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ABSTRACT 

Combination of reduced graphene oxide (rGO) with a conductive polymer, 
poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is promising 
as transducer material for electrochemical biosensors. However, fundamental research 
into this composite behaviour is essential for generating the necessary scientific 
understanding to realize  a non-invasive glucose monitoring approach. In this study, 
the rGO-PEDOT:PSS modified electrodes were fabricated with four different methods 
(method A, B, C, and D) where the fabrication parameters such as reduction cycles, 
sequence and glucose oxidase immobilisation techniques were varied. The aim is to 
elucidate how these fabrication parameters can affect the electrochemical reversibility, 
mass transport properties, heterogeneous electron transfer rate constant (k⁰) and 
effective surface area (Aeff) of rGO-PEDOT:PSS materials in which can be 
determined from cyclic voltammetry (CV). This study also utilized machine learning 
algorithm to model the data from CV results where the most accurate model was used 
to analyse the interaction strength between the input and output data. From the 
electrochemical analysis, the ferri/ferrocyanide redox couple [Fe(CN)6]3-/4- shows 
quasi-reversible and diffusion-controlled behaviour on rGO-PEDOT:PSS-modified 
SPCEs of all fabrication method. In terms of k⁰, each fabrication methods generated 
different trend of k⁰ value with increasing reduction cycles. Overall, the range of k⁰ 
for rGO-PEDOT:PSS-modified SPCE are from 0.52 x10-5 to 4 x10-5 cm/s. We also 
found that the highest Aeff value with respect to fabrication method were obtained 
from different number of reduction cycles. Fabrication method A gave the highest Aeff 
when the composite was reduced for 5 reduction cycles (16.41 cm2). For methods B 
and D, the highest Aeff obtained was for 30 reduction cycles (17.48 cm2 for method B 
and 6.43 cm2 for method D) while for method C, the highest Aeff value was obtained 
for 15 reduction cycles (21.41 cm2). For SVM analysis, data from CV (ΔEp and Ipc) 
and the fabrication parameters were used to construct a prediction model. Linear and 
non-linear kernels were compared, and the best performance was showed by radial 
basis function (RBF) kernel with a perfect accuracy of 100%. The RBF kernel was 
then used to measure the interaction between input and output variables in which the 
kernel model demonstrated the strongest interaction between reduction cycles and 
ΔEp. In conclusion, this study reveals the effect of fabrication parameters on 
electrochemical characteristics of rGO-PEDOT:PSS-modified SPCEs and the 
capability of machine learning algorithm to model data and provide deeper insights on 
the fabrication process, opening a new route for development of non-invasive glucose 
biosensors.  
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 خلاصة البحث

إيثيلين ديوكسي ثيوفين): بولي (ستايرين -٣،٤مع البوليمر الموصل بولي ( (rGO) المختزليعُد مركب أكسيد الجرافين 
لكو�ا مادة محولة لأجهزة الاستشعار الحيوية الكهروكيميائية.  الواعدةأحد المركبات  (PEDOT: PSS) سلفو�ت)

لمطلوب لتحقيق �ج غير غازي ومع ذلك، فإن البحث الأساسي في سلوك هذا المركب ضروري لتوليد الفهم العلمي ا
 (الطريقة المعدلة في هذه الدراسة بأربع طرق مختلفة rGO-PEDOT: PSS لمراقبة الجلوكوز. تم تصنيع أقطاب

A و B و C و D حيث اختلفت معاملات التصنيع مثل دورات الاختزال والتسلسل وتقنيات تثبيت أوكسيداز (
) ومنطقة السطح الفعالة k⁰ثير عوامل التصنيع على ثابت معدل التفاعل (والهدف يكمن في توضيح كيفية تأ .الجلوكوز

) effA(  الخاص بمواد PEDOT:PSS-rGO ) التي يمكن تحديدها من المقياس الفولطي الدوريCV .(
 استخدمت هذه الدراسة أيضًا خوارزمية التعلم الآلي لنمذجة بيا�ت نتائج المقياس الفولطي الدوري حيث تم استخدام
النموذج الأكثر دقة لتحليل قوة التفاعل بين بيا�ت الإدخال والإخراج. وبالنظر إلى التحليل الكهروكيميائي، يظُهر 

سلوك شبه قابل للعكس والتحكم في الانتشار على  Fe(CN)]6[3-/4-زوجا الأكسدة والاختزال فيري / فيروسيانيد  
rGO-PEDOT: PSS  المعدلة منSPCE أما من حيث .لجميع طرق التصنيعk⁰  فكل طرق التصنيع ،

-rGOلـ  k⁰مع ز�دة دورات الإرجاع. بشكل عام ، يتراوح نطاق  k⁰انتجت اتجاهات مختلفًا لقيمة 
PEDOT:PSS 10-5 المعدل ما بينx 10-5 إلى ٠٫٥٢x سم في الثانية. وقد وجد� أيضًا أنه تم الحصول  ٤
 Aا يتعلق بطريقة التصنيع من عدد مختلف من دورات الاختزال. أعطت طريقة التصنيع فيم effAعلى أعلى قيمة لـ 

، فإن  Dو  B). أما بالنسبة للطريقتين ٢سم ١٦٫٤١دورات إرجاع ( ٥عندما تم تخفيض المركب إلى  effAأعلى نسبة 
) بينما بالنسبة Dيقة للطر  ٢سم ٦٫٤٣و  Bللطريقة  ٢سم ١٧٫٤٨دورة إرجاع ( ٣٠تم الحصول عليه مع  effAأعلى 

). بالنسبة لتحليل شعاع الدعم ٢سم ٢١٫٤١دورة إرجاع ( ١٥مع  effA، فتم الحصول على أعلى قيمة  Cللطريقة 
وعوامل التصنيع لبناء نموذج تنبؤ. تمت مقارنة  )pcand I pEΔالآلي، تم استخدام بيا�ت المقياس الفولطي الدوري (

٪. ثم ١٠٠بدقة مثالية بنسبة  أفضل أداء (RBF)نواة وظيفة الأساس الشعاعي ت النوى الخطية وغير الخطية، وأظه
لقياس التفاعل بين متغيرات المدخلات والمخرجات حيث أظهر نموذج النواة أقوى تفاعل بين  RBFتم استخدام نواة 

ائص الكهروكيميائية لـ . وفي النهاية، تكشف هذه الدراسة عن تأثير عوامل التصنيع على الخصpEΔدورات الاختزال و 
rGO-PEDOT: PSS  المعدلةSPCEs  وقدرة خوارزمية التعلم الآلي على نمذجة البيا�ت وتقديم رؤى ،

 أعمق حول عملية التصنيع ، وفتح طريق جديد لتطوير أجهزة الاستشعار الحيوية للجلوكوز غير الغازية.
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CHAPTER ONE 

INTRODUCTION 

۱٫۱ BACKGROUND OF THE STUDY 

Electrochemical biosensors have become an attractive choice of detection service for 

industrial, environmental, and biomedical applications owing to its sensitivity towards 

analytes, low cost of construction, simple  fabrication, and capability to measure a 

targeted analyte from a complex sample (Grieshaber, MacKenzie, Vörös & Reimhult, 

2008; Hammond, Formisano, Estrela, Carrara, & Tkac, 2016). Among various types 

of electrochemical biosensors, glucose biosensors dominate consumer market since 

the concept of enzyme electrode was introduced in 1962. The market preference 

towards glucose biosensors is not only because of the reliability and rapid response in 

measuring glucose concentration from blood samples but is also due to the rise of 

diabetes prevalence around the world. In 2019, the global population of diabetes 

among adults is estimated to be 463 million, showing an increase of 62 % since the 

last decade  (International Diabetes Federation, 2019).  

Conventional glucose biosensors are considered as a gold-standard tool for 

diabetes monitoring. However, these biosensors involved finger-pricking which cause 

discomfort and pain. Thus, realization of a non-invasive glucose monitoring approach 

has become an ultimate goal under progress. The non-invasive approach aims for 

measuring glucose level in alternative bodily fluids such as tear, sweat, and saliva 

(Baca, Finegold, & Asher, 2007; Moyer, Wilson, Finkelshtein, Wong, & Potts, 2012; 

Jha, David, Saluja, Venkatesh, & Chaudhary, 2014; Gupta, Sandhu, Bansal, & 

Sharma, 2014; Jadoon et al., 2015;). While this approach is possible due to positive 



 

2 

correlation between glucose level in blood and the non-blood samples, the glucose 

level in the non-blood samples can be hundreds of times lower of that in blood 

(Makaram, Owens, & Aceros, 2014); thus, the sensing element must be sensitive 

enough to detect the low glucose concentration. To address the challenge to detect low 

glucose concentration of non-blood samples, research work on the electrode 

fabrication constitute the most important part where the transducer materials and 

enzyme immobilisation strategy greatly influenced the performance of the 

electrochemical biosensors. 

In developing electrochemical biosensors, sensitivity and selectivity matters, 

hence, selection of a transducer material should aim for both a highly conductive 

material for sensitivity, and ability to the signal produced from the reaction between 

targeted analyte and biorecognition element selectively. The use of graphene with a 

conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) 

(PEDOT:PSS) as the transducer material for enzymatic glucose biosensor may 

improve biosensors’ sensitivity owing to the synergistic interaction of both materials 

(Zhang, Yuan, Yao, Li, & Shi, 2014). Previous studies have been performed using 

graphene and conductive polymer composite for the detection of various analytes such 

as glucose (Wisitsoraat et al., 2013; Abd-Wahab, Abdul Guthoos, & Wan Salim, 

2019), ammonia (NH3) (Seekaew et al., 2014; Pasha, Khasim, Khan, & Dhananjaya, 

2019), and iron (Fe) (Sundramoorthy, Premkumar, & Gunasekaran, 2016). The 

promising results from these studies have made the combination of graphene with 

PEDOT:PSS attractive as a transducer material for developing a non-invasive glucose 

biosensor. However, there is a need to investigate further on the composite’s 

interaction and mechanism at the molecular level. 
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In this study, the rGO-PEDOT:PSS transducer layer was fabricated with four 

different fabrication methods in which two of the methods were adopted and modified 

from the previous studies by Abd Wahab et al. (2019) and Wisitsoraat et al. (2013). 

The fabrication parameters of GO reduction cycles  (for removal of oxygen functional 

groups on GO surfaces), glucose oxidase (GOx) immobilisation sequence (either 

before or after reduction of GO), and immobilisation strategy were varied. The aim is 

to deduce how these fabrication parameters play their role to affect electrochemical 

reversibility, heterogeneous electron transfer rate constant (k⁰), mass transport 

properties, and effective surface area (Aeff) of rGO-PEDOT:PSS-modified screen-

printed carbon electrode (SPCE), all of which can be determined from cyclic 

voltammetry (CV).  

Complex relationship between the fabrication parameters and CV 

measurements as input and output data may impede the progress of optimizing the 

fabrication parameters. Through recent advances in artificial intelligence (AI), 

meaningful information from biosensors data can be obtained by utilizing machine 

learning approaches. Support vector machine (SVM) is one of the machine learning 

algorithms that can be applied for data classification and regression. In present study, 

SVM was used to build a prediction model that can differentiate the different 

fabrication methods. The fabrication parameters and data obtained from CV were used 

as the dataset to build and test the model. Comparison between three SVM models 

with different characteristics known as linear, polynomial and radial-basis function 

(RBF) kernel was done to determine the best suited model for the biosensor’s data. 

We also explored on how the fabrication parameters relate to the data from CV 

through variable interaction analysis using the best SVM model (Friedman & 
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Popescu, 2008; Molnar, 2018a). While SVM modelling on CV data for biosensor 

development has been reported previously, analysing the interaction between the input 

and output variables based on the model has not been done before. Therefore, this 

study provides new insights to advance the understanding on fabrication of rGO-

PEDOT:PSS composite as transducer for biosensor development utilizing the SVM 

prediction model. The schematic illustration of this study is shown in Figure 1.1. 

 

 

Figure 1.1 Schematic illustration of present study. The fabrication parameters were 
varied to generate four different fabrication methods of rGO-PEDOT:PSS-modified 
SPCE. The modified SPCEs were subjected to cyclic voltammetry in potassium 
ferricyanide and the data obtained were used for electrochemical and SVM analyses. 
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۱٫۲ PROBLEM STATEMENT 

Diabetes is a lifelong condition that requires frequent self-monitoring of blood glucose 

level. Conventional glucose biosensors are partially invasive where a small, sharply 

pointed needle is used for blood sampling. The painful finger-pricking procedure is 

recommended up to seven times per day, thus, discouraging many diabetes patients 

from managing glucose level properly. Therefore, a non-invasive device for glucose 

monitoring utilizing alternative bodily fluids such as saliva, sweat, and tears, is in high 

demand where a better diabetes control can be achieved without the pain of finger-

pricking.  

Employing a composite of graphene with conductive polymer, PEDOT:PSS as 

transducer material is expected to improve the sensitivity of glucose biosensors and 

enable detection of glucose in alternative bodily fluids. Fundamental research into this 

composite behaviour is an essential prerequisite for generating the necessary scientific 

understanding in developing a non-invasive glucose biosensor. In this study, the 

fabrication parameters were varied to observe its effect on electrochemical 

reversibility, heterogeneous electron transfer rate constant (k⁰), mass transport 

properties, and effective surface area (Aeff) via cyclic voltammetry (CV). 

Incorporating SVM analysis for mapping the input and output data from CV may 

uncover relationships and interactions between data that provide deeper insights on 

the fabrication process. 

 

 

 


