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ABSTRACT

The development of hybrid composites from the combination of synthetic and natural
fibers have been extensively studied due to their excellent in both mechanical and
physical properties. However, the absence of a robust statistical model in predicting and
optimizing the optimum mechanical properties based on several parameters, especially
fiber content, thickness, and stacking sequences, has caused a problem in designing and
producing the hybrid composites. Therefore, the main objective of the current research
is to predict and optimize the mechanical properties of fabricated hybrid composites
based on these three parameters. Hybrid composite was fabricated by utilizing kenaf
fiber (K) and carbon fiber (C) with epoxy matrices. These hybrid composites were
fabricated based on three parameters: fiber content (30, 40, and 50 vol.%), thickness
(3mm and 5mm), and stacking sequences (CKCKC, CCKCC, CKCK, and KCKCK)
using vacuum infusion method in which the ratio of carbon-to-kenaf was fixed to 1:1.
The mechanical and physical properties of fabricated carbon-kenaf hybrid composites
were investigated. The optimization on mechanical properties of the hybrid composite
was then conducted via the multilevel categoric factorial design of experiment (DEO)
method. Experimentally, the addition of 30 vol.% to 40 vol.% of fibers has increased
the values of tensile, flexural, and impact properties of hybrid composites due to
formation of good interaction between fibers and matrix that observed by SEM
morphology. Meanwhile, the addition of 50 vol.% fibers has reduced the mechanical
properties of carbon-kenaf hybrid composites due to poor interfacial bonding between
layers of fibers and epoxy matrix. Besides, the highest tensile and flexural properties
were obtained when hybrid composites were fabricated at 3 mm thickness. This is
corroborated with the effectiveness of matrix to distribute evenly along the surface of
fibers compared to the one with 5 mm thickness of hybrid samples. In terms of stacking
sequences, the assignation of carbon fibers as the outer layers exhibit the highest tensile
strength, flexural strength, and impact strength with the value of 210.49 MPa, 329.59
MPa, 1143 J/m, respectively as compared to kenaf fiber at 40 vol.% fiber content.
Moreover, it can be perceived that the density of carbon-kenaf hybrid composites
decreases with an increase in the fiber content and thickness due to the formation of
voids and it can be detected by optical microscope (OM) fractography. Additionally,
the utilization of kenaf fiber as the outer layer tends to increase the rate of water
absorption of hybrid composites in comparison to the carbon fiber as the outer layer due
to the hydrophilic nature of kenaf fiber. From the overall findings, ANOVA analysis
showed a significant interaction in the developed DOE model in which the result shows
that the optimum parameters achieved at 40 vol.% fiber content, 3 mm thickness, and
CCKCC stacking sequence. These parameters validated by the fabrication and the
obtained values are in the range of predicted values. Therefore, this statistical model
offers the great potential of the utilization of carbon-kenaf hybrid composite in
structural applications, specifically the automotive industry.
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CHAPTER 1

INTRODUCTION

1.1 RESEARCH BACKGROUND

For many years, synthetic fibers have extensively adopted in most of the structural
engineering applications such as marine, aerospace, construction, and automotive
sectors (Koumoulos et al., 2019; Petersson et al., 2013). Synthetic fibers such as carbon
and glass fibers are commonly utilized as a reinforcement to produce fiber-reinforced
composite materials. The utilization of these fibers due to their outstanding mechanical
properties and good durability behaviour (Elahi et al., 2014; Huang, 2009).
Nevertheless, researchers start to explore other potential materials to reduce the use and
dependency on the synthetic fibers. This is due to the high cost of synthetic fibers and
the realization to maintain the sustainability of a green environment (Nagalakshmaiah
etal., 2019). In fact, most synthetic fibers are non-biodegradable materials that difficult
to be recycled, where improper recycling processes may contribute to the environmental

issue (Nagalakshmaiah et al., 2019).

Therefore, the selection of reinforcements from agricultural resources has raised
great attention among researchers in developing products based on green-composite
materials. Many attempts that focused on the employment of natural fibers as a
reinforcing agent in fiber-reinforced composites to replace synthetic fibers has been
established. The adoptions of natural fibers are due to its advantages in terms of
renewable resources, biodegradability, low density, non-abrasiveness, and low cost

(Hajiha and Sain, 2014; Ticoalu et al., 2010). The utilization of kenaf fiber extracted



from a plant known as Hibiscus Cannabinus to produce fiber-reinforced composite
materials gain tremendous attention among researchers. The adoption of kenaf fiber in
various scale of composite productions because of its excellent specific strength
concurrently with the availability of this natural fiber which can rapidly grow within 4
to 5 months (Ramesh et al., 2018). Traditionally, kenaf fiber was used for non-structural
applications such as fish lines, rope, feed for cattle, filters, and bags (Zuhri et al., 2009).
The prospect of kenaf fiber in automotive, aerospace, and other structural applications
has been widely studied by many researchers. Hassan et al. (2017) and Shubhra et al.
(2011) have discussed that the selection of kenaf fiber in composites due to its robust
specific tensile strength of about 930 MPa. Furthermore, the demonstration of a low
density that can reduce the weight of automotive components is another driving force
in the utilization of kenaf fiber in most of the automotive industries (Holbery &

Houston, 2009).

Researchers have invented a new composite known as a hybrid composite to
obtain the benefits from both synthetic and natural fibers. The combination of two or
more different types of fibers with a polymer matrix tend to produce superior
mechanical and physical properties of fabricated fiber-reinforced composites.
Therefore, the use of synthetic fibers can be an interesting way to enhance the overall
mechanical performances, while natural fibers able to impart the biodegradable
properties in a hybrid composite. The hybridization of natural-synthetic fibers has made
a remarkable impact on structural industrial applications. One of the positive findings
by Davoodi et al. (2010) has proved that kenaf-glass fiber hybrid composites
demonstrate excellent tensile and flexural properties which were found to be suitable

for a car bumper application.



The mechanical properties assessment of synthetic-natural hybrid composites,
especially kenaf hybrid composites based on different parameters has been widely
evaluated by many researchers. The question of whether all the mechanical evaluations
which are currently proposed in the literature are sufficient towards identifying the
optimal mechanical properties of this hybrid composite; since, the research on
optimizing the mechanical properties of kenaf hybrid composites is limited because of
the development of a comprehensive statistical model is required. Therefore, the current
study aims to develop hybrid composites by utilizing woven carbon fiber and kenaf
fiber as reinforcing agents with a polymer resin (epoxy) that acts as a matrix using
vacuum infusion technique. Moreover, further investigations on the mechanical,
physical, and morphological properties of resultant hybrid composites were conducted.
The development of statistical model based on the Design of Experiment (DOE)
approach that predict and optimize the mechanical properties of fabricated hybrid
composites was established by considering parameters of fiber content, stacking
sequence, and laminate thickness of this hybrid composite. This newly developed model
may become a guideline for future research to explore the potential of kenaf hybrid

composite in many structural engineering applications.

1.2 PROBLEM STATEMENT

Composite is a potential material to replace the use of traditional materials like steel,
aluminium, wood, and granite (Nagavally, 2017). They have grown tremendously in
many industries due to their excellent mechanical properties (Gupta et al., 2016).

Moreover, composite materials have been well-developed owing to their high strength-



to-weight ratio, durability, easily produce, and open to new design options (Mahajan

and Aher, 2012; Visal, 2016).

In general, polymer composites based on synthetic fibers extensively used in
most of the structural applications such as automotive and aerospace industries due to
outstanding properties of these fibers such as high mechanical strength, relatively low
density, excellent corrosion resistance, and durability (Yao et al., 2018). Apart from
these noteworthy points, high production cost remains dominant barriers to the wide-
range adoption of this material for the structural applications. Life cycle assessment of
synthetic fibers after end-of-service also becomes an issue, where synthetic products
are difficult to be recycled due to high cost as well as require advancement in a waste
management system. Thus, poor waste management of synthetic materials leads to

environmental problems (Robert, 2015).

In these regards, it has prompted an idea to develop new composite materials
based on natural resources. Many attempts have been performed from previous studies
that utilize jute, kenaf, sisal, empty fruit bunch (EFB), and hemp fibers as a reinforcing
agent in polymer composites (Ticoalu et al., 2010). The employment of natural fibers
in polymer composites seems promising because they can naturally biodegrade without
contributing serious problems toward the environment, they are abundantly available,
inexpensive, non-abrasive, and exhibit low density (Mishra & Biswas, 2013;
Mohammed et al., 2015; Pickering et al., 2016). Therefore, the utilization of these
materials able to reduce the dependency on petroleum-based synthetic fiber such as
carbon fiber. Among the available natural fibers, kenaf fiber was proposed as a potential

material to replace synthetic fibers owing to its excellent properties such as high specific



strength, high stiffness, cost-effectiveness, and low density (Tong et al., 2017; Hajiha

& Sain, 2014; Bagum and Islam, 2013).

Despite the advantages of kenaf fiber, the high moisture absorption of this fiber
resulted in poor mechanical performances which might limit its usage (Kalia et al.,
2009). Another concern in developing kenaf fiber based composites is the
incompatibility with the polymer resin may lead to weak interfacial bonding between
kenaf fibers and polymer matrix (Khan et al., 2015). It is because kenaf fiber is known
to be hydrophilic, whereas the polymer matrix is hydrophobic. Different in polarity
tends to promote poor adhesion between natural fibers and matrix resin that
consequently reduce the mechanical strength of fabricated composites.

At present, considering the better mechanical performances without sacrificing
the environmental concern, the idea of developing a hybrid composite from the
combination of natural and synthetic fibers with one phase of the matrix has been
established. The deployment of two different types of fibers is expected to compensate
for the drawback of one another. Therefore, many pieces of research have discussed the
combination of natural and synthetic fibers with a polymer resin in a fiber-reinforced
composite system. Researchers have found that the combination of two fibers able to
boost the mechanical strength of fabricated hybrid composites (Fauzi et al., 2016; Sapiai
etal., 2015).

It should be noted that, several parameters such as fiber-matrix ratio, stacking
sequence of fibers, and thickness of laminate need to be taken into consideration in
fabricating hybrid composites. Even though there are many attempts have been
performed to investigate the effects of fiber contents, stacking sequences, and thickness
of laminate on mechanical behaviours of hybrid composites (as Table 2.6 in Section

2.5.1), the absence of robust statistical model in predicting and optimizing the optimum



mechanical properties of hybrid composites based on these parameters is the primary
constraint towards the design of hybrid composites. Besides, there is a limited report
available regarding the optimization analysis of these three parameters toward
prediction on the mechanical properties of carbon-kenaf hybrid composites. Indeed,
these data are essential in continuing the investigation on the prospect of kenaf hybrid

composites in various structural applications.

1.3 RESEARCH OBJECTIVES

The main objective of this research is to predict and optimize the mechanical behaviour
of hybrid composites by utilizing woven carbon and woven kenaf fabric reinforced
epoxy matrix fabricated using vacuum infusion technique. To achieve this prime

objective, several explicit objectives need to be executed as follows:

1. To screen the parameters for the fabrication of carbon-kenaf reinforced epoxy

matrix hybrid composites.

2. To evaluate the mechanical, morphological, and physical (water absorption and
density) properties of the fabricated hybrid composites based on fiber content,

stacking sequence, and thickness.

3. To formulate and validate a statistical analysis model in predicting and
optimizing the optimal tensile, flexural, and impact properties of fabricated
hybrid composites using design of experiments (DOE) approach via Design-
Expert software by considering fiber content, thickness, and stacking sequence

parameters.



