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ABSTRACT

The Micro Blowing Technique (MBT) which has been proven by NASA to reduce skin
friction drag on a flat plate by up to 70 to 80 percent in the subsonic speed regime,
outperforms the conventional blowing by means of adopting micro holes to ensure the
introduction of minimal effective roughness. Past researchers have failed to effectively
apply MBT on airfoils. The aim of this study is to ensure reduction in both components
of drag on an airfoil in subsonic flows through investigating proper selection of airfoils
and strategic blowing placement. Based on a detailed in-depth analysis of their work
and reasons for earlier failures, a conclusion has been reached that MBT performs well
on concave pressure-recovery type of airfoils when positioned in the positive pressure
drag region on the lower surface near the trailing edge. The S1223 airfoil that has a
sufficient extent of this region while featuring high-lift properties and mild stall
characteristics makes it an excellent candidate for effective MBT applications and UAV
design. Demonstrated evidence through numerical investigation showed that a proper
implementation of MBT on a S1223 airfoil improves its lift-to drag ratio by 30%. A
simple and effective CFD modelling of MBT on a Clark Y airfoil shows trends similar
to published experimental data involving hot wire and wake pressure measurements.
Results consist of the effect of Reynolds number, blowing fraction and contribution of
individual drag components to aid understanding on how MBT influences the overall
flow and drag. The CFD results are also validated against XFOIL. The findings indicate
that total drag reduction is heavily dependent in the manner in which MBT affects the
pressure distribution around the airfoil. A proper selection of the region in which micro
blowing is located will lead to a significant reduction in pressure drag. At a Reynolds
number of 0.3 x 108, drop in skin friction drag reached almost 5% while reduction in
pressure drag is about 37.5% across a range of angles of attack when having MBT
applied at 0.68-0.80 x/c. It is concluded that the integration of properly located MBT
on concave pressure-recovery type of airfoils should produce significant improvement
in their performance.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Attempts in controlling the boundary layer can be traced back to about 90 years ago,
with increased attention being paid in the 1970s with the goal of decreasing the
operational cost for commercial aircrafts (Joslin, 1998). An interesting review on
various flow control techniques can be seen in (Gad-el-Hak, 1996). From one
perspective, drag reduction can be achieved via suction control that allows the extension
of the laminar region on the body. Physically, thinning of the boundary layer promotes
stability which then successfully delays transition (Reynolds & Saric, 1986). Since skin
friction drag caused by the turbulent boundary layer can be up to 90%, significant
research was made to improve the Laminar Flow Control and the Hybrid Laminar Flow
Control method through having necessary equipment being installed on the wings,
engine nacelles, fuselage nose, as well as the horizontal and vertical tail of an aircraft
(Arcara, Bartlett, & McCullers, 1991)

Alternatively, boundary layer control too can be achieved by mass injection or
blowing. Aside from flow separation prevention through oscillatory blowing, (Seifert,
Bachar, Koss, Shepshelovich, & Wygnanski, 1993; Wang & Sun, 2000) skin friction
drag can also be reduced via the Micro Blowing Technique (Hwang, 1997). MBT is
superior compared to suction in reducing skin friction drag due to the fact that it
executes the objective in a fully developed turbulent flow rather than relying on the

extension of laminar zone on the body. Flow instabilities and surface defects in real



application makes it difficult to apply suction techniques and often turbulent boundary
layers are needed to prevent flow separation. Further studies also involved MBT to be
integrated on engine nacelles (Tillman & Hwang, 1999). Boundary layer flow control
via blowing is additionally attractive due to the fact that it has the capability to be

implemented passively which will become the ultimate goal.

1.2 STATEMENT OF THE PROBLEM

To establish the scope of this thesis the specific and precise problem statement is
outlined below:

Development focusing on fixed-wing Unmanned Aerial Vehicles (UAVS) have been
explicitly observed over the past years due to its effective service in numerous fields.
Airfoil design optimization, configuration enhancement and propulsion systems
modification have yielded continuous accomplishments to date. In addition to that, the
integration of the Micro Blowing Technique (MBT) on flat plates which have showed
great success in reducing skin friction drag has yet to report sound understanding to lay
out the procedures which allow successful total drag reduction when being applied on
airfoils. Therefore, there is a need to explore the underlying mechanism to resolve this
issue and promote meaningful enhancements in airfoil performance.

For the thesis, research has been done to numerically investigate the effect of
implementing MBT on the S1223 airfoil at different angles of attack and Reynolds
numbers. The investigation ultimately provides key concepts to allow proper selection
of airfoils and blowing placement to ensure MBT to perform well which is absent in the
literature. Using the same idea demonstrated in this study, the logic perhaps holds also

in the case of suction.



Improved aerodynamic performance translates to reduction in carbon footprints
and savings in operational costs. Current enhancements brought by MBT in this study
is distinctly significant and is very likely to be further pursued as a passive drag

reduction method in future studies.

1.3 RESEARCH OBJECTIVES

This research project has been undertaken to meet the following main objectives:

1. To determine the types of airfoils which are suitable for MBT.

2. To determine the placement constraints of MBT on suitable airfoils.

3. To enhance the aerodynamic performance of a suitable airfoil for low to moderate

Re UAV application via introduction of the Micro Blowing Technique.

1.4 RESEARCH METHODOLOGY
This investigation numerically explores the potential of low-speed airfoils being
integrated with the Micro Blowing Technique (MBT). The first part of the study
consists of assessing the viability of adopting MBT on a selection of airfoils which are
suitable for UAV application. Second part follows by modelling MBT on the best
candidate airfoil to collect data on the aerodynamic performance improvement brought
by this technique.

Preparation of airfoil geometries were done using SOLIDWORKS 2019 while
construction of the structured mesh utilizes ICEM CFD and simulations carried using
FLUENT from ANSYS 2020 R2 software package. Data on ¢ and cq on the baseline

airfoils have all been compared against XFOIL and validated with wind tunnel results.



XFOIL combines a panel method and an integral boundary layer formulation for the

analysis of potential and viscous flows around airfoils.

1.5 SCOPE OF RESEARCH

The Reynolds number will be varied from 0.3 x 10°to 1 x 10° and angles of attack
ranging from 0-10 degrees. In investigating the relationship between airfoil geometry
and profile drag plus selecting candidate airfoil to be implemented with MBT, unsteady
transitional modelling will be used to accurately determine the composition of drag of
the NACA 4415, FX 61-184, E420, and S1223 airfoil. However, after the candidate
airfoil has been selected, further simulation will only be interested in the macroscopic

effect of MBT, hence a 2-equation RANS turbulence model will be used.

1.6 THESIS ORGANIZATION

This thesis consists of five chapters. Chapter 1 is the introduction which contains of the
overview and background of the study, problem statement, objectives, brief summary
of the methodology, and the scope of research. In Chapter 2, relevant information
within the scope of the thesis as well as a compilation of the progress in MBT to date
are presented followed by highlighting available research gaps in the literature. Then,
Chapter 3 focuses on the numerical methodology undertaken to run the simulations that
include the procedure in generating the mesh, numerical methods, mesh independence
study, boundary conditions, and validation against wind tunnel data. Discussion and
assessment of the aerodynamic performance of the S1223 with the integration of MBT
are presented in Chapter 4. Finally, in Chapter 5 conclusions are drawn and

recommendations are given for further investigations.



CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION: UAV DEFINITION AND CATEGORIES

The name UAV covers all vehicles, which are flying in air with no person on-board
with the capability of controlling the aircraft (Eisenbeiss, 2004). The flight of UAVs
operates with various degrees of autonomy: either under remote control by a human
operator, or fully or intermittently autonomously, by on-board computers. This term is
common in the computer science and artificial intelligence community, but terms like
Remotely Piloted Vehicle (RPV), Remotely Operated Aircraft (ROA), Remote
Controlled Helicopter (RC-Helicopter), and Unmanned Vehicle Systems (UVS) are too
often used.

Nowadays there are wide ranges of applications where UAV or drones can be
employed. Most of these include military and commercial surveillance, search ,and
rescue and most importantly in research purposes (Shakhatreh et al., 2019). Currently,
great attention is given to the development of UAVs for improved performance,
manoeuvrability, navigation, and stability during operations. The features associated
with a UAV may vary depending on its mission so that every given task can be carried
out successfully. Classifications of UAV can be done according to the 16 basic features,
but this study is primarily inclined towards only one; according to the weight and
maximum range of flight (Korchenko & lllyash, 2013). In this category, we can proceed
with further grouping as shown in Table 2.1, adapted from (Korchenko & Illyash, 2013)

Improvements in the aerodynamic performance of UAVs will promote enhanced



functionality offering greater payload capacity and extension of the maximum range of

flight.

Table 2.1
The Summary Table on some Categories of UAVs based on Mass and Maximum
Range of Action (Korchenko & Illyash, 2013).

Maximum range of action

Category Subcategory Mass (kg) (km)
with return w/o return
. Mini under 20-150 <30 <60
Tactical
(Close Range Flights) CR 25-150 10-30 30-80
Operatively-tactical
(Short Range Flights) SR 50-250 30-80 90-160
MR 150-500 80-200 240-400
Operative MRE
. . 500-1500 200-500 600-1000
(Medium Range Flights)
LADP 250-2500 250-300 700-800
Operatively-strategic LALE 150-250 500-800 1500-1600
(Long Endurance
Flights) MALE 1000-1500 500-800  1500-1600
Strategic HALE 2500-5000 < 2000 < 2000

2.2 AIRFOIL SELECTION FOR SMALL/MEDIUM SIZED UAV

The cost of operation of a UAV can be reduced with airfoil optimization and
improvements in the vehicle’s aerodynamic efficiency. Considerations when selecting
an airfoil for a UAV include a high maximum lift coefficient, high lift-to-drag ratio,
high endurance factor, effectiveness at low Re values, low pitching moment coefficient,
mild stall characteristics, insensitivity to surface roughness, good flap performance, and
minimal airfoil complexity for ease of manufacturing (Marqués & Ronch, 2017; Nagel

& Shepshelovich, 2004; Selig & Guglielmo, 1997). In the presence of high aspect ratio



wings due to configuration development, the optimum endurance performance tends to
be inclined towards high loitering lift coefficients with an increase of parasite drag, thus
explains the need for a very high lift (Koss, Steinbuch, & Shepshelovich, 1994; Nagel
& Shepshelovich, 2004; Selig & Guglielmo, 1997; Steinbuch, Marcus, &
Shepshelovich, 2003) as shown in Figure 2.1. The situation is similar for small and

medium-size UAVs with their moderate aspect ratio wings.
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Figure 2.1 Design region of UAV for high and low aspect ratio wings. Left : AR = 25,
e = 0.85 Right : AR= 12, e= 0.85 (Nagel & Shepshelovich, 2004)

Apart from that, mild stall characteristics also proved to be important and should
be included in the design consideration of small to medium-sized UAVSs. This is due to
a number of reasons such as reduced sensitivity to contamination effects which leads to
safer flights in unfavourable weather conditions. Besides that, the relaxation of the
speed safety margin will help in take-off and landing performance where an extended

possible variation of flight control can then be accessed. Finally, having compromised



speed safety margins will also allow the aircraft to fly at a higher lift coefficient and
result in improved endurance.

Over the years, a wealth of airfoils have been uniquely tailored to deliver
optimal performance for their intended mission. The NACA 4415 for instance not only
serves the American unmanned aerial vehicle such as the AAI Shadow 200 and AAI
RQ-2 Pioneer, but also have been seen included in the design for wind and hydrokinetic
turbine application (Bertagnolio, Sgrensen, Johansen, & Fuglsang, 2001; Mohammadi,
Hassanalian, Arionfard, & Bakhtiyarov, 2020; Ozgener, 2006). The Akaflieg Darmstadt
D-38,39 and 39b German sailplanes (Lednicer, 2010) on the other hand adopted the
classical FX 61-184 by Wortmann (Althaus & Wortmann, 1981) which features a
concave-type of pressure recovery to reduce the severity of increased drag with
increasing angle of attack. Some years later, improved high lift airfoils were designed
based on this concept and highlights include the E420 airfoil (Eppler, 2012) which is
recommended for operations that exceed a Reynolds number of one million and the
S1223 preferred for smaller UAVs (Selig, 1995). Since small to medium-sized UAV's
typically operate between a Reynolds number of 3 x 10% to 2 x 108, (Marqués & Ronch,
2017; Selig & Guglielmo, 1997; Windte, Radespiel, Scholz, & Eisfeld, 2004) these

airfoils have great potential to be further improved with drag reduction techniques.

2.3 OVERVIEW OF DRAG

Aerodynamic drag in incompressible flows generally consists of profile drag and
induced drag as shown in Figure 2.2. Viscous effects give rise to the concept of the
boundary layer, where it is simply defined as a region where the flow near a body is
retarded due to the no-slip condition. The development of the boundary layer depends

on a range of parameters which include the pressure gradient, freestream turbulence,



surface roughness, flow instabilities, and Reynolds number (Anderson Jr, 2010). From
the perspective of ensuring continuous attached flow on a body, turbulent boundary
layers with higher energy levels are preferred since it is less susceptible to experience
separation in adverse pressure gradient flows. This allows airfoils to operate at a higher
angle of attack and achieve greater production of lift. However, drawback comes in the
form that the turbulent boundary layer generates a considerable amount of wall shear

stress unto the body as shown in Figure 2.3.
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Figure 2.2 Categories of drag (Heyson et al., 1977)

Within the operating conditions of an airfoil, the degree of acceleration of the
flow along its body imposes the suction effect to be felt on the upper surface, and vice
versa on the lower surface. Since pressure forces always act in the direction normal to

the curvature of the body, the integration of this force along the surface will have



