ELECTROSPRAYED CRISPR PLASMID DNA LOADED ALGINATE NANOPARTICLES: PREPARATION, CHARACTERISATION, AND GENE EDITING

BY

BATOUL ALALLAM

A thesis submitted in fulfillment of the requirement for the degree of Master of Science in Pharmaceutical Science (Pharmaceutical Technology)

Kulliyyah of Pharmacy International Islamic University Malaysia

MARCH 2021

ABSTRACT

Background: CRISPR/ Cas9 is one of the most powerful among the approaches being developed to rescue fundamental causes of gene-based inheritable diseases. Several strategies for delivering such genome editing materials have been developed, but the safety, efficacy over time, cost of production, and gene size limitations are still under debate and must be addressed to further improve applications. Sodium alginate is frequently used as the model encapsulation matrix for bioactive ingredients in the field of drug and gene delivery due to its safety. Objective: To encapsulate CRISPR/Cas9 plasmid DNA in alginate nanocarrier to perform genome editing. Methodology: alginate nanoparticles loaded with two CRISPR pDNA were fabricated using electrospray method. Both formulation and process were optimised. Chitosan-, Arabic gum- and PEG-coated CRISPR-loaded alginate nanoparticles were fabricated and characterised. CRISPR-loaded alginate nanoparticles physicochemical properties were compared to the surface-modified nanoparticle properties. The influence of surface modification of nanoparticles on their interaction with cell was studied in regard to cellular uptake, cytotoxicity, transfection efficiency, and genome editing. Results: Using electrospray, a nanoparticle carrier was developed to deliver CRISPR pDNA into HepG2 cells. The nanoparticles size was approximately 230 nm, with an encapsulation efficiency of 99%. Release study revealed that over one-third of the pDNA was released within the first 24 h. In vitro experiments conducted with HepG2 cells demonstrated that after 48 h of treatment with the CRISPR-loaded alginate nanoparticles, the particles were not toxic. CRISPR-loaded alginate nanoparticles mediated 1.5-folds more efficient transfection than a commercially available cationic liposome-based transfection reagent. However, their indel efficiency was 3.4-folds lower than the transfection reagent. The surface coating highly affected the nanoparticles physicochemical properties, consequently, their safety and efficiency in delivering the plasmid. CS CRISPR ALG NPs showed mean size and zeta potential of 377 nm and 33.67 mV, respectively. Over 90% encapsulation efficiency was achieved while protection payload from serum. The tests revealed that the nanoparticles were cytocompatible and successfully introduced the Cas9 transgene in HepG2 cells. CS CRISPR ALG NPs-transfected HepG2 was able to edit its target plasmid by introducing double-strand break (DSB) in GFP gene, 18.26-folds higher than CRISPR ALG NPs. Conclusions: In this work, plasmids for the CRISPR/Cas9 system were encapsulated in alginate nanoparticles and were shown to induce expression of Cas9 and perform a genome editing in HepG2 cells in vitro. Chitosan-coated CRISPR-loaded alginate nanoparticles revealed the best results with high plasmid protection, sustained release and high indel efficiency. These results suggest that this nanoparticle-based plasmid delivery method can be effective for future in vivo applications of the CRISPR/Cas9 system.

خلاصة البحث

خلفية البحث: تعد تقنية CRISPR / Cas9 من أقوى الأساليب التي يتم تطويرها لتخليص الأسباب الأساسية للأمراض الوراثية الجينية. تم تطوير العديد من الاستراتيجيات لايصال مواد التعديل الجيني هذه ، لكن السلامة والفعالية بمرور الوقت وتكلفة الإنتاج والقيود على حجم الجين لا تزال قيد المناقشة ويجب معالجتها لتحسين التطبيقات. كثيرا ما تستخدم ألجينات الصوديوم كقالب تغليف نموذجي للمكونات النشطة بيولوجيا في مجال توصيل الأدوية والجينات بسبب أمنها. هدف البحث: لتغليف بلاسميد CRISPR / Cas9 في جسيمات نانوية من الألجينات لإجراء التعديل الجيني. طريقة البحث: تم تصنيع الجسيمات الألجينات النانوية المحملة باثنين من بلاسيدات CRISPR باستخدام طريقة النشر الكهربائي. تم تحسين كل من الصيغة و العملية. تم تصنيع و تمييز جسيمات الألجينات النانوية الملبسة بالشيتوزان والصمغ العربي والبولي اثيلين غليكول. تمت مقارنة الخصائص الخصائص الفيزيائية و الكيميائية للجسيمات النانوية المحملة بـ CRISPR مع خصائص الجسيمات النانوية المعدلة السطح. تمت دراسة تأثير تعديل سطح الجسيمات النانوية على تفاعلها مع الخلية فيما يتعلق بالقبض الخلوي والسمية الخلوية وكفاءة التعداء والتعديل الجيني. النتائج: باستخدام النشر الكهربائي ، تم تطوير حامل جسيمات نانوية لتوصيل بلاسميدات CRISPR إلى خلايا HepG2. كان حجم الجسيمات النانوية حوالي 230 نانومتر ، بكفاءة تغليف 99٪. كشفت دراسة التحرر أن أكثر من ثلث الدنا تم إطلاقه خلال اله 24 ساعة الأولى. أظهرت التجارب المختبرية التي أجريت على خلايا HepG2 أنه بعد 48 ساعة من العلاج بجزيئات الألجينات النانوية المحملة بـ CRISPR ، لم تكن الجسيمات سامة. توسطت جزيئات الألجينات النانوية المحملة بـ CRISPR تعداء أكثر كفاءة ب 1.5 مرة من كاشف التعداء الشحمي الموجب المتاح تجاريًا. على أية حال ، كانت كفاءتهم للتعديل الجيني أقل بمقدار 3.4 أضعاف من كاشف التعداء. أثر تلبيس السطح بشكل كبير على الخصائص الفيزيائية و الكيميائية للجسيمات النانوية ، وبالتالي على سلامتها وكفاءتما في توصيل البلاسميد. أظهر جسيمات الألجينات النانوية الملبسة بالشيتوزان حجم وسطى و قيمة زيتا 377 نانومتر و 33.67 مللي فولت ، على التوالي. تم تحقيق أكثر من 90٪ من كفاءة التغليف بالإضافة لحماية الحمولة من المصل. كشفت الاختبارات أن الجسيمات النانوية متوافقة مع الخلايا ونجحت في إدخال الجين المعدل Cas9 إلى خلايا HepG2. كان خلايا HepG2 الحاوية على جسيمات الألجينات النانوية الملبسة بالشيتوزان قادرة على تعديل البلاسميد المستهدف من خلال إدخال كسر مزدوج الجديلة (DSB) في جين GFP ، أعلى بمقدار 18.26 ضعفًا من جسيمات الألجينات النانوية. الخلاصة: في هذا العمل ، تم تغليف البلاسميدات لنظام CRISPR / Cas9 في جسيمات ألجينات نانوية وتبين أنها تحفز التعبير عن Cas9 وتقوم بتحرير الجينوم في خلايا HepG2 في المختبر. كشفت جسيمات الألجينات النانوية الملبسة بالشيتوزان و المحملة بـ CRISPR أفضل النتائج مع حماية عالية للبلاسميد ، وإطلاق مستمر وكفاءة عالية للتعديل الجيني.تشير هذه النتائج إلى أن طريقة توصيل البلاسميد القائمة على الجسيمات النانوية يمكن أن تكون فعالة للتطبيقات المستقبلية في الجسم الحي لنظام CRISPR / Cas9.

APPROVAL PAGE

I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master in Pharmaceutical Science (Pharmaceutical Technology).

Abd Almonem Doolaanea Supervisor

Muhammad Taher Bakhtiar Co-Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master in Pharmaceutical Science (Pharmaceutical Technology).

Izzat Fahimuddin Bin Mohamed Suffian Internal Examiner

Mohd Hanif Bin Zulfakar External Examiner

This thesis was submitted to the Department of Pharmaceutical Technology and is accepted as a fulfilment of the requirement for the degree of Master in Pharmaceutical Sciences (Pharmaceutical Technology).

> Muhammad Taher Bakhtiar Head, Department of Pharmaceutical Technology

This thesis was submitted to the Kulliyyah of Pharmacy and is accepted as a fulfilment of the requirement for the degree of Master in Pharmaceutical Sciences (Pharmaceutical Technology).

> Che Suraya Hj. Mohd. Zin Dean, Kulliyyah of Pharmacy

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Batoul Alallam

Signature

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

ELECTROSPRAYED CRISPR PLASMID DNA LOADED ALGINATE NANOPARTICLES: PREPARATION, CHARACTERIZATION, AND GENE EDITING

I declare that the copyright holder of this thesis are jointly owned by the student and IIUM.

Copyright © 2021 by Batoul Alallam and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purpose.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Batoul Alallam

Signature

Date

"If I were to have kids someday, this is for them. I want them to realise that once, their mum had a dream like they do"

ACKNOWLEDGEMENTS

All glory is due to Allah, the Almighty, whose Grace and Mercies have been with me throughout the duration of my programme. My heartfelt gratitude goes to those who provided me with their valuable time and endless support to complete this project. I would love to extend my appreciation to all the members of my dissertation committee.

My deep gratitude goes first to my advisor, Dr. Abd Almonem Doolaanea for giving me the opportunity to do research in his lab and teaching me how to design and carry out experiments independently. His ability to always recognise the positive side of any situation allowed me to have confidence in my work and encouraged me to stay motivated. This helped a lot in my research as things do not always go as expected. I hope to repay his gratitude towards me and show him how much I learned during the time spent in his lab. I look forward to our collaboration in the future. Very politely, I am grateful to Prof. Mohd Taher for his continued support and cooperation throughout my study.

I would also like to show appreciation to Dr. Izzat Suffian and Dr. Mohd Hanif Bin Zulfakar for their insightful suggestions and discussion during the progress of this work that has made me a better researcher. I would like to thank DDPG, Pharmaceutical Technology Department, CREAM officer, and lab assistant for their patience, and guidance.

All of this work would not have been possible without friends. I would like to thank my great friends May Kyaw Oo, Hazan Haryanti Abdul Halim, Alaa Bazerbashi, and Lujain Almoazen. I will never forget the great times I had during our gatherings, chit-chatting during group lunches, sipping coffee, or even fighting for nothing. I am looking forward to reading about your work in the big journals later!

Most importantly, my family. The love and support of them have been essential in my success. I love you Mama, Papa, Lina, and Mohammad, every happiness is incomplete without you.

Lastly, very special thanks to my dear uncle Mosa Alalam for always being by my side and ready to hear me. You made the years of my master's studies so complete and enriching. I could not have made it through without you. No acknowledgment is sufficient to express my gratitude to the support I have been receiving from you.

TABLE OF CONTENTS

Abstract	II
Abstract Arabic	III
Approval Page	IV
Declaration	V
Acknowledgements	. VIII
List of Tables	. XIII
List of Figures	.XIV
List of Equations	. XIX
-	
CHAPTER ONE : INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	2
1.3 Research Aim And Objectives	3
1.4 Research Hypothesis	4
1.5 Research Questions	4
1.6 Significance Of The Study	4
1.7 Study Design	5
CHAPTER TWO : LITERATURE REVIEW	6
2.1 Genome Editing	6
2.2 Crispr/Cas Gene Editing System	6
2.2.1 Discovery Of Crispr/Cas9 System	6
2.2.2 The Principal Of Crispr/Cas System	7
2.3 Crispr/Cas9 Delivery System	10
2.3.1 Genetic Payload	10
2.3.1.1 Delivering Crispr/Cas9 In Dna Form	10
2.3.2 Delivery Vehicle	
2.3.2.1 Viral Vectors	11
2.3.2.2 Non-Viral Carriers	
2 3 2 2 1 Physical Delivery Methods	12
2 3 2 2 2 Chemical Delivery Methods	13
2.4 Sodium Alginate (Alg)	16
2.1 Southin Augmente (Aug)	10
2.1.1 Nicernal Gelation	10
2.4.1.2 Internal Gelation	19
2.4.1.3 Inverse Gelation	17
2.4.1.5 inverse Generation	20
2.4.3 Calcium Alginate Nanospheres Preparation Methodologies	21
2.4.5 Calcium Augmate Nanospheres Treparation Methodologies	25
2.5 1 Basic Setun Of Electrospray	20
2.5.1 Dasic Scup Of Electrospray Technique	20
2.5.2 Auvantages of Electrospray Teeningue	29 20
2.5.5 The Efficience of the rechnique	20
2.5.4 Chieffa FOI Eliua	52
2.3.3 Electrosprayed Alginate Natioparticles	ככ רב
2.0 Damers to non-vital Gene Denvery	57

	2.6.1	Carrier Development In The Test Tube	. 38
	2.6.2	During Transport To The Target Cell.	. 38
	2.6.3	Uptake By The Target Cell	. 39
	2.6.4	Endosomal Escape	. 39
	2.6.5	Stability In Cytoplasm	. 40
2.7	Surfac	e Modification For Improve The Intracellular Delivery Efficiency	40
	2.7.1	Chitosan (Cs)	. 40
	2.7.2	Arabic Gum (Ga)	. 42
	2.7.3	Polyethylene Glycol (Peg)	. 43

CHAPTEI	R THREE : PREPARATION, OPTIMISATION A	ND
CHARAC	TERISATION OF CRISPR PLASMID DNA LOADED ALGINA	ATE
NANOPA	RTICLES	45
3.1	Introduction	45
3.2	Materials And Methods	47
	3.2.1 Materials	47
	3.2.2 Amplification Of Crispr Pdna	48
	3.2.3 Encapsulation Of Crispr Pdna In Alg Nps	49
	3.2.3.1 Characterisation Of Alginate Solutions	49
	3.2.3.2 Selection Crispr Pdna/ Alg Ratio	49
	3.2.3.3 Optimisation Of Process Variables	50
	3.2.4 Characterisation Of Optimised Crispr Alg Nps	53
	3.2.4.1 Particle Size And Zeta Potential Analysis	53
	3.2.4.2 Surface Morphology	53
	3.2.4.3 Attenuated Total Reflectance Fourier Transform Infrared	
	Spectroscopy (Atr-Ftir)	53
	3.2.4.4 Encapsulation Efficiency (Ee)	54
	3.2.4.5 Pdna Integrity Post Encapsulation	54
	3.2.4.6 Pdna Serum Stability	55
	3.2.4.7 In Vitro Release Profile	55
	3.2.5 Statistical Analysis	56
3.3	Results And Discussion	56
	3.3.1 Amplification Of Crispr Pdna	56
	3.3.2 Optimisation Of Crispr Alg Nps	57
	3.3.2.1 Characterisation Of Alginate Solutions	57
	3.3.2.2 Selection Crispr Pdna/ Alg Ratio	62
	3.3.2.3 Optimisation Of Process Variables	63
	3.3.2.3.1 The Effect Of Applied Voltage On Particles Size	65
	3.3.2.3.2 The Effect Of Flow Rate On Particles Size	66
	3.3.3 Characterisation Of Crispr Alg Nps	68
	3.3.3.1 Particle Size And Zeta Potential Analysis	68
	3.3.3.2 Surface Morphology	69
	3.3.3.3 Atr-Ftir	71
	3.3.3.4 Encapsulation Efficiency	74
	3.3.3.5 Evaluation Of Pdna Integrity Post-Encapsulation	75
	3.3.3.6 Pdna Serum Stability	76
	3.3.3.7 In Vitro Release Profile	77
3.4	Conclusion 79	

CHAPTER FOUR : DETERMINATION OF PHYSICOCHE	MICAL
PROPERTIES OF UNCOATED AND COATED ALG	INATE
NANOPARTICLES LOADED WITH CRISPR PLASMID DNA	
4.1 Introduction80	Q 1
4.2 Materials	, 01 81
4.2.1 Materials	וס רע
4.2.2 Preparation Of Coated Crispr Alg Nps	20
4.2.3 Preparation Of Coating Solutions Concentration And Mw	, 02 83
4.2.5 Characterisation Of Crispr Alg Nps Coating Efficiency	
4.2.5 Characterisation of Chispi Aig type Coating Efficiency	83 83
4.2.5.2 Surface Morphology	83 83
4.2.5.2 Surface Morphology	red
Spectroscopy (Atr-Ftir)	84
4.2.6 Characterisation Of Ontimised Coated Crispr Alg Nns	
4 2 6 1 Encapsulation Efficiency	84
4 2 6 2 Pdna Integrity After Encansulation	84
4 2 6 3 Pdna Serum Stability	84
4 2 6 4 In Vitro Release Profile	
4.2.7 Statistical Analysis	85
4.3 Results And Discussion	85
4.3.1 Optimisation Of Coating Solution Concentration And Mw.	85
4.3.2 Characterisation Of Crispr Alg Nps Coating Efficiency	93
4 3 2 1 Particle Size And Zeta Potential Analysis	93
4.3.2.2 Surface Morphology	
4.3.2.3 Atr-Ftir	
4.3.3 Characterisation Of Optimised Coated Crispr Alg Nps	101
4.3.3.1 Encapsulation Efficiency.	101
4.3.3.2 Pdna Integrity Post-Encapsulation	102
4.3.3.3 Pdna Serum Stability	102
4.3.3.4 In Vitro Release Profile	105
4.4 Conclusion 108	100
CHAPTER FIVE : IMPACT OF SURFACE FUNCTIONALISATIONAL CONTRACT OF SURFACE FUNCTIONAL SATIONAL CONTRACT OF SURFACE FUNCTIONAL SATIONAL SATIO	ON OF
THEIR IN VITRO CELLULAR UPTAKE CVTOTON	
TRANSFECTION AND GENOME EDITING EFFICIENCY	, 110 110
5.1 Introduction 110	
5.2 Materials And Method	111
5.2 Materials	111
5.2.1 Videoriais	111
5.2.2 Concentration	111
5.2.4 Cellular Untake	117
5.2.5 Cytotoxicity Study	112 112
5.2.5 Cytotoxicity Study	113 112
5.2.5.1 Hepg2 Standard Curve	113 117
5.2.5.2 Type Cytotoxicity	114 115
5.2.6.1 Quantification Of Transfaction Efficiency	115 115
5.2.0.1 Quantification Of Transicculon Enforcements	115 116
5.2.7 Commination of Gene Editing Using type	110

	5.2.8 Statistical Analysis	117
5.3	Results And Discussion	118
	5.3.1 Cellular Uptake	118
	5.3.1.1 Effects Of Nps Concentration And Incubation Time On	
	Cellular Uptake Of Uncoated And Coated Crispr Alg Np	s 119
	5.3.1.2 Effect Of Surface Coating On Cellular Uptake Of Crispr	Alg
	Nps	128
	5.3.2 Cytotoxicity Study	133
	5.3.2.1 Hepg2 Standard Curve	133
	5.3.2.2 Crispr Alg Nps Cytotoxicity	133
	5.3.2.2.1 Effect Of Surface Coating On Nps Toxicity	137
	5.3.3 Quantification Of The Transfection Efficiency	142
	5.3.3.1 Optimisation Of Transfection Reagent	142
	5.3.3.2 Transfection Efficiency Of Crispr Alg Nps	143
	5.3.3.3 Effect Of Surface Coating On Transfection Efficiency O	f
	Crispr Alg Nps	148
	5.3.4 Confirmation Of Gene Editing Using Nps	155
	5.3.4.1 Effect Of Surface Coating On Genome Editing Efficienc	y 158
5.4	Conclusion 160	
CHAPTE	R SIX : GENERAL DISCUSSION AND CONCLUSION	161
61	General Conclusion	161
6.2	Research Limitation	165
6.3	Future Work And Suggestions	165
0.5	6.3.1 Proposed Application Of Electrospraved Chitosan Coated Al	pinate
	Nanoparticles For Viral Infection Prevention	166
DEFEDE		1.00
REFERE	NCES	168
		103
Appendix	1: Institutional Biosafety & Biosecurity Assessment Forms	193
Appendix	11: Kesearch Achievement	201
Appendix	III: SpCas9-2a-miki Po/U vector Gene Map	203
Appendix	IV: GKNA_GFP-12 Vector Gene Map	204
Appendix	v: PCDNA3-EEGF vector Gene Map	205
Appendix	VI: Proofreading Aknowldgment Letter	206

LIST OF TABLES

Table 3.1	Experimental runs, and variables of the 3 ² full factorial design for the CRISPR ALG NPs	51
Table 3.2	Composition of ALG solutions and their physicochemical properties	59
Table 3.3	The encapsulation effeciencies of CRISPR ALG NPs with different pDNA to ALG wieght ratio	63
Table 3.4	Comparison of particle size, PDI and zeta potential of CRISPR ALG NPs and blank ALG NPs	69
Table 3.5	CRISPR ALG NPs size and PDI obtained from TEM	70
Table 4.1	Summary of the composition of each coating solution with different types of polymer (CS, PEG and GA), MW (low, medium and high) and concentration (0.1, 0.3 and 0.6% w/v) and their NPs characterisation results, zeta potential and EE ($n=3$)	86
Table 4.2	The particle size, particle size distribution, zeta potential, and encapsulation effeciencies for CRISPR ALG NPs, CS CRISPR ALG NPs, GA CRISPR ALG NPs, and PEG CRISPR ALG NPs	97
Table 5.1	The particle size of unlabelled or coumarin-6 labelled CRISPR ALG NPs (with and without coating)	118
Table 6.1	Summary of the surface coating effect on physicochemical and biological properties of CRISPR-loaded alginate nanoparticles	164

LIST OF FIGURES

Figure 2.1	The principle of CRISPR/Cas9-mediated gene disruption	9
Figure 2.2	Alginate chemical structure	17
Figure 2.3	Egg-box model of alginate gelation	19
Figure 2.4	Electrospray apparatus basic set up	27
Figure 2.5	Double parallel-capillaries coaxial nozzle	28
Figure 2.6	Triple-capillaries coaxial nozzle	28
Figure 2.7	Multiplexed electrospraying setup with several electrospray sources operating in parallel and an extractor	29
Figure 2.8	Controlling forces for cone jet formation as well as the breakup of charged jet in electrospraying process	31
Figure 2.9	The electrospray modes change as the voltage increases	33
Figure 2.10	Nanoparticles preparation using electrospray technique	36
Figure 2.11	Barriers involved in DNA delivery for successful transfection	37
Figure 2.12	Chemical structure of (A) chitin, and (B) chitosan	42
Figure 2.13	Polyethylene glycol chemical structure	44
Figure 3.1	Experimental setup of electrospray fabrication of calcium alginate nanoparticles in cone jet mode	52
Figure 3.2	pDNA integrity after extraction	57
Figure 3.3	Scheme plot of shear stress vs shear rate of alginate solutions	58
Figure 3.4	Camera image showing the spray mode by different alginate solutions	62
Figure 3.5	Mean meatabolic activities (mean \pm SD; n=3) of Hep G2 cells after treatment with CRISPR ALG NPs at concentration equivalent to 1 µg pDNA	63
Figure 3.6	The main effect plot of flow rate and applied voltage on the particle size	67

Figure 3.7	The interaction effect plot of flow rate and applied voltage on particle size	68
Figure 3.8	The particle size distribution by intensity for optimised blank ALG NPs and CRISPR ALG NPs	69
Figure 3.9	TEM image for CRISPR ALG NPs	71
Figure 3.10	ATR-FTIR spectra of sodium alginate, Tween 20 calcium chloride, CRISPR plasmids, blank ALG NPs, CRISPR ALG NPs and <i>in silico</i> CRISPR ALG NPs	74
Figure 3.11	Integrity of CRISPR pDNA after encapsulation, Stability of CRISPR ALG NPs in the presence of serum after 1 and 24 h incubation, and Stability of released CRISPR pDNA from ALG NPs	76
Figure 3.12	Cumulative release of CRISPR pDNA from CRISPR ALG NPs (mean \pm SD; n=3) in pH 7.4 PBS	78
Figure 4.1	The main effect of chitosan molecular weight and concentration on particles zeta potential	88
Figure 4.2	The interaction effect of chitosan molecular weight and concentration on particles zeta potential	88
Figure 4.3	The main effect of chitosan molecular weight and concentration on particles encapsulation efficiency	89
Figure 4.4	The interaction effect of chitosan molecular weight and concentration on particles encapsulation efficiency	90
Figure 4.5	The main effect of PEG molecular weight and concentration on particles zeta potential	91
Figure 4.6	The interaction effect of PEG molecular weight and concentration on particles zeta potential	91
Figure 4.7	The main effect of PEG molecular weight and concentration on particles encapsulation efficiency	92
Figure 4.8	The interaction effect of PEG molecular weight and concentration on particles encapsulation efficiency	92
Figure 4.9	TEM image of (A) CS CRISPR ALG NPs (B) GA CRISPR ALG NPs and (C) PEG CRISPR ALG NP	99
Figure 4.10	ATR-FTIR spectra of CS, GA, PEG, CRISPR ALG NPs, CS CRISPR ALG NPs, GA CRISPR ALG NPs and PEG CRISPR ALG NPs	101

Figure 4.11	pDNA integrity after extraction from coated CRISPR ALG NPs	104
Figure 4.12	Release profile of uncoated and coated CRISPR ALG NPs over 8 days	107
Figure 5.1	Cumarin-6 CRISPR alginate solution	112
Figure 5.2	The mean fluorescence intensity of coumarin-6 labelled CRISPR ALG NPs at different incubation times, (mean \pm SD; n=3)	119
Figure 5.3	Uptake efficiency of coumarin-6 labelled CRISPR ALG NPs at different incubation times, (mean \pm SD; n=3)	120
Figure 5.4	The cellular uptake of coumarin-6 labelled CRISPR ALG NPs in HepG2 cell at various times and concentration at 37 °C	120
Figure 5.5	The mean fluorescence intensity of coumarin-6 labelled CS CRISPR ALG NPs at different incubation times, (mean \pm SD; n=3)	121
Figure 5.6	Uptake efficiency of coumarin-6 labelled CS CRISPR ALG NPs at different incubation times, (mean \pm SD; n=3)	122
Figure 5.7	The cellular uptake of coumarin-6 labelled CS CRISPR ALG NPs in HepG2 cell at various times and concentration at 37°C	123
Figure 5.8	The mean fluorescence intensity of coumarin-6 labelled GA CRISPR ALG NPs at different incubation times, (mean \pm SD; n=3)	124
Figure 5.9	Uptake efficiency of coumarin-6 labelled GA CRISPR ALG NPs at different incubation times, (mean \pm SD; n=3)	124
Figure 5.10	The cellular uptake of coumarin-6 labelled GA CRISPR ALG NPs in HepG2 cell at various times and concentration at 37°C	125
Figure 5.11	The mean fluorescence intensity of coumarin-6 labelled PEG CRISPR ALG NPs at different incubation times, (mean \pm SD; n=3)	126
Figure 5.12	Uptake efficiency of coumarin-6 labelled PEG CRISPR ALG NPs at different incubation times, (mean \pm SD; n=3)	127
Figure 5.13	The cellular uptake of coumarin-6 labelled PEG CRISPR ALG NPs in HepG2 cell at various times and concentration at 37°C	127

Figure 5.14	Mean fluorescence intensity of coumarin-6 labelled uncoated and coated coumarin-6 labelled CRISPR ALG NPs with concentration of 125 μ g/mL, 2 h incubation time in HepG2 cells at 37°C, and (B) HepG2 uptake efficiency of uncoated and coated coumarin-6 labelled CRISPR ALG NPs with concentration of 125 μ g/mL, 2 h incubation time and 37°C	129
Figure 5.15	The cellular uptake of coumarin-6 labelled CRISPR ALG NPs (with and without coating) in HepG2 cells at concentration 125 μ g/mL at 37°C for 2 h	132
Figure 5.16	MTT standard curve for HepG2 cells after 48 h incubation	133
Figure 5.17	Relative metabolic activity of Hep G2 cells 48 h post-treatment with CRISPR ALG NPs (mean \pm SD; n=3). pDNA:NP ratio 1:10 w/w	135
igure 5.18	HepG2 morphology 48 h post-treatment with: (A) pDNA: NanoJuice TR (1 μ g:2.5 μ L), (B) naked pDNA at concetration 1 μ g, (C) CRISPR ALG NPs at 100 μ g/mL concentration, (D) CS CRISPR ALG NPs at 100 μ g/mL concentration, (E) GA CRISPR ALG NPs at 100 μ g/mL concentration, and (F) PEG CRISPR ALG NPs at 100 μ g/mL concentration	136
Figure 5.19	Relative metabolic activity of Hep G2 cells 48 h post- treatment with CS CRISPR ALG NPs (mean \pm SD; n=3). pDNA:NP ratio 1:10 w/w	139
Figure 5.20	HepG2 cells treated with high zeta potential CS CRISPR ALG NPs	139
Figure 5.21	Relative metabolic activity of Hep G2 cells 48 h post- treatment with GA CRISPR ALG NPs (mean \pm SD; n=3). pDNA:NP ratio 1:10 w/w	140
Figure 5.22	Relative metabolic activity of Hep G2 cells 48 h post- treatment with PEG CRISPR ALG NPs (mean \pm SD; n=3). pDNA: NP ratio 1:10 w/w	141
Figure 5.23	Relative metabolic activity of Hep G2 cells 48 h post- treatment with uncoated and coated CRISPR ALG NPs (mean \pm SD; n=3). pDNA: NP ratio 1:10 w/w	142
Figure 5.24	RFP fluorescence in transfected HepG2 cells 48 and 72 h after transfection of RFP-expressing CRISPR plasmid	146
Figure 5.25	Transfection efficiencies by different reagents in HepG2 cells	147
Figure 5.26	Mean red fluorescence intensity expression by different reagents in HepG2 cells 48 h post-transfection	147

Figure 5.27	RFP fluorescence in transfected HepG2 cells 48 h after transfection of RFP-expressing CRISPR plasmid	151
Figure 5.28	Transfection efficiencies by different reagents in HepG2 cells	152
Figure 5.29	RFP fluorescence in transfected HepG2 cells 48 h post- transfection of RFP-expressing CRISPR plasmid	153
Figure 5.30	Transfection efficiencies by different reagents in HepG2 cells	154
Figure 5.31	Relative fold expression of RFP expression by different reagents in HepG2 cells 48 h post-transfection	155
Figure 5.32	Representative scheme for genome editing using CRISPR/Cas9 plasmids	156
Figure 5.33	Gel electrophoresis Analysis of <i>in vitro</i> ability of CRISPR pDNA delivered by uncoated and coated alginate nanoparticles to induce DSB of targeted DNA	157

LIST OF EQUATIONS

Equation 2.1	
Equation 3.1	
Equation 3.2	
Equation 5.1	

LIST OF ABBREVIATIONS

AGE	Agarose gel electrophoresis
ALG	Alginate
ANOVA	Analysis of variance
ATR-FTIR	Attenuated Total Reflectance Fourier Transform Infrared
	Spectroscopy
bp	Base bair
Cas	CRISPR Associated protein
CRISPR	Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR ALG NPs	Alginate naoparticles loaded with two CRISPR plasmid DNA
crRNA	CRISPR RNA
CS	Chitosan
CS CRISPR ALG	Alginate naoparticles loaded with two CRISPR plasmid DNA
NPs	and coated with chitosan
DHDA	Electrohydrodynamic atomisation
Di 50	Median diameter
DMEM	Dulbecco's Modified Eagle Medium
DMSO	Dimethyl sulfoxide
DOTAP	1,2-dioleoyl-3-trimethylammoniumpropane
DSB	Double Strand Break
E coli	Escherichia coli
EE	Encapsulation Efficiency
FBS	Fetal bovine serum
G	α -L-guluronic acid
GA	Arabic gum
GA CRISPR ALG	Alginate naoparticles loaded with two CRISPR plasmid DNA
NPs	and coated with arabic gum
GFP	Green Fluorescent Protein
gRNA	Guide Ribonucleic Acid
h	Hour
HepG2	Hepatocellular carcinoma
In vitro	Research or work is done in the glass
In vivo	Research or work is done with or within an entire, living
	Insertions/Deletions
h h	kilohases
	Kilo Datlton
KDa Ka	Kilo gram
Kg kV	Kilovolt
	Knovolt Luria Bortani
LD	β D mannuronic acid
m^3	Meter cube
min	Minute
mDo	Mili poscol
mra. mDNA	Massangar Dihanyalia Asid
ma	Mili second
1115	

MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MW	Molecular weight
Ν	Newton
NHEJ	Non-Houmolgous End Joinung
nm	Nanometer
NPs	Nanoparticles
o/w	Oil-in-water
PAM	Protospacer Adjacent Motif
PBS	Phosphate buffer saline
PCR	Polymerase Chain Reaction
PDI	Poly dispersity index
pDNA	Plasmid DNA
PEG	Polyethylene glycol
PEG CRISPR ALG	Alginate naoparticles loaded with two CRISPR plasmid DNA
NPs	and coated with polyethelene glycol
PLGA	Poly(lactic-co-glycolic acid)
RFP	Red Fluorescent Protein
RNA	Ribonuclic Acid
S	Second
S	Solution
SaCas9	Cas9 derived from Staphylococcus aureus
SD	Standard Deviation
SpCas9	Cas9 derived from Streptococcus pyrogene
T7EI	T7 endonuclease I
TAE	Tris acetate edetate
TEM	Transmission Electron Microscope
TR	Transfection Reagent
tracerRNA	Trans CRISPR RNA
V	Volt
v/v	The amount by volume of a solid substance dissolved in a
	known amount (by volume) of liquid
w/o	Water-in-oil
w/v	The amount by weight of a solid substance dissolved in a
	known amount (by volume) of liquid

CHAPTER ONE

INTRODUCTION

1.1 RESEARCH BACKGROUND

The emergence of the clustered regulatory interspaced short palindromic repeat (CRISPR)/CRISPR associated protein (Cas) genome editing system has brought much excitement to the field of gene therapy and the larger scientific community. The application of CRISPR-based technologies seems to be endless, ranging from increasing crop resistance to curing genetic diseases previously considered untreatable, providing a flexible approach to high-fidelity gene editing. Nevertheless, in order for CRISPR-based therapies to be translated to *in vivo* application, there is an urgent need to develop optimised vectors for their delivery. The delivery vector is a crucial determinant of the therapeutic efficacy of gene editing and should be designed to accommodate various factors including the form of the payload, and the physiological environment. The large majority of CRISPR plasmid therapy has been based on the use of viral vectors (Ding et al., 2014; Ran et al., 2015; Kaminski et al., 2016; Long et al., 2016; Nelson et al., 2016). However, several drawbacks have been associated with their delivery, among these: immunogenicity (Wang et al., 2015), carcinogenesis (Donahue et al., 1992), and limited packaging size (Ran et al., 2015). Non-viral gene delivery systems were developed with potential to overcome these limitations; nevertheless, nanoparticle delivery is still challenged with difficulty in scale-up manufacturing and low gene delivery efficiency compared to viral delivery. Recently, biomaterials have become an attractive option for the delivery of Cas9 due to their tunability, biocompatibility and increasing efficacy at drug delivery. Biomaterials offer a unique solution for creating tailored vectors to meet the demands of various applications that cannot be easily met by other delivery methods. In this study, we optimise a delivery carrier for CRISPR/Cas9 system in its plasmid form. Therefore, two CRISPR plasmid DNA were encapsulated into alginate nanoparticles using electrospray method. The optimisation of the formulation and process variables were done using a statistical approach. The nanoparticles were characterised in terms of their physicochemical characteristics. In addition, functionalisation of the surface of CRISPR plasmid DNAloaded alginate nanoparticles (CRISPR ALG NPs) was done using three polymers (chitosan, Arabic gum, and polyethylene glycol) to understand their roles in carrier properties. Finally, the influence of surface functionalisation in the safety and efficiency of the carrier in CRISPR/Cas9 delivery was evaluated.

This project will help to understand the relationship between the nanoparticle formulation and the efficacy of gene editing and ultimately guide the field in designing new delivery systems that can lead to develop the best formulation serves as a carrier for the clinical applications of CRISPR/Cas9.

1.2 PROBLEM STATEMENT

In recent decades, gene editing CRISPR/Cas systems have become a platform in biomedical research due to its high potential for treating viral infections (Schwank *et al.*, 2013). Many benefits were utilised from CRISPR/Cas systems *in vitro*. However, the delivery system remains the main challenge for robust implementation of CRISPR system *in vivo*. Multiple methods are seen for delivering *in vitro*, which are usually not compatible or unsafe for *in vivo* use (Wang *et al.*, 2017). Polymeric nanoparticles are alternative delivery vector that can be prepared from biocompatible materials. Alginate nanoparticles appeared to be an excellent candidate' for polymeric carrier to deliver

CRISPR plasmids. Nucleic acid and protein have been successfully encapsulated in alginate micro and nanoparticle (You & Peng, 2005; Tahtat *et al.*, 2013; Mukhopadhyay *et al.*, 2015; Zhang *et al.*, 2016). However, to translate the gene editing into a therapeutic benefit, the maximum gene editing efficacy should be attempted. Up until this day, there is still a lack of research that investigates the effect of the nanoparticle properties onto their efficacy of the gene editing using CRISPR system (Tao *et al.*, 2019).

1.3 RESEARCH AIM AND OBJECTIVES

This research aims to develop and optimise a carrier for two CRISPR plasmid DNA by an easy and applicable method with special emphasis on safety and efficiency of the carrier. Based on this aim, the objectives of the proposed project are summarised as follows:

- To optimise and characterise alginate nanoparticles to encapsulate CRISPR plasmid DNA using electrospray technique.
- To optimise the surface coating of CRISPR-loaded alginate nanoparticles
 via applying different coating molecule
- iii. To investigate the effect of surface coating on the nanoparticle's physicochemical properties.
- iv. To evaluate *in vitro* cellular uptake, cytotoxicity, transfection efficiency, and genome editing efficiency of the CRISPR-loaded alginate nanoparticles.
- v. To investigate how different surface coating of the nanoparticles affects their genome editing efficiency.