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ABSTRACT

Conventional identification techniques for commercial quadcopters pose several
shortcomings, such as limited system order, lack of statistical and non-parametric
analysis, and not estimating the model’s linear operating range and quadcopter noise
dynamics. This affects the prediction accuracy of quadcopter longitudinal and lateral
motion dynamics that ultimately limits the quadcopter stabilization. To handle these
challenges, in this thesis, statistically suitable plant and noise models are proposed for
longitudinal and lateral motion dynamics of AR.Drone 2.0 quadcopter via the Box-
Jenkins (BJ) model structure. Utilizing the flight data from the quadcopter, the models
were estimated using Prediction Error Method (PEM) guided by statistical, non-
parametric, and cross-validation analysis. The goodness of fit showed that the
predicted model output matches the measured flight data by 94.72% in the one-step-
ahead prediction test. When compared with first and second order models, the results
revealed an improvement in prediction accuracy by 52.80%. In terms of image-based
control of quadcopter translational dynamics, the rotation sensitivity of normalized
spherical image features generates image feature errors and nonlinear coupling effects
on the translational degrees of freedom. This causes unsuitable or unnecessary
motions, thus affecting the positioning accuracy of the quadcopter. To overcome these
limitations, this thesis proposes an image-based position control algorithm using
rotation-invariant normalized spherical image features derived from a virtual spherical
camera approach and optimally estimated using a Kalman filter method. For
longitudinal and lateral translational motion control, the control system comprises an
image-based outer-loop control law (developed using a proportional control action)
cascaded with a velocity-based inner-loop control law (developed using a discrete-
time proportional-integral-derivative (PID) control action). The control of vertical
translational motion is based on image-based outer-loop control law. During the
combined image-based positioning and hovering tasks, the proposed control algorithm
regulates the image feature error in a maximum average time of approximately 25.29 s
with a maximum average positioning accuracy of approximately 96.34%. For the
combined image-based target tracking and hovering tasks, after the first disturbance of
target object has vanished, the proposed control algorithm regulates the image feature
error in a maximum average time of approximately 9.06 s. To further enhance the
capability of the proposed control system, this thesis proposes an extremum seeking
based automatic tuning system to determine the optimal vertical motion servoing gain
that will optimize the response of filtered vertical motion image feature. This
drastically improved the rise time and the time needed to reach the setpoint by
approximately 57.82% and 59.22%, respectively, during image-based positioning
tasks. The outcome from this research work had demonstrated adaptive image-based
flight controllers which ultimately would be extensively useful for selfie drones,
multiple target inspection tasks, and high-speed autonomous drone racing.

Keywords: Quadcopter, PEM method, BJ model, image-based control, spherical
image features, image moment features, Kalman filter, extremum seeking.
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CHAPTER ONE
INTRODUCTION

1.1 OVERVIEW

The multirotor Unmanned Aerial Vehicles (UAVs) are aerial machines controlled by
changing the speeds of three or more rotating propeller systems. These vehicles have
great maneuverability and stable hovering. Nowadays, the development of four-rotor
UAVs, known as quadcopters, has gained widespread interests amongst researchers,
particularly in terms of dynamic modelling, image-based control, and servoing gain
(proportional gain of the image-based control law) tuning. These three components
allow to accelerate the deployment of versatile, efficient, and optimal quadcopter
technologies in various fields ranging from target tracking missions, aerial
photography and videography, to industrial inspection tasks.

For commercial quadcopters, the developed dynamic models are often
restricted to first and/or second order models. This affects the prediction ability of the
models and leads to inadequate capturing of the quadcopter dynamics. Thus, it is
advantageous to have accurate dynamic models for these closed-source vehicles as
this will help to understand the dynamics of the “black-box™ quadcopter systems at
various inputs and control methods. This could be achieved by constructing
statistically suitable plant and noise models for the dynamics of longitudinal and
lateral motion subsystems of the autopilot system using the Box-Jenkins model
structure estimated via prediction error method.

In addition, in image-based control of the quadcopter, the normalized spherical
image features utilized in controlling the quadcopter translational dynamics can lead

to inadequate quadcopter movements and generate nonlinear coupling between the



