DUAL LOOP FEEDBACK ERROR LEARNING
CONTROLLER WITH NARX FOR MECANUM
WHEELS MOBILE ROBOT

BY

MOHD AZRI BIN ABD MUTALIB

A thesis submitted in fulfillment of the requirement for the
degree of Master of Science (Mechatronics Engineering)

Kulliyyah of Engineering
International Islamic University Malaysia

SEPTEMBER 2020



ABSTRACT

A Motorized Adjustable Vertical Platform (MAVeP) is needed by National Space
Agency of Malaysia (also known as ANGKASA) at their Satellite Assembly,
Integration and Test Centre (AITC), Banting, Selangor. AITC is a clean room used for
satellite assessment before it is qualified to be launched into the orbit. Designed as the
facility that will provide the similar testing condition as the spacecraft and its payload,
AITC is a controlled environment area which having a clean room of class ISO 8. Since
it is a confined space for testing, a satellite is carefully transported within the test area
as it is very sensitive. Therefore, mecanum wheels are the most suitable wheel for
MAVeP mobility mechanism. However, the mecanum wheels come with their common
issue like slippage that leads to low accuracy and repeatability of the movement. Each
mecanum wheel motor which act as an actuator needs to be properly controlled to avoid
overshoot that cause jerk and oscillation that leads to vibration. MAVeP mobility need
to transport the satellite with minimum vibration and jerk also achieve positional
accuracy and repeatability. This research focuses on the development of dual loop
feedback error learning controller with nonlinear autoregressive exogenous neural
network (NARX-NN) for MAVeP mobility mechanism. A MAVeP mobility
mechanism prototype has been developed and the kinematic model has been derived.
Simulations and experiments have been conducted in the linear and diagonal axis. The
vibration and jerk issues have been overcame by dual closed loop positioning control
system while the slippage problem have been eliminated and improved by using
feedback error learning (FEL) control technique which is a dynamic inverse control
method that combines simultaneous action of proportional (P) as a feedback controller
and NARX as the feedforward controller. NARX learns the inverse dynamic of the
MAVeP mobility mechanism in the feedforward controller to improve the response of
non-adaptive feedback controller performed by P controller. The experimental result
shows that the steady state tracking error is 5%, the maximum overshoot is 0%, the
settling time are between 2.9 second to 3.0 second, the RMSE are between 1.83 cm to
2.01 cm and the repeatability are between 98.3% to 100% for all linear movement. Both
simulation and experimental results have proven that the proposed controller is
successful in controlling the MAVeP mobility mechanism to achieve the desired
position accurately and eliminate slippage and jerking.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

The development and launched of the first Malaysian communication satellites namely,
MEASAT-1 and MEASAT-2 in year 1996 have made the nation proud. The
communication development does not only stop there. Malaysia had launched their first
remote sensing satellite called TiungSAT-1 in year 2000, about four years after the first
satellite was launched. The growth of space technology continues with the development
of the second national remote sensing satellite named RazakSAT in the beginning of
2001. Since there is rapid development of space technology in both broadcasting and
telecommunication industries, National Space Agency of Malaysia (ANGKASA) has
taken an additional step by setting up the Satellite Assembly, Integration and Test
Centre (AITC), which is required for assembly and integration works, as well as the

launching and environmental testing of a medium-sized satellite (Leng et al., 2009).

As soon as a satellite is launched, it faces huge environmental influence both
while on earth and in space. The vibro-acoustic and electromagnetic effect during
launch and thermal effect in space may harm the satellite before it even begins its
lifetime (Perl E. et al., 2005). Therefore, a satellite must be thoroughly tested before it
can be launched into the orbit. There are several tests that need to be performed such as
vibration, acoustic, electromagnetic and thermal vacuum tests. These tests are important
to ensure that a satellite achieves design, performance and quality requirements before

the satellite faces the worst conditions in the orbit (Lee et al., 2002).



During the test procedure, a satellite needs to be transported to several test areas.
A mobile trolley is required to ensure the satellite mobility is handled in a proper
manner. It is equipped with a platform that serves as a workstation for assimilation work
in setting up the satellite for the required tests. Figure 1.1 shows a standard mechanical
ground support equipment (MGSE) trolley or called multi-purpose satellite trolleys
offered at most of the test centers that is not suitable to AITC in terms of mobility and
height. These mobile platforms come with manual mobility system only. Operator is
required to move the 1000 kg satellite plus another 1000 kg of the platform itself. The
trolley can only rotate the satellite from horizontal to vertical position instead of lifting
it. Usually, an adjustable high mechanism with no mobility feature is embedded on the
floor to lift the satellite up or down. The existing condition in the test facility requires a
special platform equipped with mobility system and adjustable height. This platform

also ensures a safe satellite handling (Woo et al., 2015).

Satellite

Manual handling

Figure 1.1 MGSE trolley with satellite loaded.



To cater the requirement, a Motorized Adjustable Vertical Platform (MAVeP)
is designed and developed to ensure an easier and smooth operation, as well reduce the
handling risks that may jeopardize the satellite. This platform is equipped with an
automatic mobility control and adjustable height mechanism to elevate the satellite
according to ANGKASA requirement.

MAVeP design concept is shown in Figure 1.2 while Figure 1.3 shows the
computer-added design (CAD) drawing of MAVeP model. MAVeP consists of five
main mechanism; mobility, lifting, extended beam, locking and base plate loading. The
mobility is dealing with four mecanum wheels while lifting is performed by a scissor
lifter concept with ball screw mechanism to meet the clean room requirement based on
the International Standard Organisation (ISO) 14644-1 and ISO Class 100000. The
cleanroom cleanliness condition level shall be at least 3,520,000 particles/m3 and
greater than or equal to 0.5 um size of particles (Zwiener, 1986). The extended beam is
manually moved and locked with a motorized locking system. Finally, the base plate

mover is motorized to transfer the satellite into the thermal vacuum chamber (TVC).

Extended beam

Operat |
perator M;\

hj L Female: '—

* Baseplate /
' |

Extended beam

Baseplate hook A ] ]
(manual) i
Operator

Baseplate
movers

. uc,

| .

Ball Screw
(motor)

Ball Screw ‘

Scissor

Mecanum
Wheels

Figure 1.2 MAVeP design concept (Woo et al., 2015).



Base Plate
/ Hook Extended

Mecanum
Wheel

Figure 1.3 MAVeP CAD drawing (Mutalib et al., 2019).

1.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE

MAVeP is designed to be used in clean room area. It is a huge and heavy mobile trolley,
equipped with mecanum wheels to allow mobility in confined areas at AITC to transport
a satellite. Therefore, the motor which act as the mobility actuator must be large to
deliver a high torque value, but a motor that has high torque produces overshoots and
oscillation during its rotation without a proper control. This phenomenon leads to jerk
and vibration issues that could damage the satellite’s parts or influence the satellite test
result. Since the main function of MAVeP is to transport and lift a satellite into the
TVC, MAVeP must be parked very close, in front of the TVC before the lifting process.
The fact is that MAVeP is very difficult to be parked accurately with a tolerance below
2 cm (Woo et al., 2015) due to mecanum wheel slippage issue. The slippage comes from
the mecanum wheel design that uses free rollers or passive rollers. The rollers are able
to rotate in accordance to the wheel rotation and leads to low accuracy and repeatability
of MAVeP movement. An accurate position control that enable the parking process

needs to be done quickly and precisely without affecting the highly sensitive satellite.



1.3 RESEARCH OBJECTIVES

The objectives of this research are:

1-

2.

3-

To develop a kinematic model of MAVeP mobility mechanism for controller
design and simulation.

To design dual loop feedback error learning controller with NARX sequential
training to overcome jerk, vibration and slippage issues for MAVeP mobility
prototype.

To validate the performance of proposed controller by simulations and hardware

experimental tests.

1.4 RESEARCH METHODOLOGY

The summary of the research methodology is summarized in Figure 1.4. The

methodology consists of:

1.

1l.

1il.

1v.

Literature Review. Literature reviews is focuses on the technical and
specific papers related to the research study.

MAVeP prototype kinematic equation development. The kinematic
model of the MAVeP mobility is developed for controller design and
simulation purposes.

Dual loop FEL with NARX controller design. The design for the
controller is iterated and analysed through simulations that are run in
computer simulation applications.

MAVeP prototype development. Experiments are conducted to a
developed prototype that is similar to MAVeP mobility.

Simulation and Experimental Tests. Complete controller with optimized

parameters is applied to the real system and tested.



Literature review

l

MAVeP prototype kinematic equation development

\4

Dual loop FEL with NARX controller design

\4

MAVeP prototype development

l

Simulation and experimental tests

l

Are the results

NO

acceptable?

l YES

Figure 1.4 Flowchart of research methodology.




1.5 SCOPE OF RESEARCH

The following is the scope of the research:

1.

Only four mecanum wheels are considered in the prototype development as to
represent the actual MAVeP mobility.

Experimental tests are performed on the developed prototype. Experimental on
real MAVeP is outside this research scope.

Experimental test is running on flat surface to ensure all four wheels are
contacted to the surface. Other type of surfaces is beyond the scope of this study.
No weight change during movement of the prototype. Variation of MAVeP’s
weight is beyond the scope of this study.

Experiment conducted on linear movement; X, Y and diagonal direction.

Nonlinear movements are outside the scope of this study.

1.6 CONTRIBUTION OF THE RESEARCH

The contributions or originalities of the research is a new controller method based on

dual loop feedback error learning controller with NARX for MAVeP mobility

mechanism to compensate jerk, vibration and eliminate the slippage issues. The

controller has been tested in the simulation and experimental tests on the prototype of

MAVeP mobility.



