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ABSTRACT

Creating an autonomous agent, that gets real observations such as sensory data and
images from the surrounding environment and learns optimal sequential actions, has
been considered as one of the main goals of Artificial General Intelligence (AGI). Deep
(Hierarchical) Reinforcement Learning (HRL/DRL) can address this objective.
Traditional deep reinforcement learning methods suffer from long learning and training
time resulted from the need to fine-tune the weights iteratively in the network. This
research investigates the previous problem by utilizing a random weights generation
approach that is based on Extreme Learning Machine. This method benefits from the
randomness of input weights and least square solution in output weights calculation to
reduce the training time by an order of magnitude. Hierarchical ELM (H-ELM) and
Local Receptive Field ELM (LRF-ELM) are recent versions of multilayer ELM to
respectively learn and extract features by hierarchical learning scheme. They have
outperformed other existing deep models in terms of learning time (speed). H-ELM’s
architecture was found to be similar to gradient-based (GB) auto-encoder without
weights fine-tuning. However, H-ELM gives higher learning speed compared to the GB
autoencoder. Moreover, LRF-ELM was found as similar to Convolutional Neural
Network (CNN) without weights fine-tuning. It has outperformed the traditional CNN
in the term of learning time. Therefore, in this research, the proposed method, which
combines RL with H-ELM or LRF-ELM, is an efficient solution to approximate the
action-value function and learn an optimal policy directly from visual data (images) in
a short time. In addition, this research proposed a novel method called Convolutional
H-ELM (CH-ELM) which is a combination of pre-trained CNN and H-ELM. This
method has outperformed either CNN or H-ELM in terms of accuracy and RMSE. The
experimental results have been analyzed and evaluated in different applications such as
target reaching arm, 2D maze navigation, slide puzzle game , objects sorting, and rock-
paper-scissor game. The data samples have been trained and tested to investigate the
robustness of the proposed systems. It was found that the proposed models can reduce
the learning time by an order of magnitude in various tasks without degrading the
performance. The big improvement in learning speed in the proposed method can
neglect the slight drop in accuracy in few tasks compared to traditional methods.
Therefore, the proposed method can balance the trade-off between learning speed and
good performance. In addition, it is able to run on traditional CPUs that are available in
the most of the low cost embedding systems.
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CHAPTER ONE
INTRODUCTION

1.1 RESEARCH BACKGROUND

Most of the robot control and planning issues are represented by uncertainties of sensing
and acting devices of robots. Recently, applications in robotics have moved from a
highly controlled environment to unstructured environments. Working in an
unstructured environment is considered as a challenging task for autonomous agents.
The unstructured environment is characterized by one or more of these factors:
complexity, uncertainties and/or a high dimensional state space (Katz, Kenney, &
Brock, 2008).

Creating an autonomous agent, that gets real observations such as sensory data,
images, videos or audio from the environment and learns optimal sequential actions,
has been considered as one of the main goals of Artificial General Intelligence (AGI)
(Kuhnberger et al., 2009). Deep (Hierarchical) Learning and Reinforcement Learning
(RL), two subfields of Machine Learning (ML), can address this objective. Deep
learning can learn features that are relevant to discriminative action values. On the other
hand, Reinforcement Learning learns to map the learned features to optimal actions
(Kuhnberger et al., 2009).

Reinforcement learning (RL) is an active research area in machine learning,
artificial intelligence, and neural network (Sutton & Barto, 1998; Kaelbling, Littman,
& Moore, 1996). RL differs from other learning methods such as supervised learning
that needs to have a pair of inputs/outputs to find the model. In RL, the agent first

observes the state of the environment and generates action. The environment moves the



agent to a new state and gives it a reward which is a scalar value that evaluates the action
in the current state. The idea of learning by interacting (trial-and-error) with the
environment is used when there is no direct teacher but only sensory and motor
connections with the surrounding (Sutton & Barto, 1998; Kaelbling, Littman, & Moore,
1996). The objective of RL is to map different situations to proper actions that maximize
a reward.

RL has been used for a while to find an optimal policy or optimal series of actions
in a low dimensional environment (Sutton & Barto, 1998; Kaelbling, Littman, & Moore,
1996). This policy results from the interaction between the agent and the environment
by doing actions and getting positive and negative rewards. The trial — error technique
formulates the RL utilizing the MDP (Markov Decision Process) model which describes
the agent-environment interaction. Figure 1.1 shows the model of interaction between
robot and environment in the unstructured environment. The value iteration method is
one of the RL methods that use the value function, which is discounted accumulated
rewards, to describe the value of the actions (Bellman, 1957). The objective is to
optimize the policy by choosing actions that have maximum action values.

When the input is high dimensional data such as images, traditional RL is
suffering from many problems (Bellman, 1957; Keogh & Mueen, 2017). Therefore, the
method of deep reinforcement learning was found as an alternative solution. A
combination of deep and reinforcement learning is the foundation of AGI (Kuhnberger
etal., 2009). Deep reinforcement learning gets a stream of raw data (sensors or camera’s
images) and reacts to the environment with a sequence of control actions to finally
achieve the desired goal. The existing deep reinforcement learning models were found
to give a good performance, but they require long training time even if the algorithms

run on a powerful Graphical Processing Unit. Therefore, there is still a need to have



