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ABSTRACT

Combination of reduced graphene oxide (rGO) with a conductive polymer,
poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is promising
as transducer material for electrochemical biosensors. However, fundamental research
into this composite behaviour is essential for generating the necessary scientific
understanding to realize a non-invasive glucose monitoring approach. In this study,
the rGO-PEDOT:PSS modified electrodes were fabricated with four different methods
(method A, B, C, and D) where the fabrication parameters such as reduction cycles,
sequence and glucose oxidase immobilisation techniques were varied. The aim is to
elucidate how these fabrication parameters can affect the electrochemical reversibility,
mass transport properties, heterogeneous electron transfer rate constant (k9 and
effective surface area (Aefr) of rGO-PEDOT:PSS materials in which can be
determined from cyclic voltammetry (CV). This study also utilized machine learning
algorithm to model the data from CV results where the most accurate model was used
to analyse the interaction strength between the input and output data. From the
electrochemical analysis, the ferri/ferrocyanide redox couple [Fe(CN)s]*”* shows
quasi-reversible and diffusion-controlled behaviour on rGO-PEDOT:PSS-modified
SPCEs of all fabrication method. In terms of k£ each fabrication methods generated
different trend of k“ value with increasing reduction cycles. Overall, the range of k“
for rtGO-PEDOT:PSS-modified SPCE are from 0.52 x10° to 4 x10° cm/s. We also
found that the highest Acfr value with respect to fabrication method were obtained
from different number of reduction cycles. Fabrication method A gave the highest Acfr
when the composite was reduced for 5 reduction cycles (16.41 cm?). For methods B
and D, the highest A obtained was for 30 reduction cycles (17.48 cm? for method B
and 6.43 cm? for method D) while for method C, the highest Acfr value was obtained
for 15 reduction cycles (21.41 cm?). For SVM analysis, data from CV (AE, and Iyc)
and the fabrication parameters were used to construct a prediction model. Linear and
non-linear kernels were compared, and the best performance was showed by radial
basis function (RBF) kernel with a perfect accuracy of 100%. The RBF kernel was
then used to measure the interaction between input and output variables in which the
kernel model demonstrated the strongest interaction between reduction cycles and
AEp. In conclusion, this study reveals the effect of fabrication parameters on
electrochemical characteristics of rGO-PEDOT:PSS-modified SPCEs and the
capability of machine learning algorithm to model data and provide deeper insights on
the fabrication process, opening a new route for development of non-invasive glucose
biosensors.
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CHAPTER ONE

INTRODUCTION

\,Y BACKGROUND OF THE STUDY

Electrochemical biosensors have become an attractive choice of detection service for
industrial, environmental, and biomedical applications owing to its sensitivity towards
analytes, low cost of construction, simple fabrication, and capability to measure a
targeted analyte from a complex sample (Grieshaber, MacKenzie, Voros & Reimhult,
2008; Hammond, Formisano, Estrela, Carrara, & Tkac, 2016). Among various types
of electrochemical biosensors, glucose biosensors dominate consumer market since
the concept of enzyme electrode was introduced in 1962. The market preference
towards glucose biosensors is not only because of the reliability and rapid response in
measuring glucose concentration from blood samples but is also due to the rise of
diabetes prevalence around the world. In 2019, the global population of diabetes
among adults is estimated to be 463 million, showing an increase of 62 % since the

last decade (International Diabetes Federation, 2019).

Conventional glucose biosensors are considered as a gold-standard tool for
diabetes monitoring. However, these biosensors involved finger-pricking which cause
discomfort and pain. Thus, realization of a non-invasive glucose monitoring approach
has become an ultimate goal under progress. The non-invasive approach aims for
measuring glucose level in alternative bodily fluids such as tear, sweat, and saliva
(Baca, Finegold, & Asher, 2007; Moyer, Wilson, Finkelshtein, Wong, & Potts, 2012;
Jha, David, Saluja, Venkatesh, & Chaudhary, 2014; Gupta, Sandhu, Bansal, &

Sharma, 2014; Jadoon et al., 2015;). While this approach is possible due to positive



correlation between glucose level in blood and the non-blood samples, the glucose
level in the non-blood samples can be hundreds of times lower of that in blood
(Makaram, Owens, & Aceros, 2014); thus, the sensing element must be sensitive
enough to detect the low glucose concentration. To address the challenge to detect low
glucose concentration of non-blood samples, research work on the electrode
fabrication constitute the most important part where the transducer materials and
enzyme immobilisation strategy greatly influenced the performance of the

electrochemical biosensors.

In developing electrochemical biosensors, sensitivity and selectivity matters,
hence, selection of a transducer material should aim for both a highly conductive
material for sensitivity, and ability to the signal produced from the reaction between
targeted analyte and biorecognition element selectively. The use of graphene with a
conductive  polymer, poly(3,4-ethylenedioxythiophene):poly(styrene  sulfonate)
(PEDOT:PSS) as the transducer material for enzymatic glucose biosensor may
improve biosensors’ sensitivity owing to the synergistic interaction of both materials
(Zhang, Yuan, Yao, Li, & Shi, 2014). Previous studies have been performed using
graphene and conductive polymer composite for the detection of various analytes such
as glucose (Wisitsoraat et al., 2013; Abd-Wahab, Abdul Guthoos, & Wan Salim,
2019), ammonia (NH3) (Seekaew et al., 2014; Pasha, Khasim, Khan, & Dhananjaya,
2019), and iron (Fe) (Sundramoorthy, Premkumar, & Gunasekaran, 2016). The
promising results from these studies have made the combination of graphene with
PEDOT:PSS attractive as a transducer material for developing a non-invasive glucose
biosensor. However, there is a need to investigate further on the composite’s

interaction and mechanism at the molecular level.



In this study, the rGO-PEDOT:PSS transducer layer was fabricated with four
different fabrication methods in which two of the methods were adopted and modified
from the previous studies by Abd Wahab et al. (2019) and Wisitsoraat et al. (2013).
The fabrication parameters of GO reduction cycles (for removal of oxygen functional
groups on GO surfaces), glucose oxidase (GOx) immobilisation sequence (either
before or after reduction of GO), and immobilisation strategy were varied. The aim is
to deduce how these fabrication parameters play their role to affect electrochemical
reversibility, heterogeneous electron transfer rate constant (k9, mass transport
properties, and effective surface area (Acfr) of rGO-PEDOT:PSS-modified screen-
printed carbon electrode (SPCE), all of which can be determined from cyclic

voltammetry (CV).

Complex relationship between the fabrication parameters and CV
measurements as input and output data may impede the progress of optimizing the
fabrication parameters. Through recent advances in artificial intelligence (Al),
meaningful information from biosensors data can be obtained by utilizing machine
learning approaches. Support vector machine (SVM) is one of the machine learning
algorithms that can be applied for data classification and regression. In present study,
SVM was used to build a prediction model that can differentiate the different
fabrication methods. The fabrication parameters and data obtained from CV were used
as the dataset to build and test the model. Comparison between three SVM models
with different characteristics known as linear, polynomial and radial-basis function
(RBF) kernel was done to determine the best suited model for the biosensor’s data.
We also explored on how the fabrication parameters relate to the data from CV

through variable interaction analysis using the best SVM model (Friedman &



Popescu, 2008; Molnar, 2018a). While SVM modelling on CV data for biosensor
development has been reported previously, analysing the interaction between the input
and output variables based on the model has not been done before. Therefore, this
study provides new insights to advance the understanding on fabrication of rGO-
PEDOT:PSS composite as transducer for biosensor development utilizing the SVM

prediction model. The schematic illustration of this study is shown in Figure 1.1.
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Figure 1.1 Schematic illustration of present study. The fabrication parameters were
varied to generate four different fabrication methods of rGO-PEDOT:PSS-modified
SPCE. The modified SPCEs were subjected to cyclic voltammetry in potassium
ferricyanide and the data obtained were used for electrochemical and SVM analyses.



V.Y PROBLEM STATEMENT

Diabetes is a lifelong condition that requires frequent self-monitoring of blood glucose
level. Conventional glucose biosensors are partially invasive where a small, sharply
pointed needle is used for blood sampling. The painful finger-pricking procedure is
recommended up to seven times per day, thus, discouraging many diabetes patients
from managing glucose level properly. Therefore, a non-invasive device for glucose
monitoring utilizing alternative bodily fluids such as saliva, sweat, and tears, is in high
demand where a better diabetes control can be achieved without the pain of finger-

pricking.

Employing a composite of graphene with conductive polymer, PEDOT:PSS as
transducer material is expected to improve the sensitivity of glucose biosensors and
enable detection of glucose in alternative bodily fluids. Fundamental research into this
composite behaviour is an essential prerequisite for generating the necessary scientific
understanding in developing a non-invasive glucose biosensor. In this study, the
fabrication parameters were varied to observe its effect on electrochemical
reversibility, heterogeneous electron transfer rate constant (K9, mass transport
properties, and effective surface area (Aer) via cyclic voltammetry (CV).
Incorporating SVM analysis for mapping the input and output data from CV may
uncover relationships and interactions between data that provide deeper insights on

the fabrication process.



