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ABSTRACT

Until now, producing homogeneous chemical vapour deposited graphene with zero
defects remains a challenge. The research on chemical aspects has been extensively
explored either through experiments or computational studies. Given that it is a mass-
transport limited process for atmospheric-pressure CVD (APCVD), the gas-phase
dynamics and interfacial phenomena at the gas-solid interface (i.e., the boundary layer)
is a crucial controlling factors. In this research, the importance of CVD fluid dynamics
aspect was emphasised through fundamental studies at both gas-phase and gas-solid
phase. As a preliminary study, an extensive review of available APCVD literature
provided information on the relationship of graphene quality and its corresponding
growth parameter. From these parameters, Reynolds number was calculated with the
consideration that it is a ternary gas mixture. This was then compiled into a CHs-H>-Ar
ternary plot which predicts the quality of graphene and Reynolds number at all gas
compositions. Higher Reynolds number was found to be promising for high-quality
graphene deposit which could be obtained at the gas composition range of <1% of CHa,
<10% of Hz, and >90% of Ar. Following this, a customised homogenous gas with
properties similar to mixture of CH4, H2 and Ar was used in our computational fluid
dynamics (CFD) of APCVD graphene. The in-depth details on gas-phase dynamics,
interfacial phenomena, particularly the boundary layer and mass transport during the
deposition process, were studied. Conditions, where gravity parameter is vital or could
be safely neglected in CFD, was also determined. CFD model also allowed a close-up
view of the boundary layer at the gas-solid interface. This was found to provide the most
reasonable estimation of boundary-layer thickness formed on top of substrate for a
bounded flow system like in a CVD. Higher Reynolds number formed thinner boundary
layer. Consecutively, the relationship between the deposited graphene quality with
Reynolds number, boundary-layer thickness and mass transport were explored.
Calculated mass transport coefficient shows a good correlation to graphene thickness
but not it's defect density which suggests that graphene defects are more dependent on
factors other than fluid dynamics. At the highest Reynolds number of 84, few-layer
graphene with monolayer ratio, loo/lc of ~0.67 and defect ratio, Io/lc of ~0.45 was
obtained. Wherein the quality of graphene improves when the Ip/lc decreased by 90%
and lzp/lc increased by 60%. Based on the experimental and computational studies,
transport process was shown to have a vital role in the APCVD graphene growth.
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CHAPTER ONE
INTRODUCTION

This chapter provides the research background starting from the significance of
graphene, its production method and the challenges in the production of high-quality
large-area graphene that is currently the obstacle to its widespread use. With the current
status of graphene research introduced, a vital point in the production process which is
fluid dynamics is discussed. From there, issues in this field of study will be highlighted

and the objectives of this research are stated.

1.1 STUDY BACKGROUND

1.1.1 Properties and Production of Graphene

Carbon-based material was recently discovered to have extraordinary properties for
various applications. Fabrication of carbon materials especially graphene, also known
as ‘wonder material’, have gained massive research interest in a short duration due to
its spectacular structural and electronic properties. Graphene is a 2D material made of
a single atomic layer of graphite consisting of sp? carbon atoms in hexagonal lattices. It
is the basic building block for other graphitic materials in other dimensions. Graphite is
composed of a stack of many graphene layers forming a 3D structure; CNT is graphene
in a tubular shape forming a 1D structure; fullerene is graphene in a spherical shape
with some hexagonal lattices replaced by pentagon lattices forming a 0D structure. In
contrast, sp® carbons form 3D carbon allotropes as diamonds and supercubane

tetrahedral, BC8. Figure 1.1 shows the structures of all graphitic materials in all



dimensions and graphene is the basic structure with a single atom thick carbon layer

(Oganov, Hemley, Hazen, and Jones, 2013).

fullerene nanotube graphene

Figure 1.1 Structures of carbon allotropes in all dimensions (Oganov et al., 2013).

Theoretically, graphene has been studied for about sixty years and its superior
characteristics beyond other materials’ characteristics were discovered forty years later.
Since 2004, graphene has gained massive interest with many applications relying on its
superior properties and strength. Geim and Nosolev from Manchester University first
discovered it that awarded them the Nobel Prize. It has become a reference for
describing properties of other carbon allotropes (Geim and Novoselov, 2007).

Composed of carbons in sp>-hybridised bonds, it forms benzene rings with
delocalised electron clouds. The sp? bonds provide excellent structural strength and
fracture strength of ~1 TPa Young’s modulus and 130 GPa, respectively (Lee, Wel,

Kysar, and Hone, 2008). As a comparison, iron only has Young’s modulus of 211 GPa.



Its delocalised m-electron clouds give rise to its conductivity. Its bulk conductivity is
0.96 x 10° Q1 cm, higher than Cu which is 0.60 x 10° Q! cm™. Graphene is the
thinnest material (~3.35 A) with remarkable properties such as high electron mobility
at room temperature (~2-2.5 x 10° cm? V! s1), high optical transmissivity (2.3%),
exceptional thermal conductivity (4800-5300 W m? K1) and high electrical
conductivity (2000 S cm™) (Mayorov et al., 2011). Compared to conventional
conductive materials such as metals and semiconductors, single-layer graphene
possesses a sheet resistivity of 31 Q sq* while maintaining its transparency and
flexibility. Single-layer graphene was found to allow 98 % of visible light to pass
through it (Zhao et al., 2014). Due to its benzene-like structure, pristine graphene is
chemically inert giving chemical stability in a wide range of conditions.

No other materials can beat the superior characteristics of graphene. These
particular properties of graphene have generated lots of interest and have been explored
for more than fifty years. All the above properties are the reason why graphene is known
as a ‘wonder material’. These characteristics give graphene the potential ability to be
used in many fields of applications including optoelectronics, flexible solar cell, bio-
sensing, nanocomposites, and energy storage devices (Ani et al., 2018; Azam et al.,
2017; Mishra, Boeckl, Motta, and lacopi, 2016). However, such characteristics only
apply to high-quality graphene. Until now, it is still a challenge to produce high-quality
large-area graphene consistently.

Currently, many methods have been developed to synthesise graphene in various
dimensions, shapes, and quality (Novoselov et al., 2012). These methods can be
categorised into bottom-up or top-down approaches. The top-down approach is the
process where the hexagonal lattice graphene sheets are split from its large carbon

building structures such as graphite and CNT. Meanwhile, a bottom-up approach is a



process building up new carbon hexagonal lattice of graphene from carbon precursors
such as hydrocarbon molecules (Tour, 2014; Yi and Shen, 2015).

The interest in graphene spiked since the first successful mechanical exfoliation
of monolayer graphene was reported by Nosolev and Geim in 2004 (Novoselov et al.,
2004). This method is essentially a top-down approach. Since then, researches on
graphene productions have been widely explored resulting in many new methods as
shown in Figure 1.2 which sorts each method in terms of quality and cost for mass
production (Novoselov et al., 2012). The highest quality of graphene can be produced
using mechanical exfoliation, but this method is costly for mass production and
produces only flakes. This method is only used for research purposes.

Meanwhile, liquid exfoliation is a method to produce graphene on a large scale
with the cheapest production cost. But through this method, the poorest quality of
graphene was produced. Graphene that was produced thus were unable to be used in
nanoelectronics applications. Alternatively, growth on silicon carbide, CVD and
molecular assembly has produced good quality graphene for nanoelectronics
applications.

CVD has become the most favourable method for graphene production in terms
of cost and quality compared to other methods. It can produce high-quality graphene
with small defects (Zhang et al., 2013). Furthermore, CVD is well-known for its
simplicity, scalability, large size of continuous graphene sheets, and reasonable material
quality (Vlassiouk, Fulvio, et al., 2013). In addition, modifications of the CVD reactor,
such as plasma-enhanced CVD (Braeuninger-Weimer, Brennan, Pollard, and Hofmann,
2016; Jacob et al., 2015) or flame deposition CVD (Ismail et al., 2017; Memon et al.,
2011), have also been reported for graphene production. Due to the above reasons, rapid

CVD graphene research is predicted to continue for the next few decades.
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Figure 1.2 Graphene production in terms of methods, cost and quality (Novoselov et
al., 2012).

1.1.2 CVvD

The use of CVD for graphene production is not a new finding. It is a bottom-up
approach where graphene will be deposited on the substrate through chemical reactions
of the hydrocarbon species at a temperature range of 573 K to approximately 1273 K.
Figure 1.3 shows the schematic diagram of a typical tube-furnace CVD system (Miao,
Zheng, Liang, and Xie, 2011).

Carbon sources usually used for graphene deposition comes from hydrocarbons
such as ethylene, methane, benzene, ethanol as well as polymers in any particular form
but mostly in the gas form (Li et al., 2011; Yao et al., 2011). The gases that enter the
reactor will be controlled by MFC, then the reaction will take place at the reactor where

the substrate will be placed within it. The reaction can be any pressure condition. The



