FAT-BASED ADAPTIVE CONTROL (FATAC) OF COOPERATIVE MANIPULATORS FOR HANDLING A DEFORMABLE OBJECT

BY

ABDUL RAHMAN BIN SAMEWOI

A thesis submitted in fulfilment of the requirement for the degree of Master of Science (Mechatronics Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

SEPTEMBER 2020

ABSTRACT

Handling a flexible object by cooperative manipulators is more complicated than handling the rigid one as it involves the vibration of the object. Since the vibration has been known as the capacity for disturbance, discomfort, damage, and destruction, it needs to be suppressed. The system consists of two cooperative manipulators handling a flexible beam that is modelled in Partial Differential Equation (PDE) form and employed the singular perturbation method to produce slow and fast subsystems. Despite the advantages offered by the PDE-based system, less work has been conducted in designing a controller for handling deformable objects by cooperative manipulators based on the PDE-based model and considering the model uncertainties. This study proposes a composite controller that comprises Function Approximation Technique (FAT)-based Adaptive Controller (FATAC) for the slow subsystem to control two cooperative manipulators in handling the deformable object under uncertain model parameters and Velocity Feedback Controller (VFC) for the fast subsystem to suppress the vibration of the deformable object. Stability analysis has been carried out for each subsystem to satisfy Tikhonov's Theorem. Simulation tests have been carried out to measure the performance of designed controllers. For the slow subsystem, the simulation results showed that the root-mean-square (RMS) tracking error of the beam's midpoint are 0.004599 m for X-position, 0.001697 m for Y-position, and 0.005186 rad. for the orientation under the proposed FATAC. For the fast subsystem, the simulation results proved that the proposed VFC has successfully worked well as the transverse vibration of the beam is completely suppressed within 0.8 s. Hardware experimental tests have also been carried out to validate the proposed controller. For slow subsystem, the coding of proposed FATAC is developed to control two cooperative manipulators so that the positions of the beam's midpoint track the circular desired trajectory. The experimental results showed that the position tracking of the beam's midpoint which is controlled by two cooperative manipulators under the proposed FATAC has been successfully achieved with the RMS tracking error of 0.914 cm and 1.126 cm for X and Y-directions, respectively. For the fast subsystem, the calibration of the strain gauge sensor has been made for the preparation to design VFC. The ultimate stage in the fast subsystem is validating the VFC by experimental hardware test to suppress the vibration of the flexible beam. The experimental results proved that the proposed VFC for the fast subsystem has successfully suppressed the beam vibration while moving the flexible beam according to the desired trajectory. The simulation and hardware experiment results verified that the proposed composite controller comprises FATAC for the slow subsystem that has successfully driven cooperative manipulators to handle the deformable object to follow the desired trajectories and VFC for the fast subsystem that has successfully suppressed the transverse vibration of the deformable object.

خلاصة البحث

التعامل مع الجسم من قبل المناور التعاوني هو اكثر تعقيدا من العامل مع الاجسام الجامده لانه ينطوي على اهتزازات.منذ ان كان الاهتزاز يعرف باسم القدره على الاضطراب وعدم الراحه والضرر والدمار فإنه يحتاج الى قمعها. يتكون النظام من اثنين مناورين متعاونين والذين يتعاملون مع شعاع مرن تم تصميمه على غرار المعادله التفاضلية الجزئيه (PDE) ويستخدم طريقة الاضطراب المفرد لإنتاج انظمه فرعية بطيئه وسريعه.وعلى الرغم من المزايا التي يوفرها النظام القائم على PDE, فقد تم اجراء قدر اقل من العمل في تصميم وحده تحكم للتعامل مع الاشياء القابله للتشوه من قبل المناورين التعاونيين على اساس النموذج القائم على PDE والنظر في عدم اليقين في النموذج. وتقترح هذه الدراسه وحده تحكم مركبة تضم وحدة تكيفية تعتمد على تقنية تقريب الوظائف (FAT (FATAC) للنظام الفرعي البطئ للتحكم في اثنين من المناورين التعاونيين في التعامل مع الكائن القابل للتشوه تحت معلمات النموذج غير المؤكدة ووحدة التحكم في سرعة التغذية المرتدة (VFC) للنظام الفرعي السريع لقمع اهتزاز الكائن القابل للتشوه.وقد تم اجراء تحليل الاستقرار لكل نظام فرعى لإرضاء تيخونوف.وتم إجراء اختبارات المحاكاة لقياس اداء وحدات التحكم المصممه.وبالنسبه للنظام الفرعي البطئ فقد اظهرت نتائج المحاكاه ان خطأ تتبع الجذر المتوسط (RMS) لنقطة منتصف الحزمة هو X 0.004599 وايضا Y 0.001697 وايضا 0.005186 للتوجيه تحت FATAC المقترحة. وايضا للنظام الفرعي السريع اثبتت النتائج ان VFC المقترح قد نجح في العمل بشكل جيد حيث يتم قمع الاهتزاز العرضي للحزمه تماما في غضون. وللنظام الفرعي البطئ تم تطوير ترميز FATAC المقترح للتحكم في اثنين من المناورين التعاونيين بحيث تتبع مواقع نقطة منتصف الحزمه المسار الدائري المطلوب.واظهرت النتائج التجريبيه ان تتتبع موضع نقطه منتصف الحزمه التي يتم التحكم فيها بواسطه مناورين متعاونين بموجب FATAC المقترح قد تحقق بنجاح مع خطأ تتبع RMS البالغ cm 1.126 , cm 0.914 للمحورين X-Y على التوالي. بالنسبه للنظام الفرعي السريع فقد تم اجراء معايره مستشعر قياس الضغط للتحضير لتصميم VFC وفي المرحله النهائية للنظام الفرعي السريع وهي التحقق من صحه VFC عن طريق اختبار الاجهزه التجريبي لوقف اهتزتز الحزمه المرنه واثبتت النتائج التجريبيه ان VFC المقترح للنظام الفرعي السريع فقد نجح في وقف اهتزاز الحزمه اثناء تحريك الحزمه المرنه وفقا للمسار المطلوب. واخيرا فقد تحققت نتائج تجربه المحاكاه والاجهزه من ان وحدة التحكم المركبه المقترحه تضم FATAC للنظام الفرعي البطئ الذي نجح في دفع المناورين التعاونيين للتعامل مع الجسم القابل للتشوه لمتابعه المسارات المطلوبه واستخدام نظام VFC للنظام الفرعي السريع الذي نجح في وقف الاهتزاز العرضي للجسم القابل للتشوه.

APPROVAL PAGE

I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Mechatronics Engineering).

Norsinnira Zainul Azlan Supervisor

Md. Raisuddin Khan Co-Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Mechatronics Engineering).

Hasmawati Antong Internal Examiner

Ruhizan Liza Ahmad Shauri External Examiner

This thesis was submitted to the Department of Mechatronics Engineering and is accepted as a fulfilment of the requirement for the degree of Master of Science (Mechatronics Engineering).

> Syamsul Bahrin Abdul Hamid Head, Department of Mechatronics Engineering

This thesis was submitted to the Kulliyyah of Engineering and is accepted as a fulfilment of the requirement for the degree of Master of Science (Mechatronics Engineering).

Sany Izan Ihsan

Dean, Kulliyyah of Engineering

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Abdul Rahman Bin Samewoi

Signature

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

FAT-BASED ADAPTIVE CONTROL (FATAC) OF COOPERATIVE MANIPULATORS FOR HANDLING A DEFORMABLE OBJECT

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2020 Abdul Rahman Bin Samewoi and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understood the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Abdul Rahman Bin Samewoi

Signature

Date

ACKNOWLEDGEMENT

"In the name of Allah, the Most Gracious, the Most Compassionate."

I would like to express my sincere thanks and gratitude to my supervisor, Asst. Prof. Dr. Norsinnira Zainul Azlan for her invaluable guidance, patience, and encouragement throughout this research. Her knowledge and research expertise, especially on robotics and control system, has benefited me greatly.

I owe a debt gratitude to my co-supervisor, Prof. Md. Raisuddin Khan for his patience, support, advice, spending his precious time and sitting side by side to validate my mathematical modelling and robot manipulator system.

I would like to thank the staff members of the Department of Mechatronics for providing all the timely assistance. A big thanks to my friends, Ismail Khairuddin, Marwan Badran, Sado Fatai, Ikmal Hakim, Taufik Yunahar, Mohd Azri, Shawgi Younis, Faris Izzuddin, Nazreen Rusli, Asmarani Ahmad, Rais Hakim, Rabani Romlay, Amalina Azman, Syazwan Hafiz, Gehad Hudig and all my labmates in Biomechatronics Lab for their constant encouragement and inspiration throughout this research.

Finally, I could never have completed this research without the love, prayer and support of my parents, Mr. Samewoi Bin Kadir and Mrs. Nik Zaharah Binti Nik Man as well as my family members. Thank you very much.

TABLE OF CONTENTS

Abstract		ii
Abstract in	1 Arabic	ii
Approval	Page	v
Declaratio	n	v
Copyright	Page	v
Acknowle	dgement	v
Table of C	contents	ix
List of Tal	bles	x
List of Fig	ures	X
List of Ab	breviations	x
List of Sy	nbols	X
СНАРТЕ	R ONE · INTRODUCTION	1
1 1	Overview	1 1
1.1	Background of the Research	۱۱
1.2	Problem Statement	۱۱ ۲
1.5	Objectives of the Research	3 A
1.4	Methodology of the Research	
1.5	Scope of the Research	 6
1.0	Contributions of the Research	6
1.7	Organisation of the Thesis	0 7
2.1	Introduction Deformable Objects	9 9
2.2	Deformable Objects	9
2.3	Mathematical Modelling of Deformable Objects	1
2.4	Model-free Control Methods in Handling the Deformable Object b	У
	Cooperative Manipulators	1
2.5	Model-based Control Methods in Handling Deformable Objects By	y
	Cooperative Manipulators	1
2.6	Adaptive Control Theory and Principle	2
2.7	Chapter Summary	2
СНАРТЕ	R THREE : KINEMATICS AND DYNAMICS MODEL OF	
COOPER	ATIVE MANIPULATORS AND FLEXIBLE BEAM	2
3.1	Introduction	2
3.2	Kinematics and Dynamics of Cooperative Manipulators	2
	3.2.1 Forward and Inverse Kinematics of the Cooperative	
	Manipulators	2
	3.2.2 Dynamics of Cooperative Manipulators	3
3.3	Kinematics and Dynamics of the Flexible Beam	3
	3.3.1 Kinematics of the Flexible Beam	3
	3.3.2 Dynamics of the Flexible Beam	3
3.4	Combined Dynamics	4
3.5	Singular Perturbation Model	4
	-	

3.5.1 Slow Subsystem	44
3.5.2 Fast Subsystem	45
3.6 Chapter Summary	46
CHAPTER FOUR : CONTROLLER DESIGN	47
4.1 Introduction	47
4.2 Computed Torque Control (CTC) Scheme for the Slow Subsystem.	47
4.2.1 Inner Feedforward Loop	48
4.2.2 PD Feedback Outer Loop	50
4.3 FAT-based Adaptive Control (FATAC) for Slow Subsystem	52
4.3.1 Control Law for the Precisely Known Model	52
4.3.2 Adaptive Control Law for the Approximated Model	54
4.3.3 FAT-based Adaptive Control (FATAC) Law for the	
Approximated Model	56
4.3.3.1 Lyapunov Stability Analysis	58
4.4 Velocity Feedback Control (VFC) for the Fast Subsystem	59
4.5 Chapter Summary	60
CHAPTER FIVE : SIMULATION RESULTS	61
5.1 Introduction	61
5.2 Trajectory Validation and Kinematics Analysis	61
5.2.1 Validation Using Simulink	63
5.2.2 Geometrical Visualisation Using GeoGebra	66
5.3 Simulation of Open-loop System	74
5.4 Simulation of Computed Torque Control (CTC) Scheme for the	-
Slow Subsystem	76
5.5 Simulation of FAT-based Adaptive Controller (FATAC) for the	0.1
Slow Subsystem	81
5.6 Simulation of Velocity Feedback Controller (VFC) for the Fast	00
Subsystem	88
5.7 Chapter Summary	89
CHAPTER SIX · EXPERIMENTAL SETUP AND RESULTS	01
6 1 Introduction	01
6.2 Hardware Set-un	91 91
6.3 Software Set-up	98
6.3 1 Arduino Platform	98
6.3.2 LabVIEW Software	98
6.4 Experimental Results	
6.4.1 Experimental Results of FAT-based Adaptive Controller	101
(FATAC) for the Slow Subsystem	101
6.4.2 Velocity Feedback Controller (VFC) for the Fast Subsystem	101
6.5 Chapter Summary	120
	120
CHAPTER SEVEN : CONCLUSIONS AND RECOMMENDATIONS	127
7.1 Conclusions	127
7.2 Recommendations	130
	-
REFERENCES	132

LIST OF PUBLICATIONS	
APPENDIX A	
APPENDIX B	

LIST OF TABLES

Table 2.1. Highlights of the previous studies on handling the deformable objects by cooperative manipulators	11
Table 2.2. The summary of previous studies regarding the mathematical modelling of deformable objects handled by cooperative manipulators	16
Table 5.1. Summary for Figures $5.8 - 5.14$	73
Table 5.2. Proposed parameters	74
Table 5.3. Parameter of each manipulator	75
Table 5.4. Parameters of the flexible beam	75
Table 5.5. Control parameters for proposed FATAC	82
Table 6.1. Selected ports in DAQ devices	100
Table 6.2. Control parameters for individual control of motors Manipulator 1 using FATAC	102
Table 6.3. Control parameters for individual control of motors Manipulator 2 using FATAC	105
Table 6.4. Control parameters for controlling the end-effector of Manipulator 1 to track the desired circular trajectory using FATAC	108
Table 6.5. Control parameters of Manipulator 1 for controlling the beam's midpoint to track the desired circular trajectory using proposed FATAC	117
Table 6.6. Control parameters of Manipulator 2 for controlling the beam's midpoint to track the desired circular trajectory using proposed FATAC	117
Table 6.7. Reading of the strain gauge sensor and the dial gauge for various load's mass	122

LIST OF FIGURES

Figure 1.1. A single manipulator used in an industry	2
Figure 1.2. Two cooperative manipulators used in the automotive industry	2
Figure 1.3. Methodology flowchart	5
Figure 3.1. Two planar and cooperative manipulators handling a flexible beam	30
Figure 3.2. Three degree-of-freedom (DOF) planar of j -th manipulator with three revolute joints	31
Figure 3.3. Schematic diagram of the beam	37
Figure 4.1. Block diagram of a composite controller comprising of computed torque control (CTC) scheme and velocity feedback controller	48
Figure 4.2. Computed torque control (CTC) scheme for slow subsystem	49
Figure 4.3. Block diagram of the proposed composite controller comprising of FAT-based adaptive controller (FATAC) and velocity feedback controller (VFC)	52
Figure 5.1. Forward and inverse kinematics of the system in Simulink	64
Figure 5.2. Inverse kinematics of the system using Simulink	65
Figure 5.3. Forward kinematics of the system using Simulink	65
Figure 5.4. Desired positions and the orientation of the beam's midpoint	65
Figure 5.5. Circular trace of desired positions of beam's midpoint in XY- plane	66
Figure 5.6. Circular trace of positions of beam's midpoint in XY-plane using forward kinematics	66
Figure 5.7. Part of GeoGebra's codings for inverse kinematics of two cooperative manipulators	67
Figure 5.8. Initial positions and the orientation of beam's midpoint at	68
Figure 5.9. Positions and the orientation of beam's midpoint at	69
Figure 5.10. Positions and the orientation of beam's midpoint at	69
Figure 5.11. A base distance of two manipulators is set to 0.6 m apart	70

Figure 5.12. Improper kinematics configuration to be implemented experimentally, the base distance of 0.6 m.	70
Figure 5.13. Centre point of the circular desired trajectory has been changed to	71
Figure 5.14. Both manipulators are an elbow-up configuration	72
Figure 5.15. Positions and orientation of the centre of the beam, <i>Xmpd</i> without any controller	76
Figure 5.16. Vibration of the flexible beam, vf without any controller	76
Figure 5.17. X-position tracking of the beam, x_0 using CTC scheme	77
Figure 5.18. Y-position tracking of the beam, y_0 using CTC scheme	78
Figure 5.19. Orientation tracking of the beam, θ using CTC scheme	78
Figure 5.20. Controller signal in X-direction of CTC scheme	78
Figure 5.21. Controller signal in Y-direction of CTC scheme	79
Figure 5.22. Controller signal of the orientation of CTC scheme	79
Figure 5.23. Tracking error, e of the beam's midpoint using CTC scheme	80
Figure 5.24. Trace of the beam's midpoint in the XY-plane using CTC scheme	80
Figure 5.25. X-position tracking of the beam's midpoint using proposed FATAC	83
Figure 5.26. Y-position tracking of the beam's midpoint using proposed FATAC	83
Figure 5.27. Orientation tracking of the beam's midpoint using proposed FATAC	84
Figure 5.28. Controller signal in X-direction of proposed FATAC	84
Figure 5.29. Controller signal in Y-direction of proposed FATAC	85
Figure 5.30. Controller signal for the orientation of proposed FATAC	85
Figure 5.31. Tracking error of the beam's midpoint using proposed FATAC	86
Figure 5.32. Trace of the beam midpoint in the XY-plane using proposed FATAC	86

Figure 5.33. First column of \hat{W}_{M} matrix	87
Figure 5.34. First column of \hat{W}_c matrix	88
Figure 5.35. First column of \hat{W}_{G} matrix	88
Figure 5.36. The suppression of the beam's vibration	89
Figure 6.1. Experimental set-up of the system	92
Figure 6.2. Three DOF planar Manipulator 1	93
Figure 6.3. Three DOF planar Manipulator 2	93
Figure 6.4. Flexible beam with a strain gauge sensor	94
Figure 6.5. DC planet geared motor	94
Figure 6.6. DC motor driver (MDDS10)	95
Figure 6.7. DC motor driver (MD10C)	95
Figure 6.8. Hall effect sensors	96
Figure 6.9. The Arduino Leonardo microcontroller	97
Figure 6.10. NI-DAQmx USB-6211	97
Figure 6.11. Part of Arduino coding that acts as limit switches for Manipulator 1	99
Figure 6.12. Tracking of joint angle 1 for Manipulator 1	102
Figure 6.13. Tracking of joint angle 2 for Manipulator 1	103
Figure 6.14. Tracking of joint angle 3 for Manipulator 1	103
Figure 6.15. Controller signal for each joint of Manipulator 1	104
Figure 6.16 Tracking of joint angle 1 for Manipulator 2	105
Figure 6.17 Tracking of joint angle 2 for Manipulator 2	106
Figure 6.18 Tracking of joint angle 3 for Manipulator 2	106
Figure 6.19. Controller signal for each joint of Manipulator 2	107
Figure 6.20. X-position tracking of the end-effector for Manipulator 1 using FATAC	109

Figure 6.21. Y-position tracking of the end-effector for Manipulator 1 using FATAC	109
Figure 6.22. Tracking error of the end-effector's X-position for Manipulator 1 using FATAC	110
Figure 6.23. Tracking error of the end-effector's Y-position for Manipulator 1 using FATAC	110
Figure 6.24. Trace of the end-effector of Manipulator 1 in the XY-plane using FATAC	111
Figure 6.25. Angle tracking of joint 1 for Manipulator 1 using FATAC	112
Figure 6.26. Angle tracking of joint 2 for Manipulator 1 using FATAC	112
Figure 6.27. Angle tracking of joint 3 for Manipulator 1 using FATAC	113
Figure 6.28. Tracking error of joint angle 1 for Manipulator 1 using FATAC	113
Figure 6.29. Tracking error of joint angle 2 for Manipulator 1 using FATAC	114
Figure 6.30. Tracking error of joint angle 3 for Manipulator 1 using FATAC	114
Figure 6.31. Motor torque needed by joint 1 of Manipulator 1	115
Figure 6.32. Motor torque needed by joint 2 of Manipulator 1	115
Figure 6.33. Motor torque needed by joint 3 of Manipulator 1	116
Figure 6.34. X-position tracking of the beam's midpoint for controlling two cooperative manipulators using FATAC	118
Figure 6.35. Y-position tracking of the beam's midpoint for controlling two cooperative manipulators using the proposed FATAC	119
Figure 6.36. Trace of the beam's midpoint in the XY-plane for controlling two cooperative manipulators using the proposed FATAC	119
Figure 6.37. Set-up for the calibration of the strain gauge sensor	120
Figure 6.38. Dial gauge	121
Figure 6.39. Set of loads	121
Figure 6.40. Relationship between the strain gauge voltage and the beam deflection	123
Figure 6.41. Strain gauge sensor reading without knocking on the beam	123

Figure 6.42. Strain gauge sensor reading when knocking on the beam	124
Figure 6.43. The suppression of the beam's vibration using VFC	125
Figure 6.44. The suppression of the beam's vibration using VFC (rescaled)	125
Figure A.1. Screenshot of MATLAB Simulink block diagram of two cooperative manipulators handling a flexible beam using CTC scheme for the slow subsystem and VFC for the fast subsystem	138
Figure A.2. Screenshot of MATLAB Simulink block diagram of two cooperative manipulators handling a flexible beam using proposed FATAC for the slow subsystem and VFC for the fast subsystem	139
Figure B.1. Screenshot of LabVIEW block diagram of desired signal generator	140
Figure B.2. Screenshot of LabVIEW block diagram for the input/output	140
Figure B.3. Screenshot of LabVIEW block diagram of Joint 1	141
Figure B.4. Screenshot of LabVIEW block diagram of Joint 2	141
Figure B.5. Screenshot of LabVIEW block diagram of Joint 3	141

LIST OF ABBREVIATIONS

AMM	Assumed Mode Method
CTC	Computed Torque Control
DAQ	Data Acquisition
DC	Direct Current
DOF	Degree of Freedom
FAT	Function Approximation Technique
FATAC	Function Approximation Technique-based Adaptive Controller
FEM	Finite Element Method
MFRAC	Model-Free Robust Adaptive Control
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
PD	Proportional-Derivative
PDE	Partial Differential Equation
PWM	Pulse Width Modulation
RMSE	Root Mean Square Error
SMC	Sliding Mode Control
SMC-FAT	Sliding Mode Control - Function Approximation Technique

VFC Velocity Feedback Control

LIST OF SYMBOLS

$q_{ij},\dot{q}_{ij},\ddot{q}_{ij}$	Joint displacement, velocity, and acceleration of j -th link for
	<i>i</i> -th manipulator, respectively
l_{ij}	Link lengths of <i>j</i> -th link for <i>i</i> -th manipulator
X _{ei}	<i>x</i> -position of the end-effectors for the <i>i</i> -th manipulator
Y _{ei}	y-position of the end-effectors for the <i>i</i> -th manipulator
X _{wi}	<i>x</i> -position of the wrist for the <i>i</i> -th manipulator
${\cal Y}_{wi}$	y-position of the wrist for the <i>i</i> -th manipulator
ϕ_i	The orientation of the wrists for the <i>i</i> -th manipulator
q_i,\dot{q}_i,\ddot{q}_i	3x1 vectors of generalised joint displacements, velocities and
	accelerations for the <i>i</i> -th manipulator, respectively
$M_i(q_i)$	3x3 symmetric positive definite inertia matrix for the <i>i</i> -th
	manipulator
$C_i(q_i,\dot{q}_i)$	3x3 Coriolis and Centrifugal matrix for the <i>i</i> -th manipulator
$G_i(q_i)$	3x1 vector of gravitational components <i>i</i> -th manipulator
$J_i(q_i)$	3x1 Jacobian matrix of <i>i</i> -th manipulator
$ au_i$	3x1 vector of input torque applied at each joint of <i>i</i> -th
	manipulator
f_i	3x1 vector of the interaction force between <i>i</i> -th manipulator
	and the flexible beam
m _{ij}	Mass of the i -th links of the j -th manipulator

l_{cij}	Distance from the centre of mass of the i -th links of the j -th
	manipulator
I_{ij}	Moment of inertia of the i -th links of the j -th manipulator
q , \dot{q} , \ddot{q}	6x1 vectors of generalised joint displacements, velocities and
	accelerations of two manipulators, respectively
$M_{_m}$	6x6 symmetric positive definite inertia matrix of two
	manipulators
C_m	6x6 Coriolis and Centrifugal matrix of two manipulators
G_m	6x1 vector of gravitational components of two manipulators
J	6x6 Jacobian matrix of two cooperative manipulators
τ	3x1 vector of input torque applied at each joint of two
	manipulators
f	6x1 vector of interaction force and moment between two
	manipulators and the flexible beam
L	Length of the flexible beam
ρ	The density of the flexible beam
m	Mass of the flexible beam
$X_r Y_r$ -frame	Fixed coordinate frame
<i>xy</i> -frame	Moving coordinate frame
$X_{_{mp}}$, $\dot{X}_{_{mp}}$ $\ddot{X}_{_{mp}}$	3x1 vectors of positions/orientation, velocity, and acceleration,
	respectively, of the flexible beam's midpoint
X _o	x-position of the flexible beam's midpoint
X _{od}	desired <i>x</i> -position of the flexible beam's midpoint

<i>Y</i> _o	y-position of the flexible beam's midpoint
\mathcal{Y}_{od}	Desired y-position of the flexible beam's midpoint
θ	The orientation of the flexible beam's midpoint
$ heta_d$	Desired orientation of the flexible beam's midpoint
F_{1x}, F_{1y}	The forces applied by the first manipulator at the first end of the
	flexible beam
F_{2x}, F_{2y}	The forces applied by the second manipulator at the second end
	of the flexible beam
t	Slow time scale
<i>t</i> ₀	Slow initial time
x	Spatial coordinate
$\eta(x,t)$	Transverse displacement (i.e. flexible parameter) that varies
	with x and t
Ϋ	The second derivative of $\eta(x,t)$ with respect to t
$\eta^{_{iv}}$	The fourth derivative of $\eta(x,t)$ with respect to x
R _{rf}	6x3 matrix of velocity relations between the beam's midpoint
	and both ends of the beam
δU	Variation of potential energy, U
δΤ	Variation of kinetic energy, <i>T</i>
δW	Variation of work done due to external forces, W
t_1 and t_2	Any two instances of time with $t_2 > t_1 > 0$.
$M_{\it brf}$	3x3 inertia matrix of the beam with flexible and rigid
	parameters

C_{brf}	3x1 centrifugal vector of the beam with flexible and rigid
	parameters
$\eta_{\scriptscriptstyle brf}$	3x1 vibration vector of the beam with flexible parameters only
$G_{\it brf}$	3x1 gravitational vector of the beam with flexible and rigid
	parameters
F_{brf}	3x6 force transformation matrix with flexible and rigid
	parameters
$F_{f\!f}$	1x6 force transformation matrix in the transverse vibration
Ε	Moment of inertia of the beam (kgm^2)
Ι	Young's modulus of the beam (Pa)
v(x,t)	New introduced variable
V _s	Slow variable
$v_f^{}, \hat{v}_f^{}, \hat{\hat{v}}_f^{}$	Fast variable, its first and second derivatives, respectively, with
	respect to the fast time scale, h
С	A dimensionless parameter which has a large value for the
	different materials
μ	Perturbed parameter
U_{cr}	Overall cooperative manipulators input
h	Fast time scale
Α	The differential operator in Hilbert space
$f_{_f}$	The interaction forces between a manipulator and the flexible
	beam
U_{c}	Composite controller

U_s	Slow subsystem controller
${U}_{f}$	Fast subsystem controller
$X_{\scriptscriptstyle mpd}$, ${\dot X}_{\scriptscriptstyle mpd}$, ${\ddot X}_{\scriptscriptstyle mpd}$	3x1 vectors of desired positions/orientation, velocity, and
	acceleration, respectively, of the flexible beam's midpoint
e, ė,ë	Tracking error
$U_{_{pd}}$	Control input function
K_v and K_p	PD gains
$\Delta_{c}(s)$	Closed-loop characteristics polynomial
$F_{f\!f}^\dagger$	Pseudo-inverse of F_{ff}
П	The operator that is neither self-adjoint nor positive definite
k	Positive gain
Q	Bounded and positive definite operator
A	Positive-definite operator
Λ	$diag(\lambda_1, \lambda_2,, \lambda_n)$ and $\lambda_n > 0$ for $i = 1,, n$.
K_{d}	Positive-definite matrix
$\hat{M}_{cr}, \hat{C}_{cr}$ and \hat{G}_{cr}	Approximation of M_{cr}, C_{cr} and G_{cr} , respectively
v and \dot{v}	Signal vector and its first derivative, respectively
W_M, W_C and W_G	Weighting matrices
Z_M, Z_C and Z_G	Matrices of basis function
$oldsymbol{eta}_{(.)}$	Number of basis functions
$ ilde W_{_M}, ilde W_{_C}$ and $ ilde W_{_G}$	Approximation error

$V\left(s, \tilde{W}_{M}, \tilde{W}_{C}, \tilde{W}_{G}\right)$	Candidate of Lyapunov-like function
Q_M, Q_C and Q_G	Positive-definite weighting matrices
$\dot{\hat{W}}_{_M},\dot{\hat{W}}_{_C},\dot{\hat{W}}_{_G}$	Update laws
r_x and r_y	Values that determine the radius of the desired circular
	trajectory
c_x and c_y	Values that determine the centre point of the desired circular
	trajectory