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ABSTRACT 

Until now, producing homogeneous chemical vapour deposited graphene with zero 

defects remains a challenge. The research on chemical aspects has been extensively 

explored either through experiments or computational studies. Given that it is a mass-

transport limited process for atmospheric-pressure CVD (APCVD), the gas-phase 

dynamics and interfacial phenomena at the gas-solid interface (i.e., the boundary layer) 

is a crucial controlling factors. In this research, the importance of CVD fluid dynamics 

aspect was emphasised through fundamental studies at both gas-phase and gas-solid 

phase. As a preliminary study, an extensive review of available APCVD literature 

provided information on the relationship of graphene quality and its corresponding 

growth parameter. From these parameters, Reynolds number was calculated with the 

consideration that it is a ternary gas mixture. This was then compiled into a CH4-H2-Ar 

ternary plot which predicts the quality of graphene and Reynolds number at all gas 

compositions. Higher Reynolds number was found to be promising for high-quality 

graphene deposit which could be obtained at the gas composition range of ≤1% of CH4, 

≤10% of H2, and ≥90% of Ar. Following this, a customised homogenous gas with 

properties similar to mixture of CH4, H2 and Ar was used in our computational fluid 

dynamics (CFD) of APCVD graphene. The in-depth details on gas-phase dynamics, 

interfacial phenomena, particularly the boundary layer and mass transport during the 

deposition process, were studied. Conditions, where gravity parameter is vital or could 

be safely neglected in CFD, was also determined. CFD model also allowed a close-up 

view of the boundary layer at the gas-solid interface. This was found to provide the most 

reasonable estimation of boundary-layer thickness formed on top of substrate for a 

bounded flow system like in a CVD. Higher Reynolds number formed thinner boundary 

layer. Consecutively, the relationship between the deposited graphene quality with 

Reynolds number, boundary-layer thickness and mass transport were explored. 

Calculated mass transport coefficient shows a good correlation to graphene thickness 

but not it's defect density which suggests that graphene defects are more dependent on 

factors other than fluid dynamics. At the highest Reynolds number of 84, few-layer 

graphene with monolayer ratio, I2D/IG of ∼0.67 and defect ratio, ID/IG of ∼0.45 was 

obtained. Wherein the quality of graphene improves when the ID/IG decreased by 90% 

and I2D/IG increased by 60%. Based on the experimental and computational studies, 

transport process was shown to have a vital role in the APCVD graphene growth. 
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 البحث   خلاصة
ABSTRACT IN ARABIC 

من الجرافين المترسب تحديًا حتى يومنا هذا. تم القيام بالعديد من الأبحاث    غير معيوب   لا يزال إنتاج بخار كيميائي متجانس
في الجوانب الكيميائية على نطاق واسع إما من خلال التجارب أو الدراسات الحسابية. بالنظر إلى أنها عملية نقل جماعي  

(، فإن ديناميكيات الطور الغازي والظواهر البينية في السطح البيني الغازي  APCVD)  CVDط الجوي  محدودة لـلضغ
من خلال     APCVDالصلب )أي الطبقة الفاصلة( هي عوامل التحكم الحاسمة. تم التأكيد على أهمية ديناميكيات  

الغازية الصلبة في هذا البحث . كدراس الغازية والمرحلة  ة أولية، قدمت مراجعة  الدراسات الأساسية في كل من المرحلة 
المتاحة معلومات حول العلاقة بين جودة الجرافين وعامل النمو المقابل لها. من بين هذه    APCVDشاملة لأدبيات  

4CH-العوامل، تم حساب رقم رينولدز مع الأخذ في الاعتبار أنه خليط غازي ثلاثي. تم جمعه بعد ذلك في مخطط  
Ar-2H  رافين ورقم رينولدز في جميع التركيبات الغازية. تم التوصل إلى أن أرقام رينولدز  الثلاثي والذي يتوقع جودة الج

العالية تعُد واعدة بنسبة للجودة العالية لرواسب الجرافين والتي يمكن الحصول عليها في نطاق تكوين الغاز الذي يبلغ أقل  
متجانس مخصص بشكل أكبر  . بعد ذلك، تم تطوير نموذج غاز Ar٪ من 90، و2H٪ من  4CH ،10٪ من 1من 

. تمت دراسة التفاصيل المتعمقة حول ديناميكيات الطور  APCVD( من جرافين  CFDلديناميات السوائل الحسابية )
الغازي والظواهر البينية، خاصة الطبقة الفاصلة والنقل الجماعي أثناء عملية الترسيب. تم أيضاا تحديد الظروف التي تكون  

أيضاا برؤية قريبة للطبقة   CFD. يسمح نموذج  CFDراا حيويًا أو يمكن إهمالها بدون عواقب في  فيها عوامل الجاذبية أم
الفاصلة في السطح البيني الغاز الصلب. تم العثور على هذا لتوفير أكثر تقدير منطقي لسُمك الطبقة الفاصلة لنظام تدفق  

. شكل رقم  Blasius الآخر المعتمد على نموذج  . تم إثبات عدم صحة التقدير التقريبيCVDمحدود كما هو الحال في  
رينولدز الأعلى طبقة حد أقل سمكاا. وتم استكشاف العلاقة بين الجرافين المترسب ورقم رينولدز وسمك الطبقة الفاصلة  

ا بسُمك الجرافين ولكن لا يشُير إلى كثابة مع النقل الجماعي المحسوب ارتباطاا جيدا يوبة،  والنقل الجماعي. يظُهر عامل 
والذي يشير إلى أن عيوب الجرافين تعتمد بشكل أكبر على عوامل أخرى غير ديناميكيات السوائل. أثناء تطبيق أعلى  

  ∽0.67بقيمة    GI/2DI ( ، تم الحصول على عدد قليل من الجرافين مع نسبة أحادية الطبقة  84رقم لرينولدز )البالغ  
بنسبة    GI/2DI٪ وزادت  90بنسبة      GI/DI. تحسنت جودة الجرافين عند انخفاض  GI/DI  ∼0.45ونسبة العيوب  

جرافين  60 نمو  في  حيوي  دور  النقل  لعملية  أن  تبين  والحسابية،  التجريبية  الدراسات  على  بناءا   .٪
APCVD .  
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CHAPTER ONE 

INTRODUCTION 

This chapter provides the research background starting from the significance of 

graphene, its production method and the challenges in the production of high-quality 

large-area graphene that is currently the obstacle to its widespread use. With the current 

status of graphene research introduced, a vital point in the production process which is 

fluid dynamics is discussed. From there, issues in this field of study will be highlighted 

and the objectives of this research are stated. 

1.1 STUDY BACKGROUND 

1.1.1 Properties and Production of Graphene 

Carbon-based material was recently discovered to have extraordinary properties for 

various applications. Fabrication of carbon materials especially graphene, also known 

as ‘wonder material’, have gained massive research interest in a short duration due to 

its spectacular structural and electronic properties. Graphene is a 2D material made of 

a single atomic layer of graphite consisting of sp2 carbon atoms in hexagonal lattices. It 

is the basic building block for other graphitic materials in other dimensions. Graphite is 

composed of a stack of many graphene layers forming a 3D structure; CNT is graphene 

in a tubular shape forming a 1D structure; fullerene is graphene in a spherical shape 

with some hexagonal lattices replaced by pentagon lattices forming a 0D structure. In 

contrast, sp3 carbons form 3D carbon allotropes as diamonds and supercubane 

tetrahedral, BC8. Figure 1.1 shows the structures of all graphitic materials in all 
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dimensions and graphene is the basic structure with a single atom thick carbon layer 

(Oganov, Hemley, Hazen, and Jones, 2013). 

 

Figure 1.1 Structures of carbon allotropes in all dimensions (Oganov et al., 2013). 

Theoretically, graphene has been studied for about sixty years and its superior 

characteristics beyond other materials’ characteristics were discovered forty years later. 

Since 2004, graphene has gained massive interest with many applications relying on its 

superior properties and strength. Geim and Nosolev from Manchester University first 

discovered it that awarded them the Nobel Prize. It has become a reference for 

describing properties of other carbon allotropes (Geim and Novoselov, 2007). 

Composed of carbons in sp2-hybridised bonds, it forms benzene rings with 

delocalised electron clouds. The sp2 bonds provide excellent structural strength and 

fracture strength of ~1 TPa Young’s modulus and 130 GPa, respectively (Lee, Wei, 

Kysar, and Hone, 2008). As a comparison, iron only has Young’s modulus of 211 GPa. 
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Its delocalised π-electron clouds give rise to its conductivity. Its bulk conductivity is 

0.96 × 106 Ω-1 cm-1, higher than Cu which is 0.60 × 106 Ω-1 cm-1. Graphene is the 

thinnest material (∼3.35 Å) with remarkable properties such as high electron mobility 

at room temperature (∼2–2.5 × 105 cm2 V-1 s-1), high optical transmissivity (2.3%), 

exceptional thermal conductivity (4800–5300 W m-1 K-1) and high electrical 

conductivity (2000 S cm-1) (Mayorov et al., 2011). Compared to conventional 

conductive materials such as metals and semiconductors, single-layer graphene 

possesses a sheet resistivity of 31 Ω sq-1 while maintaining its transparency and 

flexibility. Single-layer graphene was found to allow 98 % of visible light to pass 

through it (Zhao et al., 2014). Due to its benzene-like structure, pristine graphene is 

chemically inert giving chemical stability in a wide range of conditions. 

No other materials can beat the superior characteristics of graphene. These 

particular properties of graphene have generated lots of interest and have been explored 

for more than fifty years. All the above properties are the reason why graphene is known 

as a ‘wonder material’. These characteristics give graphene the potential ability to be 

used in many fields of applications including optoelectronics, flexible solar cell, bio-

sensing, nanocomposites, and energy storage devices (Ani et al., 2018; Azam et al., 

2017; Mishra, Boeckl, Motta, and Iacopi, 2016). However, such characteristics only 

apply to high-quality graphene. Until now, it is still a challenge to produce high-quality 

large-area graphene consistently. 

Currently, many methods have been developed to synthesise graphene in various 

dimensions, shapes, and quality (Novoselov et al., 2012). These methods can be 

categorised into bottom-up or top-down approaches. The top-down approach is the 

process where the hexagonal lattice graphene sheets are split from its large carbon 

building structures such as graphite and CNT. Meanwhile, a bottom-up approach is a 
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process building up new carbon hexagonal lattice of graphene from carbon precursors 

such as hydrocarbon molecules (Tour, 2014; Yi and Shen, 2015). 

The interest in graphene spiked since the first successful mechanical exfoliation 

of monolayer graphene was reported by Nosolev and Geim in 2004 (Novoselov et al., 

2004). This method is essentially a top-down approach. Since then, researches on 

graphene productions have been widely explored resulting in many new methods as 

shown in Figure 1.2 which sorts each method in terms of quality and cost for mass 

production (Novoselov et al., 2012). The highest quality of graphene can be produced 

using mechanical exfoliation, but this method is costly for mass production and 

produces only flakes. This method is only used for research purposes.  

Meanwhile, liquid exfoliation is a method to produce graphene on a large scale 

with the cheapest production cost. But through this method, the poorest quality of 

graphene was produced. Graphene that was produced thus were unable to be used in 

nanoelectronics applications. Alternatively, growth on silicon carbide, CVD and 

molecular assembly has produced good quality graphene for nanoelectronics 

applications. 

CVD has become the most favourable method for graphene production in terms 

of cost and quality compared to other methods. It can produce high-quality graphene 

with small defects (Zhang et al., 2013). Furthermore, CVD is well-known for its 

simplicity, scalability, large size of continuous graphene sheets, and reasonable material 

quality (Vlassiouk, Fulvio, et al., 2013). In addition, modifications of the CVD reactor, 

such as plasma-enhanced CVD (Braeuninger-Weimer, Brennan, Pollard, and Hofmann, 

2016; Jacob et al., 2015) or flame deposition CVD (Ismail et al., 2017; Memon et al., 

2011), have also been reported for graphene production. Due to the above reasons, rapid 

CVD graphene research is predicted to continue for the next few decades. 
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Figure 1.2 Graphene production in terms of methods, cost and quality (Novoselov et 

al., 2012). 

1.1.2 CVD 

The use of CVD for graphene production is not a new finding. It is a bottom-up 

approach where graphene will be deposited on the substrate through chemical reactions 

of the hydrocarbon species at a temperature range of 573 K to approximately 1273 K. 

Figure 1.3 shows the schematic diagram of a typical tube-furnace CVD system (Miao, 

Zheng, Liang, and Xie, 2011). 

Carbon sources usually used for graphene deposition comes from hydrocarbons 

such as ethylene, methane, benzene, ethanol as well as polymers in any particular form 

but mostly in the gas form (Li et al., 2011; Yao et al., 2011). The gases that enter the 

reactor will be controlled by MFC, then the reaction will take place at the reactor where 

the substrate will be placed within it. The reaction can be any pressure condition. The 


