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ABSTRACT

This research sought to identify the solution of shock absorption for vibration control
(in this case, to reduce the effect of the heel strike of the transtibial amputee in walking).
This research proposes a device which is a damper-based shock absorber installing on
a prosthetic limb that will be used by the transtibial amputee. The prosthetic leg adopts
a semi-active damper to capture the advantages of passive damper along with to perform
as good as an active damper. Magnetorheological (MR) damper, which utilizes the
benefits of MR fluids, is one of the most promising semi-active devices in mitigating
the vibration. MR fluids is a smart material because of the ability to control the
rheological properties by tuning the external magnetic field strength. Moreover,
mechanical simplicity, fast response, and low power consumption have attracted more
interest on this damper. However, the challenging aspect of utilizing this device is to
understand their performance under varied input parameters. Understanding the
behavior of the MR damper is the critical feature to use this damper fully. A well-known
mathematical model, the Phenomenological (Modified Bouc-Wen) model, is used to
model the MR damper behavior. To use this model, a relationship between the damper
parameters, including force, displacement, velocity, current, and frequency, should be
available. An experimental study of MR damper is done by the researcher to acquire
those relationships. A comprehensive optimization methodology to estimate the
parameters of the Modified Bouc-Wen model is necessary. The researcher compares
two optimization algorithm, which is Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) to estimate the parameters. From the comparison, PSO, inspired by the
behavior of bees swarming for the optimization methods, has higher accuracy, which is
95.92% compared to GA, which is 94.71%. The precision of the optimization of the
Modified Bouc-Wen parameters is from 92.3% to 96.5%. Each parameter fits the
function of input current and frequency using the polynomial equation (maximum 3rd
polynomial order). The precision of the fitting is from 87% to 98.4%. Robust Controller
is developed to control the MR damper for transtibial prosthetic limbs. In this research,
prosthetic limb applications adapt Hoo robust controller and inverse MR damper model.
The result of the controller design compared to the targeted behavior is up to 92.51%
accuracy. The simulation's performance is presumed to be acceptable since it almost
followed the pattern of the targeted design.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Daily human activities are mostly required for humans to mobilize from a place to
another. Walking and running are the methods of human locomotion, using two legs as
support and propulsion to move around. However, for amputees, especially transtibial
(below-knee) amputees require prosthesis to support them in walking and improving
their gait.

A lot of research on designing and improving the performance of transtibial
prosthetic limbs has done over a decade. The most common available transtibial
prosthetic limbs are Solid Ankle Cushioned Heel (SACH) at which, the walking shock
absorption comes from the cushioned heel. However, the ability of SACH to absorb the
shock or damping forces is limited. Energy Storage and Return (ESAR) foot is another
option, where it can absorb a significant amount of shock or damping forces during the
loading phase and release it later during push-off (Grimmer et al., 2016). Nevertheless,
both devices are passive, in which unable to provide mechanized energy or positive
power to adjust the amputee’s gait cycle and help them to propel forward (Lemoyne,
2016).

Active transtibial prosthetic limbs contain powered element to support in
locomotion for the whole gait cycle (Hitt, Sugar, Holgate, & Bellman, 2010). Power
Knee by Ossur, Intelligent Prosthesis (IP) by Blatchford, Intelligent Knee by Nabtesco
and C-Leg by Otto Bock are the examples of available powered actuated prosthetic
limbs (Grimmer et al., 2016). These devices are actuated using either DC motor,

pneumatic, or hydraulic actuators. Power Knee, for example, provides maximum



support at knee joint for active bending (flexion) and extension during walking, helping
amputees to go further. Apart from that, Grimmer et al. (2016) proposed an improved
version of the active prosthetic ankle by Markowitz et al. (2011) to mimic the behaviour
of human ankle movement. This device emphasizes dorsiflexion and plantarflexion
control to adapt to terrain variation and walking speed. Even though active prosthesis
can support amputees for the whole gait cycle and provide positive power e.g., climbing
stairs, more energy is required since they are continuously active (Lui, Awad,
Abouhossein, Dehghani-Sanij, & Messenger, 2015). Figure 1.1 shows the example of

available passive and active transtibial prosthetic limbs.
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Figure 1.1 Passive transtibial prosthetic limbs (ESAR) (left side) and active transtibial
prosthetic limbs (right side) (retrieved from “Feet and Ankles”, 2018).

Before design the transtibial prosthetic limbs, the basic gait cycle is discussed.
It is owing to understand the gait cycle help to better detect the critical phase that
acquired much more attention in designing the prosthesis. Gait is known as a manner of
walking, and the gait cycle defined as the period of repetitive events of walking. The
single gait cycle is measured where one foot contacts the ground until the same foot
touches the ground again in locomotion. The gait cycle is divided into two main phases:
the stance phase and the swing phase, as shown in Figure 1.2. Generally, the stance

phase occupies approximately 60% of the single gait cycle and 40% by swing phase.



However, this varies with walking speed, where the swing phase will be more

prolonged, and the stance phase will be shorter when the rate increased (Whittle, 2007).

Stance Phase Swing Phase ——————»

Heel strike Loading Mid-stance Terminal stance Pre-swing Toe-off Mid-swing Terminal swing
response

Double Single support Double

support support

Single suppot ——

Figure 1.2 Positions of legs during single gait cycle (blue) (Pirker & Katzenschlager,
2016).
A detail of the gait cycle for stance phase recognizes five significant events
which are:
1) Heel strike
2) Loading response,
3) Mid-stance,
4) Terminal stance, and
5) Pre-swing.
While the swing phase divided into three significant events which are:
1) Toe-off or initial swing,
2) Mid-swing, and
3) Terminal swing (J. Park, Yoon, Kang, & Choi, 2016).
At the beginning of a stance phase, a transient force known as a heel strike is
generated. The heel strike transient represents an exchange of momentum when the foot

contacts the ground, terminating the previous movement (Addison & Lieberman, 2015;



Tongen & Wunderlich, 2012; Zinner & Sperlich, 2016). Figure 1.3 shows the ground
reaction force in the vertical direction from a walk experimented by Whittle (2007). The
heel strike transient happens typically at 10 ms to 20 ms and is seen as a short spike of

force.

Heelstrike transient
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Figure 1.3 Plot of vertical ground reaction force (N) against time (ms) (Whittle, 2007).

It has been found that the resulting shock wave from the heel strike may produce
damage to the human body. The previous researchers suggested there are possible
shock-related injuries due to the heel strike transient, including headaches and
osteoarthritis (degenerative joint disease) (Light, McLellan, & Klenerman, 1980), stress
fractures (Dickinson, Cook, & Leinhardt, 1985), plantar fasciitis (D. Singh, Angel,
Bentley, & Trevino, 1997), chronic low back pain, degeneration of cartilage (C. Y. Lin,
Chuang, & Cortes, 2017) and prosthetic joint loosening (Whittle, 2007).

Possible solutions to reduce the effect of heel strike transient, especially
prosthetic limb users, is the use of a heel pad (Jorgensen & Ekstrand, 1988). This is the
earliest solution to encounter the heel strike, yet it only able to absorb the transient force

approximately up to 47 to 66% (Whittle, 2007). The control of plantar flexion of ankle



and knee is another possible solution where it presumes to provide shock absorption
immediately after initial contact (Ebbeling, Hamill, & Crussemeyer, 1994). However,
plantar flexion of ankle and knee occupies at 80 ms and 150 ms respectively slower than
heel strike transient (20 ms), thus impossible to protect the leg from the transient force
(Whittle, 2007).

Hence, to provide a better solution for the need for shock absorption for
transtibial amputees, a device that is damper-based shock absorber is suggested. A
semi-active damper is adopted in the design of the prosthetic limb to capture the
advantages of passive damper, along with performing as good as an active damper. The
design also will mainly focus on reducing the heel strike transient effect. This research
describes the use of a Magnetorheological damper or MR damper (semi-active damper)
in the transtibial prosthetic limb. The work is initiated with understanding the
parameters that affect the performance of MR damper. A controller is then designed so

that the system is capable of reducing vibrations at various walking speeds.

1.2 PROBLEM STATEMENT

When human in motions either walking or running, human lower limb’s damping
characteristic changes to provide proper movement condition. However, uncontrolled
exposure to vibration especially during heel strike may lead to injuries or prosthesis
malfunction. Having an adaptive capability in artificial prosthesis for lower limb
amputees is necessary to provide essential movements and attenuate unwanted
vibration. To design an adaptive prosthetic limbs, a semi-active damping device which
is Magnetorheological Fluid (MR) damper is proposed. This device have the
capabilities to attenuate broadband vibration without consuming much power

consumption.



However, major drawbacks that restrict the applications of MR damper are
nonlinear hysteresis force-velocity and force-displacement characteristic. Thus, to
design high efficiencies of MR damper applications, an accurate mathematical model
that can take full advantages of this device is required. Developing and utilizing these
devices become more challenging due to inherent nonlinear nature of the dampers. In
this study, the dynamic response of the MR damper is investigated by testing the damper
under different conditions. Then, the dynamic models of the damper is developed using
a proposed method. The proposed method will help for further research as reference on
how to estimate the dynamic models. For further investigation, the proposed dynamic
models are expected to be applied on practical applications, prosthetic limb for example.
On these bases, semi-active controller system, consist of a system controller and a
damper controller are required. System controller is to generate desired force based on
dynamic response of a plant while the damper controller is to track the generated
damping force by adjusting the value of voltage or current. The inverse dynamic model
of the damper is required to design the damper controller. The detail of the design will

be explained in the next chapter.

1.3 RESEARCH OBJECTIVES

The objectives of this research are:
1. To understand the behavior of MR damper under various input current and
damping frequency.
2. To estimate and optimize the parameters of the MR damper models based on
experimental result.

3. To control the MR damper for transtibial prosthetic limb application.



1.4 RESEARCH METHODOLOGY

The methodology to achieve the research objectives is adopted as follows (flow chart

of research methodology may refer to Figure 1.4):

a)

b)

d)

Exploring the MR damper background and analyzing its problems through an
extensive literature review

Carry out an extensive study of the published works to fully comprehend and
value the significance, scope, and underpinnings of this research. The outcome
of this study should be the identification of critical parameters or factors to
improve the dynamic range of MR damper.

Experimental investigation

Carry out an experimental study to test the MR damper's dynamic behavior
under the variation of parameters. The force-displacement and force-velocity
relationship are the expected outcome of the test.

Parametric optimization of MR damper model

Identify the available MR damper model and perform parametric optimization
on the model by comparing with the experimental result. The outcome of the
task is to have a mathematical model in which able to describe the actual
performance of MR damper.

Controller design

Design controller to control MR damper for prosthetic limb application. The
expected outcome from the task is to have a robust control algorithm to control
the prosthetic limb and a controller (inverse MR damper model) to control the

MR damper.



