mm ² , 1.5 mg/mm ² , and 2.0 mg/mm ²) for welded HSLA steel	185

Figure 4.39	The engineering stress-strain curves for base metal and nine welded HSLA steel with V-microalloying element addition	187
Figure 4.40	The engineering stress-strain curves for base metal and for three different V-microalloying element addition (1.0 mg/mm ² , 1.5 mg/mm ² , and 2.0 mg/mm ²) for welded HSLA steel	188
Figure 4.41	Comparison of tensile strength response on the welding of HSLA steel with and without microalloying element addition	190
Figure 4.42	SEM Fractography for a notch fracture surface of HSLA steel base material	192
Figure 4.43	Effect of heat input on the HAZ Impact Toughness of welded HSLA steel	193
Figure 4.44	SEM micrographs of the HAZ impact fractures of welded HSLA steel under different welding heat inputs of (a) W-R#1-1152 J/mm, (b) W-R#5-1728 J/mm, and (c) W-R#9-1680 J/mm	195
Figure 4.45	Effect of Ti-microalloying addition on the HAZ Impact Toughness of Welded HSLA Steel	197
Figure 4.46	SEM micrographs of the HAZ Impact Fractures of welded HSLA steel with Ti microallying addition: (a) Ti (1.0)-R#1, (b) Ti (1.5)-R#5, and (c) Ti (2.0)-R#9	199
Figure 4.47	Effect of V-microalloying addition on the HAZ Impact Toughness of Welded HSLA Steel	201
Figure 4.48	SEM micrographs of the HAZ impact fractures of welded HSLA steel with V microallying addition: (a) V (1.0)-R1, (b) V (1.5)-R5, and (c) V (2.0)-R9	203
Figure 4.49	Comparison of HAZ Impact Toughness response with and without microalloying element addition	205

LIST OF ABBREVIATIONS

ABS	American Bureau of Shipping
AC	Alternating Current
ACC	Accelerated Cooling
AF	Acicular Ferrite
Al	Aluminum
API	American Petroleum Institute
Ar	Argon
ASM	American Society of Metals
ASTM	American Society for Testing of Material
В	Bainite
BBD	Box-Behnken Design
BCC	Body Centered Cubic
BM	Base Metal
Bs	Bainite Start
С	Carbon
Ca	Calcium
CCD	Central Composite Design
ССТ	Continuous Cooling Transformation
CGHAZ	Coarse Grained Heat Affected Zone
Cr	Chromium
CTOD	Crack Tip Opening Displacement
Cu	Copper

CVN	Charpy V Notch
DBTT	Ductile Brittle Transition Temperature
DCEN	Direct Current Electrode Negative
DCEP	Direct Current Electrode Positive
DCRP	Direct Current Reverse Polarity
DCSP	Direct Current Straight Polarity
DOE	Design Of Experiment
DP	Dual Phase
DWTT	Drop Weight Tear Test
EL	Elongation
EDM	Electric Discharge Machining
EDX	Energy Dispersive X-ray Spectroscopy
EGS	Effective Grain Size
FCC	Face Centered Cubic
Fe-FeC ₃	Iron-Iron Carbide
FGHAZ	Fine Grain Heat Affected Zone
FZ	Fusion Zone
GTAW	Gas Tungsten Arc Welding
HACC	Hydrogen Assisted Cold Cracking
HAGB	High Angle Grain Boundary
HAZ	Heat Affected Zone
HD	Hardness
HSLA	High Strength Low Alloy
НТВ	Higher-The-Better

Hv	Vickers Hardness
HY	High Yield
ICCGHAZ	Intercritically Reheated Coarse Grained Heat Affected Zone
IIW	International Institute of Welding
IT	Impact Toughness
JCPDS	Joint Committee on Powder Diffraction Standards
LBZ	Local Brittle Zone
LM	Lath Martensite
LOM	Light Optical Microscope
LTB	Lower-The-Better
М	Martensite
M-A	Martensite-Austenite
Mn	Manganese
Ms	Martensite Start
MnS	Manganese Sulfide
Мо	Molybdenum
Ν	Nitrogen
Nb	Niobium
Ni	Nickel
NTB	Nominal-The-Best
OA	Orthogonal Arrays
OAW	Oxy-Acetylene Welding
Р	Pearlite
PAG	Prior Austenite Grain

PF	Polygonal Ferrite
PVA	Polyvinyl Alcohol
PWHT	Post Weld Heat Treatment
QT	Quenching and Tempering
RT	Room Temperature
SAW	Submerged Arc Welding
SEM	Scanning Electron Microscope
SG	Shielded Gas
Si	Silicon
SMAW	Shielded Metal Arc Welding
SPF	Side Plate Ferrite
TEM	Transmission Electron Microscope
Ti	Titanium
TiC	Titanium Carbide
TIG	Tungsten Inert Gas
ТМСР	Thermo-mechanical Controlling Process
TiN	Titanium Nitride
TiS	Titanium Sulfide
TS	Tensile Strength
UTS	Ultimate Tensile Strength
V	Vanadium
VC	Vanadium Carbide
VN	Vanadium Nitride
WF	Widmanstatten Ferrite

WM	Weld Metal
XRD	X-ray Diffraction
YS	Yield Strength
Zr	Zirconium
α	Alpha
γ	Gamma