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ABSTRACT

Tapered beams are commonly used in civil, aerospace or mechanical engineering
structures as they can reduce its structural weight without sacrificing the strength and
flexibility. Tapered beams are also used to satisfy aesthetic or architectural requirement.
Most of numerical methods to analyze tapered beam structures are using a Galerkin’s
finite element approach where the beam is divided into a number of elements to obtain
accurate result. The beam stiffness matrix is usually obtained through integration of
each element by assuming a shape function for the beam transversal deformations. Since
the number of elements are big, therefore such an approach may affect computational
time. In the present research, a different approach is conducted where an analytical
formulation of a finite element stiffness matrix for a tapered, asymmetric beam element
is developed by using a flexibility approach. The beam stiffness matrix is first divided
into bending, axial and torsional matrices. For the bending stiffness matrix, to simplify
the formulation and therefore to accelerate the numerical calculation, it is necessary to
divide further the bending stiffness matrix into four sub-matrices. Each of the sub-
matrices is a 4-by-4 matrix representing the bending stiffness matrix in three
dimensional coordinate system. The key to the present approach lays on the formulation
of the first sub-matrix, whereas the other three sub-matrices can be obtained from the
first sub matrix by using direct, simple matrix operations. The first sub-matrix is
constructed based on the flexibility approach where a two-steps analytical integration
of second order, partial differential equations is performed. The partial differential
equations are derived based on the Euler-Bernoulli governing equations for the three-
dimensional bending deformations, where the transversal deformations of the beam are
coupled due to the properties of the asymmetric cross section. After rearranging the
transversal deformations in matrix forms, the resulting explicit forms of the differential
equations contain rational functions with multi-polynomial functions on both numerator
and denominator of the rational function. It is found that, in order to ensure the
robustness of the integrations, the denominator functions should be expressed as the
multiplication factor of their roots. By properly considering the boundary conditions of
the beam under various load conditions, the results of the analytical integration are a 4-
by-4 flexibility matrix. The final form of the first sub-matrix is the stiffness matrix
which can be obtained by matrix inversion of the flexibility matrix. For the axial and
torsional stiffness matrices, a similar approach is conducted but it is much simpler since
it involves only first order differential equations. It is found that the present stiffness
Matrix contains logarithmic terms which are not occurred if one use direct Galerkin’s
finite element approach. The present finite element method can be considered as an
analytical stiffness matrix formulation since no assumed shape functions used for the
whole process of the formulation. Therefore, if the tapered functions of the beam
geometry is given, only one element is sufficient to accurately simulate the beam
deformation. To validate the present finite element method, a number of structural
tapered beam having symmetric and asymmetric cross section are used and the results
are compared with available analytical result or other software’s such as Nastran. The
results show that the present method gives the accuracy of more than 7 significant digits
compared with the analytical solution. In all cases, the present method by using one
element gives the result similar to Nastran convergent result where, in order to achieve



the convergence, a number of elements in Nastran are needed. It is expected that the
finding of the present method can contribute further the development of finite element
numerical simulation.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Finite element method (FEM) is a numerical procedure for solving differential
equations occurring in a variety of problems in engineering such as structural analysis,
thermodynamic, fluid dynamic, and electromagnetic as well as in medical science and
in mathematical physics. FEM is well accepted due to its capability to treat complex
geometry and irregular shape and boundary conditions by discretization of the model
domain into a number of finite elements. The accuracy of the finite element
approximation can be improved by increasing the number of elements, which is called
h-FEM method, or by increasing the polynomial order of the finite element model,
which is called p-FEM method, or by combining both methods, which is called hp-FEM
method.

Tapered beams known as non-uniform beams or non-prismatic beams as shown
in Figure 1.1 are frequently used in many civil engineering, mechanical engineering and
aerospace engineering fields. The bridge girder structure shown in Figure 1.1(a) is
designed by considering not only its structural strength requirement but also its
architectural aspect. The tapered profile or shape shown in Figure 1.1(b) provides a
maximum stiffness-to-mass ratio for earthquakes or other vibrations of the earth and
wind load strength. The piston complicated geometry shown in Figure 1.1(c) is the
result of extensive optimization analysis in order to produce the optimum design. In
aircraft wing, the front and rear spar are commonly tapered beam where the profile

height is bigger at the wing root and smaller at wing tip as shown in Figure 1.1.(d). In



addition to less weight, since less material is required to manufacture tapered beams,

this type of framing is more cost-effective than using all straight members.

(b) Beam and column of frame structure (c) Piston rod
(taken from quora.com, 2020) (taken from McCune 2001)

(d) Integrally machined spar of aircraft wing (taken from Niu, 1988)

Figure 1.1 Examples of non-prismatic beam structures



To analyze the tapered beam structure, most of researches are using finite
element methods based on stiffness formulation. The stiffness formulation is usually
derived based on Galerkin’s approach where a cubic polynomial shape function is
assumed for the element’s deformation. For a non-uniform structure as shown in Figure
1.2, the integration of the shape function will give polynomial function terms only. As
it will be shown in Chapter 4, for the type of h-FEM approach, in order to obtain
accurate result, one needs to do some convergence study to ensure that the accuracy is
within acceptable requirement. Therefore, application of the h-FEM approach to a non-
uniform beam model needs a well-practiced user in order to give accurate result. A non-
competent user who used only single element or inappropriate number of elements to
model the non-uniform beam structure may give significant error on the beam
deformation, strain and stress.

Motivated to circumvent this problem, the present work is conducted to develop
a p-finite element method for asymmetric, non-uniform beam such as shown in Figure
1.2. An in-house code is developed in MATLAB and the result is validated by

comparing with analytical results and commercial software’s such as Nastran.
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Figure 1.2 Non-uniform, asymmetric beam model



1.2 PROBLEM STATEMENT

Most of the formulations to construct stiffness matrix in the finite element method is
based on the so-called matrix stiffness approach. The element in the stiffness matrix in
this method is obtained by direct integration of the shape function. The shape function
for the beam uniform element is a cubic polynomial function. However, the same cubic
function is used also for beam of non-uniform element solved using the h-FEM method.
This similar treatment of shape function for both uniform and non-uniform beams may
attribute to the slow convergence of the h-FEM for the non-uniform beam model. In
other word, if the number of elements to model the non-uniform beam is not sufficient,
the accuracy of the result using h-FEM is low.

Therefore, the main research question can be stated as: is there any method that
achieve a high level of accuracy for calculating the stiffness matrix of non-uniform
beam without the need to increase the number of elements?

In the present research work, an attempt is conducted to answer the research
question above by calculating the stiffness matrix indirectly, i.e. the first step is to
calculate the flexibility matrix by using the flexibility approach. Since the shape
function is not used, the dependence to the number of elements can be reduced. The
second step is to obtain the stiffness matrix by performing matrix inversion of the
flexibility matrix.

The second problem statement is related to the computational time needed to
perform the invers matrix. This computational time can be reduced in the present work
by dividing the stiffness matrix into four blocks that each has similar size of the matrix.
The flexibility matrix is performed only to the first block where its matrix size is only
Y4 of the element stiffness matrix. The other three blocks are obtained by simple matrix

operation.



The third problem statement is related to the advantage of the matrix stiffness
method. Compare to the flexibility approach, the matrix stiffness approach is well-
accepted due the easiness to assemble the stiffness matrix and to impose the boundary
conditions. The conventional flexibility approach has a complicated way to address the
load and boundary conditions. In the present work, a non-conventional way of the
flexibility approach is performed, i.e the flexibility approach is performed only to ¥ of
the flexibility matrix where a certain statically determined beam is selected in order to
form easily its flexibility matrix coefficients. Since it is inverted directly to the stiffness
matrix, basically the final result is in the form of stiffness matrix. Therefore, the
advantage of the matrix stiffness method is still maintained.

The forth problem statement is related to no treatment to asymmetric, non-
uniform beam in the literature. The literature available only for either non-uniform beam
or asymmetric beam but not for both asymmetric, non-uniform beam. The present work
attempts to address the stiffness matrix of the asymmetric, non-uniform beam by using

the same frame work of procedure.

1.3 RESEARCH PHILOSOPHY

The philosophy of the present research is to develop a p-FEM method to reduce the
dependency on the number of elements required to accurately construct the stiffness
matrix of asymmetric, non uniform beam by using a flexibility method. To reduce the
dependency on the number of elements, the shape function assumption is not used,
instead a direct, analytical integration is performed. To reduce the computational time,
only a quarter of the flexibility matrix is formulated and the result is inverted directly

to obtain the stiffness matrix. To retain the advantage of the matrix stiffness approach,



