A COMPARATIVE STUDY OF NATURAL GAS AND
BIOGAS COMBUSTION IN A SWIRLING FLOW GAS
TURBINE COMBUSTOR

BY

TARIQ MD RIDWANUR RAHMAN

A thesis submitted in fulfilment of the requirement for the
degree of Master of Science (Mechanical Engineering)

Kulliyyah of Engineering
International Islamic University Malaysia

AUGUST 2020



ABSTRACT

In this study, the non-premixed combustion of a traditional fuel- natural gas, and an
alternative fuel- biogas, in a swirl-stabilized gas turbine combustor are simulated. The
combustion results are analyzed and compared to evaluate the viability of the
alternative fuel, biogas, for use in industrial gas turbine combustors. A comprehensive
and exhaustive literature review on topics relating the current work is carried out. Two
benchmark experimental cases of swirl-stabilized non-reacting and reacting flows are
simulated in 3D and validated against the experiments to select the proper numerical,
physical and combustion modeling of such complex flows. A swirling gas turbine
combustor is designed to carry out non-premixed combustion of the fuels, using a
well-known and recognized combustor design methodology and empirical equations.
Investigating the existing literatures, the suitable compositions and stoichiometric air-
fuel ratio of the gases are determined. Unlike the combustion works in existing
literature, the outer annulus region (between the liner and casing) is considered in the
computational domain to obtain more realistic results on the flow physics and
chemical reactions during combustion. As the swirling flow is 3D in nature, a full 3D
grid is generated to address complex flow physics and turbulent-chemistry
interactions. Afterward, the combustion of both gases is numerically simulated, and
the combustion performance is evaluated based on the design objectives: combustion
efficiency, pollutant CO and NOx emission, Merit Function, and temperature
uniformity of the exhaust gases at the combustor exit (Pattern Factor). The effects of
two design parameters, namely: swirl number and fuel injector radius, in achieving
best performance in design objectives are examined. It was found that, typically, a
combination of higher fuel injector radius (or lower fuel velocity) and higher swirl
number (2.0 in current study) produces best performance in achieving the design
objectives. The swirling flow should be dominant over the incoming fuel flow to
facilitate better and finer mixing of air and fuel, which typically contributes to a better
combustion efficiency, pattern factor, and low pollutant emission. It is important to
point out that, the empirical swirl number (0.9), achieved through an empirical
formulation, does not provide the best performance in any of the design objective for
both gases. Lastly, the comparison of the combustion performances of both gases
revealed that, despite possessing much lower methane and hence lower heating value
(LHV), biogas of a specific composition demonstrates an equal combustion
performance to natural gas, although at the expense of higher pollutant emission.
Therefore, biogas can potentially be utilized as an alternative fuel in industrial gas
turbine combustors and methods for reducing pollutant emission can be devised.
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Temperature contour for the empirical case (S, = 0.9).

Contour of the CO mass fraction for the empirical case (S, =
0.9).

Contour of the NO mass fraction for the empirical case (S, =
0.9).

The 2D streamlines with axial velocity contours for different
swirl numbers.

Temperature contours for different swirl numbers.

Pattern factor against swirl number and maximum temperature
inside combustor.

Contours of the CO mass fraction for different swirl numbers.

CO emission at the combustor exit against swirl number and
maximum temperature inside combustor.

Contours of the NO mass fraction for different swirl numbers.

NO emission at the combustor exit against swirl number and
maximum temperature inside combustor.

CO and NO emission at the combustor exit against swirl number.
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Figure 5.20
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Merit Function against swirl number and maximum temperature
inside combustor.

Combustion efficiency against swirl number and maximum
temperature inside combustor.

The 2D streamlines with axial velocity contours for different fuel
injectors with swirl number S, = 0.9.

Temperature contours for different fuel injectors with swirl
number S, = 0.9.

Contours of the NO mass fraction for different fuel injectors with
swirl number S, = 0.9.

Contours of the CO mass fraction for different fuel injectors with
swirl number S, = 0.9.

CO emission at the combustor exit against swirl number and
maximum temperature using different fuel injectors.

NO emission at the combustor exit against swirl number and
maximum temperature using different fuel injectors.

CO and NO emission at the combustor exit against swirl number
using different fuel injectors.

Merit Function for pollutant emissions against swirl number and
maximum temperature using different fuel injectors.

Pattern Factor against swirl number and maximum temperature
using different fuel injectors.

Combustion efficiency against swirl number and maximum
temperature using different fuel injectors.

Pattern Factor against swirl number. Left: findings in current
investigation. Right: Results of Torkzadeh et al. (2016)

Combustion efficiency against swirl number. Left: findings in
current investigation. Right: Results of Torkzadeh et al. (2016)

Merit Function for pollutant emissions against swirl number.
Left: findings in current investigation. Right: Results of
Torkzadeh et al. (2016)

The 2D streamlines with axial velocity contours for different
swirl numbers using INJ-765 during biogas combustion.
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Figure 5.36
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Contours of the turbulent kinetic energy for biogas (top) and
natural gas (bottom) combustions using INJ-765, for S, = 0.5.

Temperature contours for different swirl numbers using INJ-765
during biogas combustion.

Contours of the NO mass fraction for different swirl numbers
using INJ-765 during biogas combustion.

Contours of the CO mass fraction for different swirl numbers
using INJ-765 during biogas combustion.

The 2D streamlines with axial velocity contours for different fuel
injectors with swirl number S, = 0.9 during biogas combustion.

Temperature contours for different fuel injectors with swirl
number S, = 0.9 during biogas combustion.

Contours of the CO mass fraction for different fuel injectors with
swirl number S, = 0.9 during biogas combustion.

Contours of the NO mass fraction for different fuel injectors with
swirl number S, = 0.9 during biogas combustion.

NO emission at the combustor exit against swirl number and
maximum temperature inside combustor, using different fuel
injectors during biogas combustion.

CO emission at the combustor exit against swirl number and
maximum temperature inside combustor, using different fuel
injectors during biogas combustion.

CO and NO emission at the combustor exit against swirl number,
using different fuel injectors during biogas combustion.

Merit Function for pollutant emissions against swirl number and
maximum temperature inside combustor, using different fuel
injectors during biogas combustion.

Combustion efficiency against swirl number and maximum
temperature inside combustor, using different fuel injectors
during biogas combustion.

Pattern Factor against swirl number and maximum temperature
inside combustor, using different fuel injectors during biogas
combustion.

Combustion efficiency against swirl number for natural gas (NG)
and biogas (BG) combustions, using different fuel injectors.
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Figure 5.51

Figure 5.52

Figure 5.53

Figure 5.54

Figure 5.55

Combustion heat generation against swirl number for natural gas
(NG) and biogas (BG) combustions, using different fuel
injectors.

Maximum flame temperature against swirl number for natural
gas (NG) and biogas (BG) combustions, using different fuel
injectors.

Pattern Factor against swirl number for natural gas (NG) and
biogas (BG) combustions, using different fuel injectors.

NO emission at the combustor exit against swirl number for
natural gas (NG) and biogas (BG) combustions, using different
fuel injectors.

CO emission at the combustor exit against swirl number for

natural gas (NG) and biogas (BG) combustions, using different
fuel injectors.
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