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ABSTRACT 

 

In this study, the non-premixed combustion of a traditional fuel- natural gas, and an 

alternative fuel- biogas, in a swirl-stabilized gas turbine combustor are simulated. The 

combustion results are analyzed and compared to evaluate the viability of the 

alternative fuel, biogas, for use in industrial gas turbine combustors. A comprehensive 

and exhaustive literature review on topics relating the current work is carried out. Two 

benchmark experimental cases of swirl-stabilized non-reacting and reacting flows are 

simulated in 3D and validated against the experiments to select the proper numerical, 

physical and combustion modeling of such complex flows. A swirling gas turbine 

combustor is designed to carry out non-premixed combustion of the fuels, using a 

well-known and recognized combustor design methodology and empirical equations. 

Investigating the existing literatures, the suitable compositions and stoichiometric air-

fuel ratio of the gases are determined. Unlike the combustion works in existing 

literature, the outer annulus region (between the liner and casing) is considered in the 

computational domain to obtain more realistic results on the flow physics and 

chemical reactions during combustion. As the swirling flow is 3D in nature, a full 3D 

grid is generated to address complex flow physics and turbulent-chemistry 

interactions. Afterward, the combustion of both gases is numerically simulated, and 

the combustion performance is evaluated based on the design objectives: combustion 

efficiency, pollutant CO and NOx emission, Merit Function, and temperature 

uniformity of the exhaust gases at the combustor exit (Pattern Factor). The effects of 

two design parameters, namely: swirl number and fuel injector radius, in achieving 

best performance in design objectives are examined. It was found that, typically, a 

combination of higher fuel injector radius (or lower fuel velocity) and higher swirl 

number (2.0 in current study) produces best performance in achieving the design 

objectives. The swirling flow should be dominant over the incoming fuel flow to 

facilitate better and finer mixing of air and fuel, which typically contributes to a better 

combustion efficiency, pattern factor, and low pollutant emission. It is important to 

point out that, the empirical swirl number (0.9), achieved through an empirical 

formulation, does not provide the best performance in any of the design objective for 

both gases. Lastly, the comparison of the combustion performances of both gases 

revealed that, despite possessing much lower methane and hence lower heating value 

(LHV), biogas of a specific composition demonstrates an equal combustion 

performance to natural gas, although at the expense of higher pollutant emission. 

Therefore, biogas can potentially be utilized as an alternative fuel in industrial gas 

turbine combustors and methods for reducing pollutant emission can be devised. 
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 خلاصة البحث 

 

 

في هذه الدراسة، تمت محاكاة الاحتراق غير الممزوج مسبقًا لوقود الغاز الطبيعي التقليدي، وللغاز الحيوي 
البديل ، في احتراق التوربينات الغازية المستقرة. تم تحليل نتائج الاحتراق ومقارنتها لتقييم جدوى وقود 

ية الصناعية. تمت إجراء مراجعة كاملة الغاز الحيوي البديل ، لاستخدامه في احتراق التوربينات الغاز 
وشاملة لكل الدراسات السابقة حول الموضوعات المتعلقة بالعمل الحالي. يتم محاكاة حالتين تجريبيتين 
معياريتين للتدفقات غير المتفاعلة والمتفاعلة المستقرة على شكل دوامة في صورة ثلاثية الأبعاد والتحقق من 

د النمذجة العددية والفيزيائية والاحتراق المناسبة لمثل هذه التدفقات صحتها مقابل التجارب لتحدي
المعقدة. تم تصميم جهاز احتراق التوربينات الغازية الدوامة لإجراء احتراق غير مخلوط مسبقًا للوقود ، 
باستخدام منهجية تصميم غرفة الاحتراق والمعادلات التجريبية المعروفة والمعترف بها. بالتحقيق في 
الدراسات السابقة الموجودة ، فإن التركيبات المناسبة ونسبة الهواء إلى الوقود المتكافئ للغازات تم 
تحديدها. على عكس أعمال الاحتراق الموجودة في الدراسات السابقة ، يتم اعتبار منطقة الحلقة 

عية في فيزياء التدفق الخارجية )بين البطانة والغلاف( في المجال الحسابي للحصول على نتائج أكثر واق
والتفاعلات الكيميائية أثناء الاحتراق. نظراً لأن التدفق الدوامي ثلاثي الأبعاد بطبيعته ، يتم إنشاء شبكة 
ثلاثية الأبعاد كاملة لمعالجة فيزياء التدفق المعقدة والتفاعلات الكيميائية المضطربة. بعد ذلك ، يتم محاكاة 

يتم تقييم أداء الاحتراق بناءً على أهداف التصميم: كفاءة الاحتراق ، احتراق كلا الغازين عدديًا ، و 
وانبعاثات ثاني أكسيد الكربون وأكاسيد النيتروجين ، ووظيفة الاستحقاق ، وتوحيد درجة حرارة غازات 
العادم عند مخرج الاحتراق )عامل النمط( .يتم فحص تأثير اثنين من معاملات التصميم ، وهما: رقم 

ونصف قطر حاقن الوقود ، في تحقيق أفضل أداء في أهداف التصميم. وقد وجد أنه ، بشكل  الدوران 
في  2.0نموذجي ، مزيج من نصف قطر حاقن الوقود الأعلى )أو سرعة وقود أقل( ورقم دوامة أعلى )
سيطر الدراسة الحالية( ينتج أفضل أداء في تحقيق أهداف التصميم. يجب أن يكون التدفق الدوامي هو الم

على تدفق الوقود الوارد لتسهيل الخلط الأفضل والأكثر دقة بين الهواء والوقود ، والذي يساهم عادةً في  
كفاءة احتراق أفضل ، وعامل نمط أفضل ، وانبعاثات منخفضة للملوثات. من المهم الإشارة إلى أن رقم 

، لا يوفر أفضل أداء في أي من ، الذي تم تحقيقه من خلال صياغة تجريبية( 0.9)الدوامة التجريبية 
أهداف التصميم لكلا الغازين. أخيراً ، كشفت المقارنة بين أداء الاحتراق لكلا الغازين أنه على الرغم من 

، فإن الغاز الحيوي لتركيبة (LHV)احتوائه على كمية أقل بكثير من الميثان وبالتالي قيمة تسخين أقل 
ز الطبيعي ، على الرغم من احتوائه على انبعاثات ملوثة أعلى. معينة يوضح أداء احتراق متساوٍ للغا



 

iv 

لذلك ، يمكن استخدام الغاز الحيوي كوقود بديل في محارق التوربينات الغازية الصناعية ويمكن إبتكار 
 .طرق لتقليل انبعاث الملوثات
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