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ABSTRACT

Interference is an inevitable signal disruption in a wireless communication system. A
high level of interference effect (Bit Error Rate (BER)) is experienced mostly in
crowded urban areas and indoor environments. Interference caused by Additive White
Gaussian Noise (AWGN), Rician and Rayleigh fading reduces the travelled distance
and signal level. Additionally, systems employing single modulation techniques and
antenna are more likely to be affected by interference. This is because they are incapable
of adapting to the environment changes. As such, this research has proposed to evaluate
a Single Input Single Output (SISO) Orthogonal Frequency Division Multiplexing
(OFDM) capability in an indoor environment as well as apply adaptive modulation
techniques and antenna diversity in a simulation experiment to mitigate interference-
effect. The first objective of this research is to evaluate the SISO-OFDM channel’s
performance in an indoor environment against the cleanroom environment, acquired
using an experimental setup. The second objective is to ascertain the improvement of
SISO-OFDM channel performance when variable modulations are deployed, using the
GNU Radio software platform. The third objective is to identify the channel
performance’s improvement when Multiple Input Multiple Output (MIMO)-OFDM
System is deployed using the GNU Radio software. The performance’s parameters
assessed are the BER and Received Signal Strength Indicator (RSSI) in the case of the
empirical testbed. Whereas, for the software simulation implementation, the parameter
assessed is the BER. The methodologies adopted in the empirical study involved using
SISO-OFDM with the Universal Software Radio Peripheral (USRP) hardware setup to
conduct experiments in the laboratory and anechoic chamber environments. The
distances between the transmitter and receiver were varied, and the collected
measurements were compiled and recorded. The simulation experiment employing the
SISO-OFDM system was carried out over various channel conditions, namely AWGN,
Rician, and Rayleigh. The MIMO-OFDM system was simulated over different channel
conditions, and the performance measurements were compared with that of the SISO-
OFDM system. The most important research findings from the empirical study are the
ability to identify the interference level at a specific site using the USRP. Based on the
findings from the second objective, adaptive modulation can be said to mitigate the
interference effect (BER) in a SISO-OFDM system. The key discovery found in the
third objective is that the MIMO-OFDM system significantly reduces the interference
effect (BER) level usually experienced over a multipath fading channel of a SISO-
OFDM system. The major contribution of this research is the capability to share the
method to identify interference level at a specific site using a standard radio frequency
equipment with the USRP. Moreover, this research is one of the first to assess wireless
channel performance in the anechoic chamber using the USRP N210 Software Defined
Radio (SDR).
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CHAPTER ONE
INTRODUCTION

1.0 HISTORICAL BACKGROUND

The modern telecommunications revolution began in 1838 when Samuel F.B. Morse
invented the telegraph (Carr et al., 2001). The telegraph made communication between
distant cities possible before Bell’s telephone was invented. On March 10, 1876,
Alexander Graham Bell with his assistant Thomas A. Watson invented and tested the
telephone in Court Street Boston (Carr et al., 2001). Progressively, the Bell Telephone
made the required improvements, and the concept of a public telephone network then
arrived by January 1878 in New Haven. In March 1885, the American Telephone and
Telegraph Company (AT&T) was developed to control the sudden boom of the
telephone network across the United States (Carr et al., 2001). James Clark Maxwell
developed his theory of electromagnetism in 1864 with his first published paper
(Schmitt, 2002). In 1887, Heinrich Rudolf Hertz confirmed Maxwell's theory by
conducting an experiment in which he transmitted an electrical signal through the air
(Schmitt, 2002). In 1896, Gugliemo Marconi demonstrated that telegraph messages can
be sent and received wirelessly using electromagnetic waves (Schmitt, 2002). With this
achievement, his fame rose when he was able to send a message across the Atlantic
Ocean in 1901 (Schmitt, 2002). During this era, Nikola Tesla lost the patent on wireless
transmission, but the court ruling was overturned in 1943 giving credit also to Tesla for
his contribution to wireless transmission (Schmitt, 2002). The advancement of digital
technology was soaring in the early 1900s. Within this period, in 1928, the general

sampling theorem was first conceptualized by Harry Nyquist (Brittain, 2010). Claude



Shannon then further developed the sampling theorem and published a paper entitled
“A Mathematical Theory of Communication” in 1948 (Brittain, 2010).

The telephone system consists of a local loop of two wires called “wire pair”, and this
connects to Central Office (CO) that contains switching equipment, signalling
equipment, and batteries. The range of frequencies that are passband for voice channel
is from 0 Hz up to 4000 Hz. Frequency Division Multiplexing Access (FDMA) was
adopted for analog signals, as it was capable of assigning different frequencies for each
transmission channel (Carr et al., 2001). Another means for transmission of voice in the
telephone system is digital signals. The voice signal in its analog format is converted
into a digital signal and converted back into an analog signal at the CO to retrieve the
original transmitted voice. The digital transmission in the telephone system made use
of Pulse Code Modulation (PCM), where binary code varies as the signal changes (Carr
et al., 2001). Therefore, conversations are digitally encoded by PCM and digitally
transmitted in series on the same channel or line by Time Division Multiplexing Access
(TDMA).

In the United States (US), Advanced Mobile Phone Service (AMPS) system represents
the first-generation (1G) cellular technology. It was developed in the 1970s and the
early years of the 1980s. It was eventually released in 1983 (Carr et al., 2001). The
AMPS was an analog system using FDMA radio technology operating at 800 MHz
(Carr et al., 2001). Another feature of AMPS is the ability to use frequency reuse and
cell splitting for seamless handoff operation between base stations (Carr et al., 2001).
The Nippon Telegraph and Telephone (NTT) launched 1G in Japan in 1979. The Nordic
Mobile Telephone (NMT), on the other hand, made 1G available throughout Europe in
1981 (Albreem, 2015). Before the debut of the second-generation (2G) system in

Europe, Narrowband Analog Mobile Phone Service (NAMPS) operating at frequencies



of 890 to 989 MHz was used to increase the performance of the 1G system (Carr et al.,
2001). The era of 2G introduced Global System Mobile Communication (GSM) that
solve low call capacity posed by the 1G cellular system. GSM was a digital system
launched in 1991 which operates at a centre frequency of around 1800 MHz (Carr et al.,
2001). A combination of narrowband voice processing with digital signalling allowed
more channels to be accommodated in GSM. GSM uses TDMA and Code Division
Multiplexing Access (CDMA-one) to solve the problem of low system capacity. TDMA
systems are digitally modulated to provide several time slots over only one carrier signal
(narrow frequency band), and only one mobile handset is assigned to each time slot.

The third-generation (3G) incorporates a more efficient CDMA technology.
International Mobile Telecommunication-2000 (IMT-2000) launched 3G and set its
operating frequencies around 2.1 GHz. The announcement was made during the World
Administrative Radio Conference held in 1992 (Prasad & Velez, 2010). CDMA can
encode the data stream to increase the number of bits within the bandwidth required for
every carrier signal. Therefore, if another transmission takes place in the same
frequency using a different code for the data stream, it does not affect the first
transmission as the code is not recognized. The unique digital codes are shared by
mobile phones and base stations. They are identified as pseudo-random code sequences
also known as pseudo-noise. IMT-2000 and Universal Mobile Telecommunications
System (UMTS) were the first technology to launch 3G radio access that offered
enhanced data GSM environment (EDGE), wideband CDMA (WCDMA), and
CDMAZ2000 (Elsen et al, 2001). The fourth-generation (4G) was readily welcomed as
early as 2008 when IMT-Advanced requirements were approved by the International
Telecommunication Union (ITU) (Prasad & Velez, 2010). 3 Generation Partnership

Project (3GPP) launched 4G and Long-Term Evolution (LTE) which employed



